ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.7
Committed: Sat Jan 26 00:59:08 2013 UTC (11 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +4 -11 lines
Log Message:
Fixed silly coding error that caused everything to be wrong

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.6 2013/01/25 23:17:31 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <ctype.h>
88 #include "rtmath.h"
89 #include "color.h"
90
91 char *progname; /* Program name */
92 char errmsg[128]; /* Error message buffer */
93 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
94 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
95
96 double altitude; /* Solar altitude (radians) */
97 double azimuth; /* Solar azimuth (radians) */
98 double apwc; /* Atmospheric precipitable water content */
99 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
100 double diff_illum; /* Diffuse illuminance */
101 double diff_irrad; /* Diffuse irradiance */
102 double dir_illum; /* Direct illuminance */
103 double dir_irrad; /* Direct irradiance */
104 int julian_date; /* Julian date */
105 double perez_param[5]; /* Perez sky model parameters */
106 double sky_brightness; /* Sky brightness */
107 double sky_clearness; /* Sky clearness */
108 double solar_rad; /* Solar radiance */
109 double sun_zenith; /* Sun zenith angle (radians) */
110 int input = 0; /* Input type */
111
112 extern double dmax( double, double );
113 extern double CalcAirMass();
114 extern double CalcDiffuseIllumRatio( int );
115 extern double CalcDiffuseIrradiance();
116 extern double CalcDirectIllumRatio( int );
117 extern double CalcDirectIrradiance();
118 extern double CalcEccentricity();
119 extern double CalcPrecipWater( double );
120 extern double CalcRelHorzIllum( float *parr );
121 extern double CalcRelLuminance( double, double );
122 extern double CalcSkyBrightness();
123 extern double CalcSkyClearness();
124 extern int CalcSkyParamFromIllum();
125 extern int GetCategoryIndex();
126 extern void CalcPerezParam( double, double, double, int );
127 extern void CalcSkyPatchLumin( float *parr );
128 extern void ComputeSky( float *parr );
129
130 /* Degrees into radians */
131 #define DegToRad(deg) ((deg)*(PI/180.))
132
133 /* Radiuans into degrees */
134 #define RadToDeg(rad) ((rad)*(180./PI))
135
136
137 /* Perez sky model coefficients */
138
139 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
140 /* Weather Model for Sky Luminance Distribution - */
141 /* Preliminary Configuration and Validation," Solar */
142 /* Energy 50(3):235-245, Table 1. */
143
144 static const double PerezCoeff[8][20] =
145 {
146 /* Sky clearness (epsilon): 1.000 to 1.065 */
147 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
148 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
149 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
150 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
151 /* Sky clearness (epsilon): 1.065 to 1.230 */
152 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
153 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
154 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
155 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
156 /* Sky clearness (epsilon): 1.230 to 1.500 */
157 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
158 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
159 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
160 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
161 /* Sky clearness (epsilon): 1.500 to 1.950 */
162 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
163 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
164 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
165 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
166 /* Sky clearness (epsilon): 1.950 to 2.800 */
167 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
168 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
169 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
170 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
171 /* Sky clearness (epsilon): 2.800 to 4.500 */
172 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
173 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
174 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
175 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
176 /* Sky clearness (epsilon): 4.500 to 6.200 */
177 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
178 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
179 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
180 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
181 /* Sky clearness (epsilon): 6.200 to ... */
182 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
183 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
184 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
185 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
186 };
187
188 /* Perez irradiance component model coefficients */
189
190 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
191 /* Stewart. 1990. ìModeling Daylight Availability and */
192 /* Irradiance Components from Direct and Global */
193 /* Irradiance,î Solar Energy 44(5):271-289. */
194
195 typedef struct
196 {
197 double lower; /* Lower bound */
198 double upper; /* Upper bound */
199 } CategoryBounds;
200
201 /* Perez sky clearness (epsilon) categories (Table 1) */
202 static const CategoryBounds SkyClearCat[8] =
203 {
204 { 1.000, 1.065 }, /* Overcast */
205 { 1.065, 1.230 },
206 { 1.230, 1.500 },
207 { 1.500, 1.950 },
208 { 1.950, 2.800 },
209 { 2.800, 4.500 },
210 { 4.500, 6.200 },
211 { 6.200, 12.00 } /* Clear */
212 };
213
214 /* Luminous efficacy model coefficients */
215 typedef struct
216 {
217 double a;
218 double b;
219 double c;
220 double d;
221 } ModelCoeff;
222
223 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
224 static const ModelCoeff DiffuseLumEff[8] =
225 {
226 { 97.24, -0.46, 12.00, -8.91 },
227 { 107.22, 1.15, 0.59, -3.95 },
228 { 104.97, 2.96, -5.53, -8.77 },
229 { 102.39, 5.59, -13.95, -13.90 },
230 { 100.71, 5.94, -22.75, -23.74 },
231 { 106.42, 3.83, -36.15, -28.83 },
232 { 141.88, 1.90, -53.24, -14.03 },
233 { 152.23, 0.35, -45.27, -7.98 }
234 };
235
236 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
237 static const ModelCoeff DirectLumEff[8] =
238 {
239 { 57.20, -4.55, -2.98, 117.12 },
240 { 98.99, -3.46, -1.21, 12.38 },
241 { 109.83, -4.90, -1.71, -8.81 },
242 { 110.34, -5.84, -1.99, -4.56 },
243 { 106.36, -3.97, -1.75, -6.16 },
244 { 107.19, -1.25, -1.51, -26.73 },
245 { 105.75, 0.77, -1.26, -34.44 },
246 { 101.18, 1.58, -1.10, -8.29 }
247 };
248
249 #ifndef NSUNPATCH
250 #define NSUNPATCH 4 /* # patches to spread sun into */
251 #endif
252
253 extern int jdate(int month, int day);
254 extern double stadj(int jd);
255 extern double sdec(int jd);
256 extern double salt(double sd, double st);
257 extern double sazi(double sd, double st);
258 /* sun calculation constants */
259 extern double s_latitude;
260 extern double s_longitude;
261 extern double s_meridian;
262
263 int verbose = 0; /* progress reports to stderr? */
264
265 int outfmt = 'a'; /* output format */
266
267 int rhsubdiv = 1; /* Reinhart sky subdivisions */
268
269 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
270 COLOR suncolor = {1., 1., 1.}; /* sun color */
271 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
272
273 int nskypatch; /* number of Reinhart patches */
274 float *rh_palt; /* sky patch altitudes (radians) */
275 float *rh_pazi; /* sky patch azimuths (radians) */
276 float *rh_dom; /* sky patch solid angle (sr) */
277
278 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
279 (v)[0] = (v)[1]*tsin(azi), \
280 (v)[1] *= tcos(azi), \
281 (v)[2] = tsin(alt) )
282
283 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
284
285 #define rh_cos(i) tsin(rh_palt[i])
286
287 extern int rh_init(void);
288 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
289 extern void AddDirect(float *parr);
290
291 int
292 main(int argc, char *argv[])
293 {
294 char buf[256];
295 double elevation; /* site elevation (meters) */
296 int dir_is_horiz; /* direct is meas. on horizontal? */
297 float *mtx_data = NULL; /* our matrix data */
298 int ntsteps = 0; /* number of rows in matrix */
299 int last_monthly = 0; /* month of last report */
300 int mo, da; /* month (1-12) and day (1-31) */
301 double hr; /* hour (local standard time) */
302 double dir, dif; /* direct and diffuse values */
303 int mtx_offset;
304 int i, j;
305
306 progname = argv[0];
307 /* get options */
308 for (i = 1; i < argc && argv[i][0] == '-'; i++)
309 switch (argv[i][1]) {
310 case 'g': /* ground reflectance */
311 grefl[0] = atof(argv[++i]);
312 grefl[1] = atof(argv[++i]);
313 grefl[2] = atof(argv[++i]);
314 break;
315 case 'v': /* verbose progress reports */
316 verbose++;
317 break;
318 case 'o': /* output format */
319 switch (argv[i][2]) {
320 case 'f':
321 case 'd':
322 case 'a':
323 outfmt = argv[i][2];
324 break;
325 default:
326 goto userr;
327 }
328 break;
329 case 'm': /* Reinhart subdivisions */
330 rhsubdiv = atoi(argv[++i]);
331 break;
332 case 'c': /* sky color */
333 skycolor[0] = atof(argv[++i]);
334 skycolor[1] = atof(argv[++i]);
335 skycolor[2] = atof(argv[++i]);
336 break;
337 case 'd': /* solar (direct) only */
338 skycolor[0] = skycolor[1] = skycolor[2] = 0;
339 if (suncolor[1] <= 1e-4)
340 suncolor[0] = suncolor[1] = suncolor[2] = 1;
341 break;
342 case 's': /* sky only (no direct) */
343 suncolor[0] = suncolor[1] = suncolor[2] = 0;
344 if (skycolor[1] <= 1e-4)
345 skycolor[0] = skycolor[1] = skycolor[2] = 1;
346 break;
347 default:
348 goto userr;
349 }
350 if (i < argc-1)
351 goto userr;
352 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
353 fprintf(stderr, "%s: cannot open '%s' for input\n",
354 progname, argv[i]);
355 exit(1);
356 }
357 if (verbose) {
358 if (i == argc-1)
359 fprintf(stderr, "%s: reading weather tape '%s'\n",
360 progname, argv[i]);
361 else
362 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
363 progname);
364 }
365 /* read weather tape header */
366 if (scanf("place %[^\r\n] ", buf) != 1)
367 goto fmterr;
368 if (scanf("latitude %lf\n", &s_latitude) != 1)
369 goto fmterr;
370 if (scanf("longitude %lf\n", &s_longitude) != 1)
371 goto fmterr;
372 if (scanf("time_zone %lf\n", &s_meridian) != 1)
373 goto fmterr;
374 if (scanf("site_elevation %lf\n", &elevation) != 1)
375 goto fmterr;
376 if (scanf("weather_data_file_units %d\n", &input) != 1)
377 goto fmterr;
378 switch (input) { /* translate units */
379 case 1:
380 input = 1; /* radiometric quantities */
381 dir_is_horiz = 0; /* direct is perpendicular meas. */
382 break;
383 case 2:
384 input = 1; /* radiometric quantities */
385 dir_is_horiz = 1; /* solar measured horizontally */
386 break;
387 case 3:
388 input = 2; /* photometric quantities */
389 dir_is_horiz = 0; /* direct is perpendicular meas. */
390 break;
391 default:
392 goto fmterr;
393 }
394 rh_init(); /* initialize sky patches */
395 if (verbose) {
396 fprintf(stderr, "%s: location '%s'\n", progname, buf);
397 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
398 progname, s_latitude, s_longitude);
399 fprintf(stderr, "%s: %d sky patches per time step\n",
400 progname, nskypatch);
401 }
402 /* convert quantities to radians */
403 s_latitude = DegToRad(s_latitude);
404 s_longitude = DegToRad(s_longitude);
405 s_meridian = DegToRad(s_meridian);
406 /* process each time step in tape */
407 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
408 double sda, sta;
409 /* make space for next time step */
410 mtx_offset = 3*nskypatch*ntsteps++;
411 mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch);
412 if (dif <= 1e-4) {
413 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
414 continue;
415 }
416 if (verbose && mo != last_monthly)
417 fprintf(stderr, "%s: stepping through month %d...\n",
418 progname, last_monthly=mo);
419 /* compute solar position */
420 julian_date = jdate(mo, da);
421 sda = sdec(julian_date);
422 sta = stadj(julian_date);
423 altitude = salt(sda, hr+sta);
424 azimuth = sazi(sda, hr+sta) + PI;
425 /* convert measured values */
426 if (dir_is_horiz && altitude > 0.)
427 dir /= sin(altitude);
428 if (input == 1) {
429 dir_irrad = dir;
430 diff_irrad = dif;
431 } else /* input == 2 */ {
432 dir_illum = dir;
433 diff_illum = dif;
434 }
435 /* compute sky patch values */
436 ComputeSky(mtx_data+mtx_offset);
437 AddDirect(mtx_data+mtx_offset);
438 }
439 /* check for junk at end */
440 while ((i = fgetc(stdin)) != EOF)
441 if (!isspace(i)) {
442 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
443 progname);
444 buf[0] = i; buf[1] = '\0';
445 fgets(buf+1, sizeof(buf)-1, stdin);
446 fputs(buf, stderr); fputc('\n', stderr);
447 break;
448 }
449 /* write out matrix */
450 #ifdef getc_unlocked
451 flockfile(stdout);
452 #endif
453 if (verbose)
454 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
455 progname, outfmt=='a' ? "" : "binary ", ntsteps);
456 /* patches are rows (outer sort) */
457 for (i = 0; i < nskypatch; i++) {
458 mtx_offset = 3*i;
459 switch (outfmt) {
460 case 'a':
461 for (j = 0; j < ntsteps; j++) {
462 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
463 mtx_data[mtx_offset+1],
464 mtx_data[mtx_offset+2]);
465 mtx_offset += 3*nskypatch;
466 }
467 if (ntsteps > 1)
468 fputc('\n', stdout);
469 break;
470 case 'f':
471 for (j = 0; j < ntsteps; j++) {
472 fwrite(mtx_data+mtx_offset, sizeof(float), 3,
473 stdout);
474 mtx_offset += 3*nskypatch;
475 }
476 break;
477 case 'd':
478 for (j = 0; j < ntsteps; j++) {
479 double ment[3];
480 ment[0] = mtx_data[mtx_offset];
481 ment[1] = mtx_data[mtx_offset+1];
482 ment[2] = mtx_data[mtx_offset+2];
483 fwrite(ment, sizeof(double), 3, stdout);
484 mtx_offset += 3*nskypatch;
485 }
486 break;
487 }
488 if (ferror(stdout))
489 goto writerr;
490 }
491 if (fflush(stdout) == EOF)
492 goto writerr;
493 if (verbose)
494 fprintf(stderr, "%s: done.\n", progname);
495 exit(0);
496 userr:
497 fprintf(stderr, "Usage: %s [-v][-d|-s][-m N][-g r g b][-c r g b][-o{f|d}] [tape.wea]\n",
498 progname);
499 exit(1);
500 fmterr:
501 fprintf(stderr, "%s: input weather tape format error\n", progname);
502 exit(1);
503 writerr:
504 fprintf(stderr, "%s: write error on output\n", progname);
505 exit(1);
506 }
507
508 /* Return maximum of two doubles */
509 double dmax( double a, double b )
510 { return (a > b) ? a : b; }
511
512 /* Compute sky patch radiance values (modified by GW) */
513 void
514 ComputeSky(float *parr)
515 {
516 int index; /* Category index */
517 double norm_diff_illum; /* Normalized diffuse illuimnance */
518 int i;
519
520 /* Calculate atmospheric precipitable water content */
521 apwc = CalcPrecipWater(dew_point);
522
523 /* Calculate sun zenith angle (don't let it dip below horizon) */
524 /* Also limit minimum angle to keep circumsolar off zenith */
525 if (altitude <= 0.0)
526 sun_zenith = DegToRad(90.0);
527 else if (altitude >= DegToRad(87.0))
528 sun_zenith = DegToRad(3.0);
529 else
530 sun_zenith = DegToRad(90.0) - altitude;
531
532 /* Compute the inputs for the calculation of the sky distribution */
533
534 if (input == 0) /* XXX never used */
535 {
536 /* Calculate irradiance */
537 diff_irrad = CalcDiffuseIrradiance();
538 dir_irrad = CalcDirectIrradiance();
539
540 /* Calculate illuminance */
541 index = GetCategoryIndex();
542 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
543 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
544 }
545 else if (input == 1)
546 {
547 sky_brightness = CalcSkyBrightness();
548 sky_clearness = CalcSkyClearness();
549
550 /* Calculate illuminance */
551 index = GetCategoryIndex();
552 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
553 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
554 }
555 else if (input == 2)
556 {
557 /* Calculate sky brightness and clearness from illuminance values */
558 index = CalcSkyParamFromIllum();
559 }
560
561 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
562 memset(parr, 0, sizeof(float)*3*nskypatch);
563 return;
564 }
565 /* Compute ground radiance (include solar contribution if any) */
566 parr[0] = diff_illum;
567 if (altitude > 0)
568 parr[0] += dir_illum * sin(altitude);
569 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
570 multcolor(parr, grefl);
571
572 /* Calculate Perez sky model parameters */
573 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
574
575 /* Calculate sky patch luminance values */
576 CalcSkyPatchLumin(parr);
577
578 /* Calculate relative horizontal illuminance */
579 norm_diff_illum = CalcRelHorzIllum(parr);
580
581 /* Normalization coefficient */
582 norm_diff_illum = diff_illum / norm_diff_illum;
583
584 /* Apply to sky patches to get absolute radiance values */
585 for (i = 1; i < nskypatch; i++) {
586 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
587 multcolor(parr+3*i, skycolor);
588 }
589 }
590
591 /* Add in solar direct to nearest sky patches (GW) */
592 void
593 AddDirect(float *parr)
594 {
595 FVECT svec;
596 double near_dprod[NSUNPATCH];
597 int near_patch[NSUNPATCH];
598 double wta[NSUNPATCH], wtot;
599 int i, j, p;
600
601 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
602 return;
603 /* identify NSUNPATCH closest patches */
604 for (i = NSUNPATCH; i--; )
605 near_dprod[i] = -1.;
606 vector(svec, altitude, azimuth);
607 for (p = 1; p < nskypatch; p++) {
608 FVECT pvec;
609 double dprod;
610 rh_vector(pvec, p);
611 dprod = DOT(pvec, svec);
612 for (i = 0; i < NSUNPATCH; i++)
613 if (dprod > near_dprod[i]) {
614 for (j = NSUNPATCH; --j > i; ) {
615 near_dprod[j] = near_dprod[j-1];
616 near_patch[j] = near_patch[j-1];
617 }
618 near_dprod[i] = dprod;
619 near_patch[i] = p;
620 break;
621 }
622 }
623 wtot = 0; /* weight by proximity */
624 for (i = NSUNPATCH; i--; )
625 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
626 /* add to nearest patch radiances */
627 for (i = NSUNPATCH; i--; ) {
628 float *pdest = parr + 3*near_patch[i];
629 float val_add = wta[i] * dir_illum /
630 (WHTEFFICACY * wtot * rh_dom[near_patch[i]]);
631 *pdest++ += val_add*suncolor[0];
632 *pdest++ += val_add*suncolor[1];
633 *pdest++ += val_add*suncolor[2];
634 }
635 }
636
637 /* Initialize Reinhart sky patch positions (GW) */
638 int
639 rh_init(void)
640 {
641 #define NROW 7
642 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
643 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
644 int p, i, j;
645 /* allocate patch angle arrays */
646 nskypatch = 0;
647 for (p = 0; p < NROW; p++)
648 nskypatch += tnaz[p];
649 nskypatch *= rhsubdiv*rhsubdiv;
650 nskypatch += 2;
651 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
652 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
653 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
654 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
655 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
656 exit(1);
657 }
658 rh_palt[0] = -PI/2.; /* ground & zenith patches */
659 rh_pazi[0] = 0.;
660 rh_dom[0] = 2.*PI;
661 rh_palt[nskypatch-1] = PI/2.;
662 rh_pazi[nskypatch-1] = 0.;
663 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
664 p = 1; /* "normal" patches */
665 for (i = 0; i < NROW*rhsubdiv; i++) {
666 const float ralt = alpha*(i + .5);
667 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
668 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
669 (double)ninrow;
670 for (j = 0; j < ninrow; j++) {
671 rh_palt[p] = ralt;
672 rh_pazi[p] = 2.*PI * j / (double)ninrow;
673 rh_dom[p++] = dom;
674 }
675 }
676 return nskypatch;
677 #undef NROW
678 }
679
680 /* Resize daylight matrix (GW) */
681 float *
682 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
683 {
684 if (mtx_data == NULL)
685 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
686 else
687 mtx_data = (float *)realloc(mtx_data,
688 sizeof(float)*3*nsteps*npatch);
689 if (mtx_data == NULL) {
690 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
691 progname, nsteps, npatch);
692 exit(1);
693 }
694 return(mtx_data);
695 }
696
697 /* Determine category index */
698 int GetCategoryIndex()
699 {
700 int index; /* Loop index */
701
702 for (index = 0; index < 8; index++)
703 if ((sky_clearness >= SkyClearCat[index].lower) &&
704 (sky_clearness < SkyClearCat[index].upper))
705 break;
706
707 return index;
708 }
709
710 /* Calculate diffuse illuminance to diffuse irradiance ratio */
711
712 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
713 /* Stewart. 1990. ìModeling Daylight Availability and */
714 /* Irradiance Components from Direct and Global */
715 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
716
717 double CalcDiffuseIllumRatio( int index )
718 {
719 ModelCoeff const *pnle; /* Category coefficient pointer */
720
721 /* Get category coefficient pointer */
722 pnle = &(DiffuseLumEff[index]);
723
724 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
725 pnle->d * log(sky_brightness);
726 }
727
728 /* Calculate direct illuminance to direct irradiance ratio */
729
730 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
731 /* Stewart. 1990. ìModeling Daylight Availability and */
732 /* Irradiance Components from Direct and Global */
733 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
734
735 double CalcDirectIllumRatio( int index )
736 {
737 ModelCoeff const *pnle; /* Category coefficient pointer */
738
739 /* Get category coefficient pointer */
740 pnle = &(DirectLumEff[index]);
741
742 /* Calculate direct illuminance from direct irradiance */
743
744 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
745 sun_zenith - 5.0) + pnle->d * sky_brightness),
746 0.0);
747 }
748
749 /* Calculate sky brightness */
750
751 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
752 /* Stewart. 1990. ìModeling Daylight Availability and */
753 /* Irradiance Components from Direct and Global */
754 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
755
756 double CalcSkyBrightness()
757 {
758 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
759 CalcEccentricity());
760 }
761
762 /* Calculate sky clearness */
763
764 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
765 /* Stewart. 1990. ìModeling Daylight Availability and */
766 /* Irradiance Components from Direct and Global */
767 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
768
769 double CalcSkyClearness()
770 {
771 double sz_cubed; /* Sun zenith angle cubed */
772
773 /* Calculate sun zenith angle cubed */
774 sz_cubed = pow(sun_zenith, 3.0);
775
776 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
777 sz_cubed) / (1.0 + 1.041 * sz_cubed);
778 }
779
780 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
781
782 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
783 /* Stewart. 1990. ìModeling Daylight Availability and */
784 /* Irradiance Components from Direct and Global */
785 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
786 /* (inverse). */
787
788 double CalcDiffuseIrradiance()
789 {
790 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
791 CalcAirMass();
792 }
793
794 /* Calculate direct normal irradiance from Perez sky clearness */
795
796 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
797 /* Stewart. 1990. ìModeling Daylight Availability and */
798 /* Irradiance Components from Direct and Global */
799 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
800 /* (inverse). */
801
802 double CalcDirectIrradiance()
803 {
804 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
805 * pow(sun_zenith, 3.0)));
806 }
807
808 /* Calculate sky brightness and clearness from illuminance values */
809 int CalcSkyParamFromIllum()
810 {
811 double test1 = 0.1;
812 double test2 = 0.1;
813 int counter = 0;
814 int index = 0; /* Category index */
815
816 /* Convert illuminance to irradiance */
817 diff_irrad = diff_illum * DC_SolarConstantE /
818 (DC_SolarConstantL * 1000.0);
819 dir_irrad = dir_illum * DC_SolarConstantE /
820 (DC_SolarConstantL * 1000.0);
821
822 /* Calculate sky brightness and clearness */
823 sky_brightness = CalcSkyBrightness();
824 sky_clearness = CalcSkyClearness();
825
826 /* Limit sky clearness */
827 if (sky_clearness > 12.0)
828 sky_clearness = 12.0;
829
830 /* Limit sky brightness */
831 if (sky_brightness < 0.05)
832 sky_brightness = 0.01;
833
834 while (((fabs(diff_irrad - test1) > 10.0) ||
835 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
836 {
837 test1 = diff_irrad;
838 test2 = dir_irrad;
839 counter++;
840
841 /* Convert illuminance to irradiance */
842 index = GetCategoryIndex();
843 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
844 dir_irrad = dir_illum / CalcDirectIllumRatio(index);
845
846 /* Calculate sky brightness and clearness */
847 sky_brightness = CalcSkyBrightness();
848 sky_clearness = CalcSkyClearness();
849
850 /* Limit sky clearness */
851 if (sky_clearness > 12.0)
852 sky_clearness = 12.0;
853
854 /* Limit sky brightness */
855 if (sky_brightness < 0.05)
856 sky_brightness = 0.01;
857 }
858
859 return GetCategoryIndex();
860 }
861
862 /* Calculate relative luminance */
863
864 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
865 /* ìAll-Weather Model for Sky Luminance Distribution - */
866 /* Preliminary Configuration and Validation,î Solar Energy */
867 /* 50(3):235-245, Eqn. 1. */
868
869 double CalcRelLuminance( double gamma, double zeta )
870 {
871 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
872 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
873 perez_param[4] * cos(gamma) * cos(gamma));
874 }
875
876 /* Calculate Perez sky model parameters */
877
878 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
879 /* ìAll-Weather Model for Sky Luminance Distribution - */
880 /* Preliminary Configuration and Validation,î Solar Energy */
881 /* 50(3):235-245, Eqns. 6 - 8. */
882
883 void CalcPerezParam( double sz, double epsilon, double delta,
884 int index )
885 {
886 double x[5][4]; /* Coefficents a, b, c, d, e */
887 int i, j; /* Loop indices */
888
889 /* Limit sky brightness */
890 if (epsilon > 1.065 && epsilon < 2.8)
891 {
892 if (delta < 0.2)
893 delta = 0.2;
894 }
895
896 /* Get Perez coefficients */
897 for (i = 0; i < 5; i++)
898 for (j = 0; j < 4; j++)
899 x[i][j] = PerezCoeff[index][4 * i + j];
900
901 if (index != 0)
902 {
903 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
904 for (i = 0; i < 5; i++)
905 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
906 x[i][3] * sz);
907 }
908 else
909 {
910 /* Parameters a, b and e (Eqn. 6) */
911 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
912 x[0][3] * sz);
913 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
914 x[1][3] * sz);
915 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
916 x[4][3] * sz);
917
918 /* Parameter c (Eqn. 7) */
919 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
920 x[2][2])) - x[2][3];
921
922 /* Parameter d (Eqn. 8) */
923 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
924 x[3][2] + delta * x[3][3];
925 }
926 }
927
928 /* Calculate relative horizontal illuminance (modified by GW) */
929
930 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
931 /* ìAll-Weather Model for Sky Luminance Distribution - */
932 /* Preliminary Configuration and Validation,î Solar Energy */
933 /* 50(3):235-245, Eqn. 3. */
934
935 double CalcRelHorzIllum( float *parr )
936 {
937 int i;
938 double rh_illum = 0.0; /* Relative horizontal illuminance */
939
940 for (i = 1; i < nskypatch; i++)
941 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
942
943 return rh_illum;
944 }
945
946 /* Calculate earth orbit eccentricity correction factor */
947
948 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
949 /* Techniques. Springer, p. 72. */
950
951 double CalcEccentricity()
952 {
953 double day_angle; /* Day angle (radians) */
954 double E0; /* Eccentricity */
955
956 /* Calculate day angle */
957 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
958
959 /* Calculate eccentricity */
960 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
961 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
962 day_angle);
963
964 return E0;
965 }
966
967 /* Calculate atmospheric precipitable water content */
968
969 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
970 /* Stewart. 1990. ìModeling Daylight Availability and */
971 /* Irradiance Components from Direct and Global */
972 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
973
974 /* Note: The default surface dew point temperature is 11 deg. C */
975 /* (52 deg. F). Typical values are: */
976
977 /* Celsius Fahrenheit Human Perception */
978 /* > 24 > 75 Extremely uncomfortable */
979 /* 21 - 24 70 - 74 Very humid */
980 /* 18 - 21 65 - 69 Somewhat uncomfortable */
981 /* 16 - 18 60 - 64 OK for most people */
982 /* 13 - 16 55 - 59 Comfortable */
983 /* 10 - 12 50 - 54 Very comfortable */
984 /* < 10 < 49 A bit dry for some */
985
986 double CalcPrecipWater( double dpt )
987 { return exp(0.07 * dpt - 0.075); }
988
989 /* Calculate relative air mass */
990
991 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
992 /* for the Relative Optical Air Mass," Arch. Meteorol. */
993 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
994
995 /* Note: More sophisticated relative air mass models are */
996 /* available, but they differ significantly only for */
997 /* sun zenith angles greater than 80 degrees. */
998
999 double CalcAirMass()
1000 {
1001 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1002 RadToDeg(sun_zenith), -1.253)));
1003 }
1004
1005 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1006
1007 /* NOTE: The sky patches centers are determined in accordance with the */
1008 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1009 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1010 /* for the Validation of Illuminance Prediction Techniques," */
1011 /* Lighting Research & Technology 33(2):117-136.) */
1012
1013 void CalcSkyPatchLumin( float *parr )
1014 {
1015 int i;
1016 double aas; /* Sun-sky point azimuthal angle */
1017 double sspa; /* Sun-sky point angle */
1018 double zsa; /* Zenithal sun angle */
1019
1020 for (i = 1; i < nskypatch; i++)
1021 {
1022 /* Calculate sun-sky point azimuthal angle */
1023 aas = fabs(rh_pazi[i] - azimuth);
1024
1025 /* Calculate zenithal sun angle */
1026 zsa = PI * 0.5 - rh_palt[i];
1027
1028 /* Calculate sun-sky point angle (Equation 8-20) */
1029 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1030 sin(zsa) * cos(aas));
1031
1032 /* Calculate patch luminance */
1033 parr[3*i] = CalcRelLuminance(sspa, zsa);
1034 if (parr[3*i] < 0) parr[3*i] = 0;
1035 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1036 }
1037 }