ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.35
Committed: Tue Jan 7 18:26:55 2020 UTC (4 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +36 -18 lines
Log Message:
Code clean-up from last change

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.34 2020/01/07 01:42:30 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdlib.h>
85 #include <ctype.h>
86 #include "platform.h"
87 #include "rtmath.h"
88 #include "rtio.h"
89 #include "color.h"
90 #include "sun.h"
91
92 char *progname; /* Program name */
93 char errmsg[128]; /* Error message buffer */
94 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
95 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
96
97 double altitude; /* Solar altitude (radians) */
98 double azimuth; /* Solar azimuth (radians) */
99 double apwc; /* Atmospheric precipitable water content */
100 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
101 double diff_illum; /* Diffuse illuminance */
102 double diff_irrad; /* Diffuse irradiance */
103 double dir_illum; /* Direct illuminance */
104 double dir_irrad; /* Direct irradiance */
105 int julian_date; /* Julian date */
106 double perez_param[5]; /* Perez sky model parameters */
107 double sky_brightness; /* Sky brightness */
108 double sky_clearness; /* Sky clearness */
109 double solar_rad; /* Solar radiance */
110 double sun_zenith; /* Sun zenith angle (radians) */
111 int input = 0; /* Input type */
112 int output = 0; /* Output type */
113
114 extern double dmax( double, double );
115 extern double CalcAirMass();
116 extern double CalcDiffuseIllumRatio( int );
117 extern double CalcDiffuseIrradiance();
118 extern double CalcDirectIllumRatio( int );
119 extern double CalcDirectIrradiance();
120 extern double CalcEccentricity();
121 extern double CalcPrecipWater( double );
122 extern double CalcRelHorzIllum( float *parr );
123 extern double CalcRelLuminance( double, double );
124 extern double CalcSkyBrightness();
125 extern double CalcSkyClearness();
126 extern int CalcSkyParamFromIllum();
127 extern int GetCategoryIndex();
128 extern void CalcPerezParam( double, double, double, int );
129 extern void CalcSkyPatchLumin( float *parr );
130 extern void ComputeSky( float *parr );
131
132 /* Degrees into radians */
133 #define DegToRad(deg) ((deg)*(PI/180.))
134
135 /* Radiuans into degrees */
136 #define RadToDeg(rad) ((rad)*(180./PI))
137
138
139 /* Perez sky model coefficients */
140
141 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
142 /* Weather Model for Sky Luminance Distribution - */
143 /* Preliminary Configuration and Validation," Solar */
144 /* Energy 50(3):235-245, Table 1. */
145
146 static const double PerezCoeff[8][20] =
147 {
148 /* Sky clearness (epsilon): 1.000 to 1.065 */
149 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
150 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
151 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
152 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
153 /* Sky clearness (epsilon): 1.065 to 1.230 */
154 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
155 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
156 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
157 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
158 /* Sky clearness (epsilon): 1.230 to 1.500 */
159 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
160 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
161 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
162 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
163 /* Sky clearness (epsilon): 1.500 to 1.950 */
164 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
165 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
166 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
167 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
168 /* Sky clearness (epsilon): 1.950 to 2.800 */
169 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
170 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
171 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
172 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
173 /* Sky clearness (epsilon): 2.800 to 4.500 */
174 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
175 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
176 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
177 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
178 /* Sky clearness (epsilon): 4.500 to 6.200 */
179 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
180 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
181 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
182 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
183 /* Sky clearness (epsilon): 6.200 to ... */
184 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
185 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
186 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
187 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
188 };
189
190 /* Perez irradiance component model coefficients */
191
192 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
193 /* Stewart. 1990. ìModeling Daylight Availability and */
194 /* Irradiance Components from Direct and Global */
195 /* Irradiance,î Solar Energy 44(5):271-289. */
196
197 typedef struct
198 {
199 double lower; /* Lower bound */
200 double upper; /* Upper bound */
201 } CategoryBounds;
202
203 /* Perez sky clearness (epsilon) categories (Table 1) */
204 static const CategoryBounds SkyClearCat[8] =
205 {
206 { 1.000, 1.065 }, /* Overcast */
207 { 1.065, 1.230 },
208 { 1.230, 1.500 },
209 { 1.500, 1.950 },
210 { 1.950, 2.800 },
211 { 2.800, 4.500 },
212 { 4.500, 6.200 },
213 { 6.200, 12.01 } /* Clear */
214 };
215
216 /* Luminous efficacy model coefficients */
217 typedef struct
218 {
219 double a;
220 double b;
221 double c;
222 double d;
223 } ModelCoeff;
224
225 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
226 static const ModelCoeff DiffuseLumEff[8] =
227 {
228 { 97.24, -0.46, 12.00, -8.91 },
229 { 107.22, 1.15, 0.59, -3.95 },
230 { 104.97, 2.96, -5.53, -8.77 },
231 { 102.39, 5.59, -13.95, -13.90 },
232 { 100.71, 5.94, -22.75, -23.74 },
233 { 106.42, 3.83, -36.15, -28.83 },
234 { 141.88, 1.90, -53.24, -14.03 },
235 { 152.23, 0.35, -45.27, -7.98 }
236 };
237
238 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
239 static const ModelCoeff DirectLumEff[8] =
240 {
241 { 57.20, -4.55, -2.98, 117.12 },
242 { 98.99, -3.46, -1.21, 12.38 },
243 { 109.83, -4.90, -1.71, -8.81 },
244 { 110.34, -5.84, -1.99, -4.56 },
245 { 106.36, -3.97, -1.75, -6.16 },
246 { 107.19, -1.25, -1.51, -26.73 },
247 { 105.75, 0.77, -1.26, -34.44 },
248 { 101.18, 1.58, -1.10, -8.29 }
249 };
250
251 #ifndef NSUNPATCH
252 #define NSUNPATCH 4 /* max. # patches to spread sun into */
253 #endif
254
255 #define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */
256
257 int nsuns = NSUNPATCH; /* number of sun patches to use */
258 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
259
260 int verbose = 0; /* progress reports to stderr? */
261
262 int outfmt = 'a'; /* output format */
263
264 int rhsubdiv = 1; /* Reinhart sky subdivisions */
265
266 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
267 COLOR suncolor = {1., 1., 1.}; /* sun color */
268 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
269
270 int nskypatch; /* number of Reinhart patches */
271 float *rh_palt; /* sky patch altitudes (radians) */
272 float *rh_pazi; /* sky patch azimuths (radians) */
273 float *rh_dom; /* sky patch solid angle (sr) */
274
275 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
276 (v)[0] = (v)[1]*tsin(azi), \
277 (v)[1] *= tcos(azi), \
278 (v)[2] = tsin(alt) )
279
280 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
281
282 #define rh_cos(i) tsin(rh_palt[i])
283
284 extern int rh_init(void);
285 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
286 extern void OutputSun(int id, FILE *fp);
287 extern void AddDirect(float *parr);
288
289
290 static const char *
291 getfmtname(int fmt)
292 {
293 switch (fmt) {
294 case 'a':
295 return("ascii");
296 case 'f':
297 return("float");
298 case 'd':
299 return("double");
300 }
301 return("unknown");
302 }
303
304
305 int
306 main(int argc, char *argv[])
307 {
308 char buf[256];
309 int doheader = 1; /* output header? */
310 double rotation = 0; /* site rotation (degrees) */
311 double elevation; /* site elevation (meters) */
312 int dir_is_horiz; /* direct is meas. on horizontal? */
313 FILE *sunsfp = NULL; /* output file for individual suns */
314 float *mtx_data = NULL; /* our matrix data */
315 int avgSky = 0; /* compute average sky r.t. matrix? */
316 int ntsteps = 0; /* number of time steps */
317 int tstorage = 0; /* number of allocated time steps */
318 int nstored = 0; /* number of time steps in matrix */
319 int last_monthly = 0; /* month of last report */
320 int mo, da; /* month (1-12) and day (1-31) */
321 double hr; /* hour (local standard time) */
322 double dir, dif; /* direct and diffuse values */
323 int mtx_offset;
324 int i, j;
325
326 progname = argv[0];
327 /* get options */
328 for (i = 1; i < argc && argv[i][0] == '-'; i++)
329 switch (argv[i][1]) {
330 case 'g': /* ground reflectance */
331 grefl[0] = atof(argv[++i]);
332 grefl[1] = atof(argv[++i]);
333 grefl[2] = atof(argv[++i]);
334 break;
335 case 'v': /* verbose progress reports */
336 verbose++;
337 break;
338 case 'h': /* turn off header */
339 doheader = 0;
340 break;
341 case 'o': /* output format */
342 switch (argv[i][2]) {
343 case 'f':
344 case 'd':
345 case 'a':
346 outfmt = argv[i][2];
347 break;
348 default:
349 goto userr;
350 }
351 break;
352 case 'O': /* output type */
353 switch (argv[i][2]) {
354 case '0':
355 output = 0;
356 break;
357 case '1':
358 output = 1;
359 break;
360 default:
361 goto userr;
362 }
363 if (argv[i][3])
364 goto userr;
365 break;
366 case 'm': /* Reinhart subdivisions */
367 rhsubdiv = atoi(argv[++i]);
368 break;
369 case 'c': /* sky color */
370 skycolor[0] = atof(argv[++i]);
371 skycolor[1] = atof(argv[++i]);
372 skycolor[2] = atof(argv[++i]);
373 break;
374 case 'n': /* no matrix output */
375 avgSky = -1;
376 rhsubdiv = 1;
377 /* fall through */
378 case 'd': /* solar (direct) only */
379 skycolor[0] = skycolor[1] = skycolor[2] = 0;
380 grefl[0] = grefl[1] = grefl[2] = 0;
381 break;
382 case 'D': /* output suns to file */
383 sunsfp = fopen(argv[++i], "w");
384 if (!sunsfp) {
385 fprintf(stderr, "%s: cannot open '%s' for output\n",
386 progname, argv[i]);
387 exit(1);
388 }
389 break;
390 case 's': /* sky only (no direct) */
391 suncolor[0] = suncolor[1] = suncolor[2] = 0;
392 break;
393 case 'r': /* rotate distribution */
394 if (argv[i][2] && argv[i][2] != 'z')
395 goto userr;
396 rotation = atof(argv[++i]);
397 break;
398 case '5': /* 5-phase calculation */
399 nsuns = 1;
400 fixed_sun_sa = PI/360.*atof(argv[++i]);
401 if (fixed_sun_sa <= 0) {
402 fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
403 progname);
404 exit(1);
405 }
406 fixed_sun_sa *= fixed_sun_sa*PI;
407 break;
408 case 'A': /* compute average sky */
409 avgSky = 1;
410 break;
411 default:
412 goto userr;
413 }
414 if (i < argc-1)
415 goto userr;
416 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
417 fprintf(stderr, "%s: cannot open '%s' for input\n",
418 progname, argv[i]);
419 exit(1);
420 }
421 if (verbose) {
422 if (i == argc-1)
423 fprintf(stderr, "%s: reading weather tape '%s'\n",
424 progname, argv[i]);
425 else
426 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
427 progname);
428 }
429 /* read weather tape header */
430 if (scanf("place %[^\r\n] ", buf) != 1)
431 goto fmterr;
432 if (scanf("latitude %lf\n", &s_latitude) != 1)
433 goto fmterr;
434 if (scanf("longitude %lf\n", &s_longitude) != 1)
435 goto fmterr;
436 if (scanf("time_zone %lf\n", &s_meridian) != 1)
437 goto fmterr;
438 if (scanf("site_elevation %lf\n", &elevation) != 1)
439 goto fmterr;
440 if (scanf("weather_data_file_units %d\n", &input) != 1)
441 goto fmterr;
442 switch (input) { /* translate units */
443 case 1:
444 input = 1; /* radiometric quantities */
445 dir_is_horiz = 0; /* direct is perpendicular meas. */
446 break;
447 case 2:
448 input = 1; /* radiometric quantities */
449 dir_is_horiz = 1; /* solar measured horizontally */
450 break;
451 case 3:
452 input = 2; /* photometric quantities */
453 dir_is_horiz = 0; /* direct is perpendicular meas. */
454 break;
455 default:
456 goto fmterr;
457 }
458 rh_init(); /* initialize sky patches */
459 if (verbose) {
460 fprintf(stderr, "%s: location '%s'\n", progname, buf);
461 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
462 progname, s_latitude, s_longitude);
463 if (avgSky >= 0)
464 fprintf(stderr, "%s: %d sky patches\n",
465 progname, nskypatch);
466 if (sunsfp)
467 fprintf(stderr, "%s: outputting suns to file\n",
468 progname);
469 if (rotation != 0)
470 fprintf(stderr, "%s: rotating output %.0f degrees\n",
471 progname, rotation);
472 }
473 /* convert quantities to radians */
474 s_latitude = DegToRad(s_latitude);
475 s_longitude = DegToRad(s_longitude);
476 s_meridian = DegToRad(s_meridian);
477 /* initial allocation */
478 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
479 /* process each time step in tape */
480 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
481 double sda, sta;
482
483 mtx_offset = 3*nskypatch*nstored;
484 nstored += !avgSky | !nstored;
485 /* make space for next row */
486 if (nstored > tstorage) {
487 tstorage += (tstorage>>1) + nstored + 7;
488 mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
489 }
490 ntsteps++; /* keep count of time steps */
491 if (dif <= 1e-4) {
492 if (!avgSky | !mtx_offset)
493 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
494 continue;
495 }
496 /* compute solar position */
497 julian_date = jdate(mo, da);
498 sda = sdec(julian_date);
499 sta = stadj(julian_date);
500 altitude = salt(sda, hr+sta);
501 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
502 /* convert measured values */
503 if (dir_is_horiz && altitude > 0.)
504 dir /= sin(altitude);
505 if (input == 1) {
506 dir_irrad = dir;
507 diff_irrad = dif;
508 } else /* input == 2 */ {
509 dir_illum = dir;
510 diff_illum = dif;
511 }
512 /* compute sky patch values */
513 ComputeSky(mtx_data+mtx_offset);
514
515 if (sunsfp) /* output sun if indicated */
516 OutputSun(ntsteps, sunsfp);
517
518 if (avgSky < 0) /* no matrix? */
519 continue;
520
521 AddDirect(mtx_data+mtx_offset);
522 /* update cumulative sky? */
523 for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
524 mtx_data[i] += mtx_data[mtx_offset+i];
525 /* monthly reporting */
526 if (verbose && mo != last_monthly)
527 fprintf(stderr, "%s: stepping through month %d...\n",
528 progname, last_monthly=mo);
529 }
530 if (!ntsteps) {
531 fprintf(stderr, "%s: no valid time steps on input\n", progname);
532 exit(1);
533 }
534 /* check for junk at end */
535 while ((i = fgetc(stdin)) != EOF)
536 if (!isspace(i)) {
537 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
538 progname);
539 buf[0] = i; buf[1] = '\0';
540 fgets(buf+1, sizeof(buf)-1, stdin);
541 fputs(buf, stderr); fputc('\n', stderr);
542 break;
543 }
544
545 if (avgSky < 0) /* no matrix output? */
546 goto alldone;
547
548 dif = 1./(double)ntsteps; /* average sky? */
549 for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
550 mtx_data[i] *= dif;
551 /* write out matrix */
552 if (outfmt != 'a')
553 SET_FILE_BINARY(stdout);
554 #ifdef getc_unlocked
555 flockfile(stdout);
556 #endif
557 if (verbose)
558 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
559 progname, outfmt=='a' ? "" : "binary ", nstored);
560 if (doheader) {
561 newheader("RADIANCE", stdout);
562 printargs(argc, argv, stdout);
563 printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
564 -RadToDeg(s_longitude));
565 printf("NROWS=%d\n", nskypatch);
566 printf("NCOLS=%d\n", nstored);
567 printf("NCOMP=3\n");
568 if ((outfmt == 'f') | (outfmt == 'd'))
569 fputendian(stdout);
570 fputformat((char *)getfmtname(outfmt), stdout);
571 putchar('\n');
572 }
573 /* patches are rows (outer sort) */
574 for (i = 0; i < nskypatch; i++) {
575 mtx_offset = 3*i;
576 switch (outfmt) {
577 case 'a':
578 for (j = 0; j < nstored; j++) {
579 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
580 mtx_data[mtx_offset+1],
581 mtx_data[mtx_offset+2]);
582 mtx_offset += 3*nskypatch;
583 }
584 if (nstored > 1)
585 fputc('\n', stdout);
586 break;
587 case 'f':
588 for (j = 0; j < nstored; j++) {
589 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
590 stdout);
591 mtx_offset += 3*nskypatch;
592 }
593 break;
594 case 'd':
595 for (j = 0; j < nstored; j++) {
596 double ment[3];
597 ment[0] = mtx_data[mtx_offset];
598 ment[1] = mtx_data[mtx_offset+1];
599 ment[2] = mtx_data[mtx_offset+2];
600 putbinary(ment, sizeof(double), 3, stdout);
601 mtx_offset += 3*nskypatch;
602 }
603 break;
604 }
605 if (ferror(stdout))
606 goto writerr;
607 }
608 alldone:
609 if (fflush(NULL) == EOF)
610 goto writerr;
611 if (verbose)
612 fprintf(stderr, "%s: done.\n", progname);
613 exit(0);
614 userr:
615 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s|-n][-D file][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
616 progname);
617 exit(1);
618 fmterr:
619 fprintf(stderr, "%s: weather tape format error in header\n", progname);
620 exit(1);
621 writerr:
622 fprintf(stderr, "%s: write error on output\n", progname);
623 exit(1);
624 }
625
626 /* Return maximum of two doubles */
627 double dmax( double a, double b )
628 { return (a > b) ? a : b; }
629
630 /* Compute sky patch radiance values (modified by GW) */
631 void
632 ComputeSky(float *parr)
633 {
634 int index; /* Category index */
635 double norm_diff_illum; /* Normalized diffuse illuimnance */
636 int i;
637
638 /* Calculate atmospheric precipitable water content */
639 apwc = CalcPrecipWater(dew_point);
640
641 /* Calculate sun zenith angle (don't let it dip below horizon) */
642 /* Also limit minimum angle to keep circumsolar off zenith */
643 if (altitude <= 0.0)
644 sun_zenith = DegToRad(90.0);
645 else if (altitude >= DegToRad(87.0))
646 sun_zenith = DegToRad(3.0);
647 else
648 sun_zenith = DegToRad(90.0) - altitude;
649
650 /* Compute the inputs for the calculation of the sky distribution */
651
652 if (input == 0) /* XXX never used */
653 {
654 /* Calculate irradiance */
655 diff_irrad = CalcDiffuseIrradiance();
656 dir_irrad = CalcDirectIrradiance();
657
658 /* Calculate illuminance */
659 index = GetCategoryIndex();
660 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
661 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
662 }
663 else if (input == 1)
664 {
665 sky_brightness = CalcSkyBrightness();
666 sky_clearness = CalcSkyClearness();
667
668 /* Limit sky clearness */
669 if (sky_clearness > 11.9)
670 sky_clearness = 11.9;
671
672 /* Limit sky brightness */
673 if (sky_brightness < 0.01)
674 sky_brightness = 0.01;
675
676 /* Calculate illuminance */
677 index = GetCategoryIndex();
678 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
679 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
680 }
681 else if (input == 2)
682 {
683 /* Calculate sky brightness and clearness from illuminance values */
684 index = CalcSkyParamFromIllum();
685 }
686
687 if (output == 1) { /* hack for solar radiance */
688 diff_illum = diff_irrad * WHTEFFICACY;
689 dir_illum = dir_irrad * WHTEFFICACY;
690 }
691 /* Compute ground radiance (include solar contribution if any) */
692 parr[0] = diff_illum;
693 if (altitude > 0)
694 parr[0] += dir_illum * sin(altitude);
695 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
696 multcolor(parr, grefl);
697
698 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
699 memset(parr+3, 0, sizeof(float)*3*(nskypatch-1));
700 return;
701 }
702 /* Calculate Perez sky model parameters */
703 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
704
705 /* Calculate sky patch luminance values */
706 CalcSkyPatchLumin(parr);
707
708 /* Calculate relative horizontal illuminance */
709 norm_diff_illum = CalcRelHorzIllum(parr);
710
711 /* Check for zero sky -- make uniform in that case */
712 if (norm_diff_illum <= FTINY) {
713 for (i = 1; i < nskypatch; i++)
714 setcolor(parr+3*i, 1., 1., 1.);
715 norm_diff_illum = PI;
716 }
717 /* Normalization coefficient */
718 norm_diff_illum = diff_illum / norm_diff_illum;
719
720 /* Apply to sky patches to get absolute radiance values */
721 for (i = 1; i < nskypatch; i++) {
722 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
723 multcolor(parr+3*i, skycolor);
724 }
725 }
726
727 /* Add in solar direct to nearest sky patches (GW) */
728 void
729 AddDirect(float *parr)
730 {
731 FVECT svec;
732 double near_dprod[NSUNPATCH];
733 int near_patch[NSUNPATCH];
734 double wta[NSUNPATCH], wtot;
735 int i, j, p;
736
737 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
738 return;
739 /* identify nsuns closest patches */
740 if (nsuns > NSUNPATCH)
741 nsuns = NSUNPATCH;
742 else if (nsuns <= 0)
743 nsuns = 1;
744 for (i = nsuns; i--; )
745 near_dprod[i] = -1.;
746 vector(svec, altitude, azimuth);
747 for (p = 1; p < nskypatch; p++) {
748 FVECT pvec;
749 double dprod;
750 rh_vector(pvec, p);
751 dprod = DOT(pvec, svec);
752 for (i = 0; i < nsuns; i++)
753 if (dprod > near_dprod[i]) {
754 for (j = nsuns; --j > i; ) {
755 near_dprod[j] = near_dprod[j-1];
756 near_patch[j] = near_patch[j-1];
757 }
758 near_dprod[i] = dprod;
759 near_patch[i] = p;
760 break;
761 }
762 }
763 wtot = 0; /* weight by proximity */
764 for (i = nsuns; i--; )
765 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
766 /* add to nearest patch radiances */
767 for (i = nsuns; i--; ) {
768 float *pdest = parr + 3*near_patch[i];
769 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
770
771 val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
772 : rh_dom[near_patch[i]] ;
773 *pdest++ += val_add*suncolor[0];
774 *pdest++ += val_add*suncolor[1];
775 *pdest++ += val_add*suncolor[2];
776 }
777 }
778
779 /* Output a sun to indicated file if appropriate for this time step */
780 void
781 OutputSun(int id, FILE *fp)
782 {
783 double srad;
784 FVECT sv;
785
786 if ((altitude <= 0) | (dir_illum <= 1e-4))
787 return;
788
789 srad = DegToRad(SUN_ANG_DEG/2.);
790 srad = dir_illum/(WHTEFFICACY * PI*srad*srad);
791 vector(sv, altitude, azimuth);
792 fprintf(fp, "\nvoid light solar%d\n0\n0\n", id);
793 fprintf(fp, "3 %.3e %.3e %.3e\n", srad*suncolor[0],
794 srad*suncolor[1], srad*suncolor[2]);
795 fprintf(fp, "\nsolar%d source sun%d\n0\n0\n", id, id);
796 fprintf(fp, "4 %.6f %.6f %.6f %.4f\n", sv[0], sv[1], sv[2], SUN_ANG_DEG);
797 }
798
799 /* Initialize Reinhart sky patch positions (GW) */
800 int
801 rh_init(void)
802 {
803 #define NROW 7
804 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
805 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
806 int p, i, j;
807 /* allocate patch angle arrays */
808 nskypatch = 0;
809 for (p = 0; p < NROW; p++)
810 nskypatch += tnaz[p];
811 nskypatch *= rhsubdiv*rhsubdiv;
812 nskypatch += 2;
813 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
814 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
815 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
816 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
817 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
818 exit(1);
819 }
820 rh_palt[0] = -PI/2.; /* ground & zenith patches */
821 rh_pazi[0] = 0.;
822 rh_dom[0] = 2.*PI;
823 rh_palt[nskypatch-1] = PI/2.;
824 rh_pazi[nskypatch-1] = 0.;
825 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
826 p = 1; /* "normal" patches */
827 for (i = 0; i < NROW*rhsubdiv; i++) {
828 const float ralt = alpha*(i + .5);
829 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
830 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
831 (double)ninrow;
832 for (j = 0; j < ninrow; j++) {
833 rh_palt[p] = ralt;
834 rh_pazi[p] = 2.*PI * j / (double)ninrow;
835 rh_dom[p++] = dom;
836 }
837 }
838 return nskypatch;
839 #undef NROW
840 }
841
842 /* Resize daylight matrix (GW) */
843 float *
844 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
845 {
846 if (mtx_data == NULL)
847 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
848 else
849 mtx_data = (float *)realloc(mtx_data,
850 sizeof(float)*3*nsteps*npatch);
851 if (mtx_data == NULL) {
852 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
853 progname, nsteps, npatch);
854 exit(1);
855 }
856 return(mtx_data);
857 }
858
859 /* Determine category index */
860 int GetCategoryIndex()
861 {
862 int index; /* Loop index */
863
864 for (index = 0; index < 8; index++)
865 if ((sky_clearness >= SkyClearCat[index].lower) &&
866 (sky_clearness < SkyClearCat[index].upper))
867 break;
868
869 return index;
870 }
871
872 /* Calculate diffuse illuminance to diffuse irradiance ratio */
873
874 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
875 /* Stewart. 1990. ìModeling Daylight Availability and */
876 /* Irradiance Components from Direct and Global */
877 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
878
879 double CalcDiffuseIllumRatio( int index )
880 {
881 ModelCoeff const *pnle; /* Category coefficient pointer */
882
883 /* Get category coefficient pointer */
884 pnle = &(DiffuseLumEff[index]);
885
886 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
887 pnle->d * log(sky_brightness);
888 }
889
890 /* Calculate direct illuminance to direct irradiance ratio */
891
892 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
893 /* Stewart. 1990. ìModeling Daylight Availability and */
894 /* Irradiance Components from Direct and Global */
895 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
896
897 double CalcDirectIllumRatio( int index )
898 {
899 ModelCoeff const *pnle; /* Category coefficient pointer */
900
901 /* Get category coefficient pointer */
902 pnle = &(DirectLumEff[index]);
903
904 /* Calculate direct illuminance from direct irradiance */
905
906 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
907 sun_zenith - 5.0) + pnle->d * sky_brightness),
908 0.0);
909 }
910
911 /* Calculate sky brightness */
912
913 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
914 /* Stewart. 1990. ìModeling Daylight Availability and */
915 /* Irradiance Components from Direct and Global */
916 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
917
918 double CalcSkyBrightness()
919 {
920 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
921 CalcEccentricity());
922 }
923
924 /* Calculate sky clearness */
925
926 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
927 /* Stewart. 1990. ìModeling Daylight Availability and */
928 /* Irradiance Components from Direct and Global */
929 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
930
931 double CalcSkyClearness()
932 {
933 double sz_cubed; /* Sun zenith angle cubed */
934
935 /* Calculate sun zenith angle cubed */
936 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
937
938 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
939 sz_cubed) / (1.0 + 1.041 * sz_cubed);
940 }
941
942 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
943
944 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
945 /* Stewart. 1990. ìModeling Daylight Availability and */
946 /* Irradiance Components from Direct and Global */
947 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
948 /* (inverse). */
949
950 double CalcDiffuseIrradiance()
951 {
952 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
953 CalcAirMass();
954 }
955
956 /* Calculate direct normal irradiance from Perez sky clearness */
957
958 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
959 /* Stewart. 1990. ìModeling Daylight Availability and */
960 /* Irradiance Components from Direct and Global */
961 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
962 /* (inverse). */
963
964 double CalcDirectIrradiance()
965 {
966 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
967 * sun_zenith*sun_zenith*sun_zenith));
968 }
969
970 /* Calculate sky brightness and clearness from illuminance values */
971 int CalcSkyParamFromIllum()
972 {
973 double test1 = 0.1;
974 double test2 = 0.1;
975 int counter = 0;
976 int index = 0; /* Category index */
977
978 /* Convert illuminance to irradiance */
979 diff_irrad = diff_illum * DC_SolarConstantE /
980 (DC_SolarConstantL * 1000.0);
981 dir_irrad = dir_illum * DC_SolarConstantE /
982 (DC_SolarConstantL * 1000.0);
983
984 /* Calculate sky brightness and clearness */
985 sky_brightness = CalcSkyBrightness();
986 sky_clearness = CalcSkyClearness();
987
988 /* Limit sky clearness */
989 if (sky_clearness > 12.0)
990 sky_clearness = 12.0;
991
992 /* Limit sky brightness */
993 if (sky_brightness < 0.01)
994 sky_brightness = 0.01;
995
996 while (((fabs(diff_irrad - test1) > 10.0) ||
997 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
998 {
999 test1 = diff_irrad;
1000 test2 = dir_irrad;
1001 counter++;
1002
1003 /* Convert illuminance to irradiance */
1004 index = GetCategoryIndex();
1005 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
1006 dir_irrad = CalcDirectIllumRatio(index);
1007 if (dir_irrad > 0.1)
1008 dir_irrad = dir_illum / dir_irrad;
1009
1010 /* Calculate sky brightness and clearness */
1011 sky_brightness = CalcSkyBrightness();
1012 sky_clearness = CalcSkyClearness();
1013
1014 /* Limit sky clearness */
1015 if (sky_clearness > 12.0)
1016 sky_clearness = 12.0;
1017
1018 /* Limit sky brightness */
1019 if (sky_brightness < 0.01)
1020 sky_brightness = 0.01;
1021 }
1022
1023 return GetCategoryIndex();
1024 }
1025
1026 /* Calculate relative luminance */
1027
1028 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1029 /* ìAll-Weather Model for Sky Luminance Distribution - */
1030 /* Preliminary Configuration and Validation,î Solar Energy */
1031 /* 50(3):235-245, Eqn. 1. */
1032
1033 double CalcRelLuminance( double gamma, double zeta )
1034 {
1035 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
1036 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
1037 perez_param[4] * cos(gamma) * cos(gamma));
1038 }
1039
1040 /* Calculate Perez sky model parameters */
1041
1042 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1043 /* ìAll-Weather Model for Sky Luminance Distribution - */
1044 /* Preliminary Configuration and Validation,î Solar Energy */
1045 /* 50(3):235-245, Eqns. 6 - 8. */
1046
1047 void CalcPerezParam( double sz, double epsilon, double delta,
1048 int index )
1049 {
1050 double x[5][4]; /* Coefficents a, b, c, d, e */
1051 int i, j; /* Loop indices */
1052
1053 /* Limit sky brightness */
1054 if (epsilon > 1.065 && epsilon < 2.8)
1055 {
1056 if (delta < 0.2)
1057 delta = 0.2;
1058 }
1059
1060 /* Get Perez coefficients */
1061 for (i = 0; i < 5; i++)
1062 for (j = 0; j < 4; j++)
1063 x[i][j] = PerezCoeff[index][4 * i + j];
1064
1065 if (index != 0)
1066 {
1067 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1068 for (i = 0; i < 5; i++)
1069 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1070 x[i][3] * sz);
1071 }
1072 else
1073 {
1074 /* Parameters a, b and e (Eqn. 6) */
1075 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1076 x[0][3] * sz);
1077 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1078 x[1][3] * sz);
1079 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1080 x[4][3] * sz);
1081
1082 /* Parameter c (Eqn. 7) */
1083 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1084 x[2][2])) - x[2][3];
1085
1086 /* Parameter d (Eqn. 8) */
1087 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1088 x[3][2] + delta * x[3][3];
1089 }
1090 }
1091
1092 /* Calculate relative horizontal illuminance (modified by GW) */
1093
1094 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1095 /* ìAll-Weather Model for Sky Luminance Distribution - */
1096 /* Preliminary Configuration and Validation,î Solar Energy */
1097 /* 50(3):235-245, Eqn. 3. */
1098
1099 double CalcRelHorzIllum( float *parr )
1100 {
1101 int i;
1102 double rh_illum = 0.0; /* Relative horizontal illuminance */
1103
1104 for (i = 1; i < nskypatch; i++)
1105 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1106
1107 return rh_illum;
1108 }
1109
1110 /* Calculate earth orbit eccentricity correction factor */
1111
1112 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1113 /* Techniques. Springer, p. 72. */
1114
1115 double CalcEccentricity()
1116 {
1117 double day_angle; /* Day angle (radians) */
1118 double E0; /* Eccentricity */
1119
1120 /* Calculate day angle */
1121 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1122
1123 /* Calculate eccentricity */
1124 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1125 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1126 day_angle);
1127
1128 return E0;
1129 }
1130
1131 /* Calculate atmospheric precipitable water content */
1132
1133 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1134 /* Stewart. 1990. ìModeling Daylight Availability and */
1135 /* Irradiance Components from Direct and Global */
1136 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1137
1138 /* Note: The default surface dew point temperature is 11 deg. C */
1139 /* (52 deg. F). Typical values are: */
1140
1141 /* Celsius Fahrenheit Human Perception */
1142 /* > 24 > 75 Extremely uncomfortable */
1143 /* 21 - 24 70 - 74 Very humid */
1144 /* 18 - 21 65 - 69 Somewhat uncomfortable */
1145 /* 16 - 18 60 - 64 OK for most people */
1146 /* 13 - 16 55 - 59 Comfortable */
1147 /* 10 - 12 50 - 54 Very comfortable */
1148 /* < 10 < 49 A bit dry for some */
1149
1150 double CalcPrecipWater( double dpt )
1151 { return exp(0.07 * dpt - 0.075); }
1152
1153 /* Calculate relative air mass */
1154
1155 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1156 /* for the Relative Optical Air Mass," Arch. Meteorol. */
1157 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1158
1159 /* Note: More sophisticated relative air mass models are */
1160 /* available, but they differ significantly only for */
1161 /* sun zenith angles greater than 80 degrees. */
1162
1163 double CalcAirMass()
1164 {
1165 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1166 RadToDeg(sun_zenith), -1.253)));
1167 }
1168
1169 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1170
1171 /* NOTE: The sky patches centers are determined in accordance with the */
1172 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1173 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1174 /* for the Validation of Illuminance Prediction Techniques," */
1175 /* Lighting Research & Technology 33(2):117-136.) */
1176
1177 void CalcSkyPatchLumin( float *parr )
1178 {
1179 int i;
1180 double aas; /* Sun-sky point azimuthal angle */
1181 double sspa; /* Sun-sky point angle */
1182 double zsa; /* Zenithal sun angle */
1183
1184 for (i = 1; i < nskypatch; i++)
1185 {
1186 /* Calculate sun-sky point azimuthal angle */
1187 aas = fabs(rh_pazi[i] - azimuth);
1188
1189 /* Calculate zenithal sun angle */
1190 zsa = PI * 0.5 - rh_palt[i];
1191
1192 /* Calculate sun-sky point angle (Equation 8-20) */
1193 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1194 sin(zsa) * cos(aas));
1195
1196 /* Calculate patch luminance */
1197 parr[3*i] = CalcRelLuminance(sspa, zsa);
1198 if (parr[3*i] < 0) parr[3*i] = 0;
1199 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1200 }
1201 }