ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.26
Committed: Fri Apr 28 16:07:34 2017 UTC (7 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R1
Changes since 2.25: +4 -2 lines
Log Message:
Eliminated NaN error pointed out by David Geisler-Moroder

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.25 2016/08/20 15:42:38 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <ctype.h>
88 #include "rtmath.h"
89 #include "rtio.h"
90 #include "resolu.h"
91 #include "platform.h"
92 #include "color.h"
93 #include "resolu.h"
94
95 char *progname; /* Program name */
96 char errmsg[128]; /* Error message buffer */
97 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
98 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
99
100 double altitude; /* Solar altitude (radians) */
101 double azimuth; /* Solar azimuth (radians) */
102 double apwc; /* Atmospheric precipitable water content */
103 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
104 double diff_illum; /* Diffuse illuminance */
105 double diff_irrad; /* Diffuse irradiance */
106 double dir_illum; /* Direct illuminance */
107 double dir_irrad; /* Direct irradiance */
108 int julian_date; /* Julian date */
109 double perez_param[5]; /* Perez sky model parameters */
110 double sky_brightness; /* Sky brightness */
111 double sky_clearness; /* Sky clearness */
112 double solar_rad; /* Solar radiance */
113 double sun_zenith; /* Sun zenith angle (radians) */
114 int input = 0; /* Input type */
115 int output = 0; /* Output type */
116
117 extern double dmax( double, double );
118 extern double CalcAirMass();
119 extern double CalcDiffuseIllumRatio( int );
120 extern double CalcDiffuseIrradiance();
121 extern double CalcDirectIllumRatio( int );
122 extern double CalcDirectIrradiance();
123 extern double CalcEccentricity();
124 extern double CalcPrecipWater( double );
125 extern double CalcRelHorzIllum( float *parr );
126 extern double CalcRelLuminance( double, double );
127 extern double CalcSkyBrightness();
128 extern double CalcSkyClearness();
129 extern int CalcSkyParamFromIllum();
130 extern int GetCategoryIndex();
131 extern void CalcPerezParam( double, double, double, int );
132 extern void CalcSkyPatchLumin( float *parr );
133 extern void ComputeSky( float *parr );
134
135 /* Degrees into radians */
136 #define DegToRad(deg) ((deg)*(PI/180.))
137
138 /* Radiuans into degrees */
139 #define RadToDeg(rad) ((rad)*(180./PI))
140
141
142 /* Perez sky model coefficients */
143
144 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
145 /* Weather Model for Sky Luminance Distribution - */
146 /* Preliminary Configuration and Validation," Solar */
147 /* Energy 50(3):235-245, Table 1. */
148
149 static const double PerezCoeff[8][20] =
150 {
151 /* Sky clearness (epsilon): 1.000 to 1.065 */
152 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
153 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
154 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
155 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
156 /* Sky clearness (epsilon): 1.065 to 1.230 */
157 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
158 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
159 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
160 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
161 /* Sky clearness (epsilon): 1.230 to 1.500 */
162 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
163 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
164 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
165 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
166 /* Sky clearness (epsilon): 1.500 to 1.950 */
167 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
168 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
169 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
170 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
171 /* Sky clearness (epsilon): 1.950 to 2.800 */
172 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
173 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
174 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
175 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
176 /* Sky clearness (epsilon): 2.800 to 4.500 */
177 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
178 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
179 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
180 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
181 /* Sky clearness (epsilon): 4.500 to 6.200 */
182 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
183 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
184 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
185 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
186 /* Sky clearness (epsilon): 6.200 to ... */
187 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
188 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
189 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
190 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
191 };
192
193 /* Perez irradiance component model coefficients */
194
195 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
196 /* Stewart. 1990. ìModeling Daylight Availability and */
197 /* Irradiance Components from Direct and Global */
198 /* Irradiance,î Solar Energy 44(5):271-289. */
199
200 typedef struct
201 {
202 double lower; /* Lower bound */
203 double upper; /* Upper bound */
204 } CategoryBounds;
205
206 /* Perez sky clearness (epsilon) categories (Table 1) */
207 static const CategoryBounds SkyClearCat[8] =
208 {
209 { 1.000, 1.065 }, /* Overcast */
210 { 1.065, 1.230 },
211 { 1.230, 1.500 },
212 { 1.500, 1.950 },
213 { 1.950, 2.800 },
214 { 2.800, 4.500 },
215 { 4.500, 6.200 },
216 { 6.200, 12.01 } /* Clear */
217 };
218
219 /* Luminous efficacy model coefficients */
220 typedef struct
221 {
222 double a;
223 double b;
224 double c;
225 double d;
226 } ModelCoeff;
227
228 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
229 static const ModelCoeff DiffuseLumEff[8] =
230 {
231 { 97.24, -0.46, 12.00, -8.91 },
232 { 107.22, 1.15, 0.59, -3.95 },
233 { 104.97, 2.96, -5.53, -8.77 },
234 { 102.39, 5.59, -13.95, -13.90 },
235 { 100.71, 5.94, -22.75, -23.74 },
236 { 106.42, 3.83, -36.15, -28.83 },
237 { 141.88, 1.90, -53.24, -14.03 },
238 { 152.23, 0.35, -45.27, -7.98 }
239 };
240
241 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
242 static const ModelCoeff DirectLumEff[8] =
243 {
244 { 57.20, -4.55, -2.98, 117.12 },
245 { 98.99, -3.46, -1.21, 12.38 },
246 { 109.83, -4.90, -1.71, -8.81 },
247 { 110.34, -5.84, -1.99, -4.56 },
248 { 106.36, -3.97, -1.75, -6.16 },
249 { 107.19, -1.25, -1.51, -26.73 },
250 { 105.75, 0.77, -1.26, -34.44 },
251 { 101.18, 1.58, -1.10, -8.29 }
252 };
253
254 #ifndef NSUNPATCH
255 #define NSUNPATCH 4 /* max. # patches to spread sun into */
256 #endif
257
258 extern int jdate(int month, int day);
259 extern double stadj(int jd);
260 extern double sdec(int jd);
261 extern double salt(double sd, double st);
262 extern double sazi(double sd, double st);
263 /* sun calculation constants */
264 extern double s_latitude;
265 extern double s_longitude;
266 extern double s_meridian;
267
268 int nsuns = NSUNPATCH; /* number of sun patches to use */
269 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
270
271 int verbose = 0; /* progress reports to stderr? */
272
273 int outfmt = 'a'; /* output format */
274
275 int rhsubdiv = 1; /* Reinhart sky subdivisions */
276
277 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
278 COLOR suncolor = {1., 1., 1.}; /* sun color */
279 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
280
281 int nskypatch; /* number of Reinhart patches */
282 float *rh_palt; /* sky patch altitudes (radians) */
283 float *rh_pazi; /* sky patch azimuths (radians) */
284 float *rh_dom; /* sky patch solid angle (sr) */
285
286 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
287 (v)[0] = (v)[1]*tsin(azi), \
288 (v)[1] *= tcos(azi), \
289 (v)[2] = tsin(alt) )
290
291 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
292
293 #define rh_cos(i) tsin(rh_palt[i])
294
295 extern int rh_init(void);
296 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
297 extern void AddDirect(float *parr);
298
299
300 static const char *
301 getfmtname(int fmt)
302 {
303 switch (fmt) {
304 case 'a':
305 return("ascii");
306 case 'f':
307 return("float");
308 case 'd':
309 return("double");
310 }
311 return("unknown");
312 }
313
314
315 int
316 main(int argc, char *argv[])
317 {
318 char buf[256];
319 int doheader = 1; /* output header? */
320 double rotation = 0; /* site rotation (degrees) */
321 double elevation; /* site elevation (meters) */
322 int dir_is_horiz; /* direct is meas. on horizontal? */
323 float *mtx_data = NULL; /* our matrix data */
324 int ntsteps = 0; /* number of rows in matrix */
325 int step_alloc = 0;
326 int last_monthly = 0; /* month of last report */
327 int inconsistent = 0; /* inconsistent options set? */
328 int mo, da; /* month (1-12) and day (1-31) */
329 double hr; /* hour (local standard time) */
330 double dir, dif; /* direct and diffuse values */
331 int mtx_offset;
332 int i, j;
333
334 progname = argv[0];
335 /* get options */
336 for (i = 1; i < argc && argv[i][0] == '-'; i++)
337 switch (argv[i][1]) {
338 case 'g': /* ground reflectance */
339 grefl[0] = atof(argv[++i]);
340 grefl[1] = atof(argv[++i]);
341 grefl[2] = atof(argv[++i]);
342 break;
343 case 'v': /* verbose progress reports */
344 verbose++;
345 break;
346 case 'h': /* turn off header */
347 doheader = 0;
348 break;
349 case 'o': /* output format */
350 switch (argv[i][2]) {
351 case 'f':
352 case 'd':
353 case 'a':
354 outfmt = argv[i][2];
355 break;
356 default:
357 goto userr;
358 }
359 break;
360 case 'O': /* output type */
361 switch (argv[i][2]) {
362 case '0':
363 output = 0;
364 break;
365 case '1':
366 output = 1;
367 break;
368 default:
369 goto userr;
370 }
371 if (argv[i][3])
372 goto userr;
373 break;
374 case 'm': /* Reinhart subdivisions */
375 rhsubdiv = atoi(argv[++i]);
376 break;
377 case 'c': /* sky color */
378 inconsistent |= (skycolor[1] <= 1e-4);
379 skycolor[0] = atof(argv[++i]);
380 skycolor[1] = atof(argv[++i]);
381 skycolor[2] = atof(argv[++i]);
382 break;
383 case 'd': /* solar (direct) only */
384 skycolor[0] = skycolor[1] = skycolor[2] = 0;
385 if (suncolor[1] <= 1e-4) {
386 inconsistent = 1;
387 suncolor[0] = suncolor[1] = suncolor[2] = 1;
388 }
389 break;
390 case 's': /* sky only (no direct) */
391 suncolor[0] = suncolor[1] = suncolor[2] = 0;
392 if (skycolor[1] <= 1e-4) {
393 inconsistent = 1;
394 skycolor[0] = skycolor[1] = skycolor[2] = 1;
395 }
396 break;
397 case 'r': /* rotate distribution */
398 if (argv[i][2] && argv[i][2] != 'z')
399 goto userr;
400 rotation = atof(argv[++i]);
401 break;
402 case '5': /* 5-phase calculation */
403 nsuns = 1;
404 fixed_sun_sa = PI/360.*atof(argv[++i]);
405 if (fixed_sun_sa <= 0) {
406 fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
407 argv[0]);
408 exit(1);
409 }
410 fixed_sun_sa *= fixed_sun_sa*PI;
411 break;
412 default:
413 goto userr;
414 }
415 if (i < argc-1)
416 goto userr;
417 if (inconsistent)
418 fprintf(stderr, "%s: WARNING: inconsistent -s, -d, -c options!\n",
419 progname);
420 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
421 fprintf(stderr, "%s: cannot open '%s' for input\n",
422 progname, argv[i]);
423 exit(1);
424 }
425 if (verbose) {
426 if (i == argc-1)
427 fprintf(stderr, "%s: reading weather tape '%s'\n",
428 progname, argv[i]);
429 else
430 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
431 progname);
432 }
433 /* read weather tape header */
434 if (scanf("place %[^\r\n] ", buf) != 1)
435 goto fmterr;
436 if (scanf("latitude %lf\n", &s_latitude) != 1)
437 goto fmterr;
438 if (scanf("longitude %lf\n", &s_longitude) != 1)
439 goto fmterr;
440 if (scanf("time_zone %lf\n", &s_meridian) != 1)
441 goto fmterr;
442 if (scanf("site_elevation %lf\n", &elevation) != 1)
443 goto fmterr;
444 if (scanf("weather_data_file_units %d\n", &input) != 1)
445 goto fmterr;
446 switch (input) { /* translate units */
447 case 1:
448 input = 1; /* radiometric quantities */
449 dir_is_horiz = 0; /* direct is perpendicular meas. */
450 break;
451 case 2:
452 input = 1; /* radiometric quantities */
453 dir_is_horiz = 1; /* solar measured horizontally */
454 break;
455 case 3:
456 input = 2; /* photometric quantities */
457 dir_is_horiz = 0; /* direct is perpendicular meas. */
458 break;
459 default:
460 goto fmterr;
461 }
462 rh_init(); /* initialize sky patches */
463 if (verbose) {
464 fprintf(stderr, "%s: location '%s'\n", progname, buf);
465 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
466 progname, s_latitude, s_longitude);
467 fprintf(stderr, "%s: %d sky patches per time step\n",
468 progname, nskypatch);
469 if (rotation != 0)
470 fprintf(stderr, "%s: rotating output %.0f degrees\n",
471 progname, rotation);
472 }
473 /* convert quantities to radians */
474 s_latitude = DegToRad(s_latitude);
475 s_longitude = DegToRad(s_longitude);
476 s_meridian = DegToRad(s_meridian);
477 /* process each time step in tape */
478 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
479 double sda, sta;
480 /* make space for next time step */
481 mtx_offset = 3*nskypatch*ntsteps++;
482 if (ntsteps > step_alloc) {
483 step_alloc += (step_alloc>>1) + ntsteps + 7;
484 mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch);
485 }
486 if (dif <= 1e-4) {
487 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
488 continue;
489 }
490 if (verbose && mo != last_monthly)
491 fprintf(stderr, "%s: stepping through month %d...\n",
492 progname, last_monthly=mo);
493 /* compute solar position */
494 julian_date = jdate(mo, da);
495 sda = sdec(julian_date);
496 sta = stadj(julian_date);
497 altitude = salt(sda, hr+sta);
498 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
499 /* convert measured values */
500 if (dir_is_horiz && altitude > 0.)
501 dir /= sin(altitude);
502 if (input == 1) {
503 dir_irrad = dir;
504 diff_irrad = dif;
505 } else /* input == 2 */ {
506 dir_illum = dir;
507 diff_illum = dif;
508 }
509 /* compute sky patch values */
510 ComputeSky(mtx_data+mtx_offset);
511 AddDirect(mtx_data+mtx_offset);
512 }
513 /* check for junk at end */
514 while ((i = fgetc(stdin)) != EOF)
515 if (!isspace(i)) {
516 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
517 progname);
518 buf[0] = i; buf[1] = '\0';
519 fgets(buf+1, sizeof(buf)-1, stdin);
520 fputs(buf, stderr); fputc('\n', stderr);
521 break;
522 }
523 /* write out matrix */
524 if (outfmt != 'a')
525 SET_FILE_BINARY(stdout);
526 #ifdef getc_unlocked
527 flockfile(stdout);
528 #endif
529 if (verbose)
530 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
531 progname, outfmt=='a' ? "" : "binary ", ntsteps);
532 if (doheader) {
533 newheader("RADIANCE", stdout);
534 printargs(argc, argv, stdout);
535 printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
536 -RadToDeg(s_longitude));
537 printf("NROWS=%d\n", nskypatch);
538 printf("NCOLS=%d\n", ntsteps);
539 printf("NCOMP=3\n");
540 fputformat((char *)getfmtname(outfmt), stdout);
541 putchar('\n');
542 }
543 /* patches are rows (outer sort) */
544 for (i = 0; i < nskypatch; i++) {
545 mtx_offset = 3*i;
546 switch (outfmt) {
547 case 'a':
548 for (j = 0; j < ntsteps; j++) {
549 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
550 mtx_data[mtx_offset+1],
551 mtx_data[mtx_offset+2]);
552 mtx_offset += 3*nskypatch;
553 }
554 if (ntsteps > 1)
555 fputc('\n', stdout);
556 break;
557 case 'f':
558 for (j = 0; j < ntsteps; j++) {
559 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
560 stdout);
561 mtx_offset += 3*nskypatch;
562 }
563 break;
564 case 'd':
565 for (j = 0; j < ntsteps; j++) {
566 double ment[3];
567 ment[0] = mtx_data[mtx_offset];
568 ment[1] = mtx_data[mtx_offset+1];
569 ment[2] = mtx_data[mtx_offset+2];
570 putbinary(ment, sizeof(double), 3, stdout);
571 mtx_offset += 3*nskypatch;
572 }
573 break;
574 }
575 if (ferror(stdout))
576 goto writerr;
577 }
578 if (fflush(stdout) == EOF)
579 goto writerr;
580 if (verbose)
581 fprintf(stderr, "%s: done.\n", progname);
582 exit(0);
583 userr:
584 fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
585 progname);
586 exit(1);
587 fmterr:
588 fprintf(stderr, "%s: input weather tape format error\n", progname);
589 exit(1);
590 writerr:
591 fprintf(stderr, "%s: write error on output\n", progname);
592 exit(1);
593 }
594
595 /* Return maximum of two doubles */
596 double dmax( double a, double b )
597 { return (a > b) ? a : b; }
598
599 /* Compute sky patch radiance values (modified by GW) */
600 void
601 ComputeSky(float *parr)
602 {
603 int index; /* Category index */
604 double norm_diff_illum; /* Normalized diffuse illuimnance */
605 int i;
606
607 /* Calculate atmospheric precipitable water content */
608 apwc = CalcPrecipWater(dew_point);
609
610 /* Calculate sun zenith angle (don't let it dip below horizon) */
611 /* Also limit minimum angle to keep circumsolar off zenith */
612 if (altitude <= 0.0)
613 sun_zenith = DegToRad(90.0);
614 else if (altitude >= DegToRad(87.0))
615 sun_zenith = DegToRad(3.0);
616 else
617 sun_zenith = DegToRad(90.0) - altitude;
618
619 /* Compute the inputs for the calculation of the sky distribution */
620
621 if (input == 0) /* XXX never used */
622 {
623 /* Calculate irradiance */
624 diff_irrad = CalcDiffuseIrradiance();
625 dir_irrad = CalcDirectIrradiance();
626
627 /* Calculate illuminance */
628 index = GetCategoryIndex();
629 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
630 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
631 }
632 else if (input == 1)
633 {
634 sky_brightness = CalcSkyBrightness();
635 sky_clearness = CalcSkyClearness();
636
637 /* Limit sky clearness */
638 if (sky_clearness > 11.9)
639 sky_clearness = 11.9;
640
641 /* Limit sky brightness */
642 if (sky_brightness < 0.01)
643 sky_brightness = 0.01;
644
645 /* Calculate illuminance */
646 index = GetCategoryIndex();
647 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
648 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
649 }
650 else if (input == 2)
651 {
652 /* Calculate sky brightness and clearness from illuminance values */
653 index = CalcSkyParamFromIllum();
654 }
655
656 if (output == 1) { /* hack for solar radiance */
657 diff_illum = diff_irrad * WHTEFFICACY;
658 dir_illum = dir_irrad * WHTEFFICACY;
659 }
660
661 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
662 memset(parr, 0, sizeof(float)*3*nskypatch);
663 return;
664 }
665 /* Compute ground radiance (include solar contribution if any) */
666 parr[0] = diff_illum;
667 if (altitude > 0)
668 parr[0] += dir_illum * sin(altitude);
669 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
670 multcolor(parr, grefl);
671
672 /* Calculate Perez sky model parameters */
673 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
674
675 /* Calculate sky patch luminance values */
676 CalcSkyPatchLumin(parr);
677
678 /* Calculate relative horizontal illuminance */
679 norm_diff_illum = CalcRelHorzIllum(parr);
680
681 /* Check for zero sky -- make uniform in that case */
682 if (norm_diff_illum <= FTINY) {
683 for (i = 1; i < nskypatch; i++)
684 setcolor(parr+3*i, 1., 1., 1.);
685 norm_diff_illum = PI;
686 }
687 /* Normalization coefficient */
688 norm_diff_illum = diff_illum / norm_diff_illum;
689
690 /* Apply to sky patches to get absolute radiance values */
691 for (i = 1; i < nskypatch; i++) {
692 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
693 multcolor(parr+3*i, skycolor);
694 }
695 }
696
697 /* Add in solar direct to nearest sky patches (GW) */
698 void
699 AddDirect(float *parr)
700 {
701 FVECT svec;
702 double near_dprod[NSUNPATCH];
703 int near_patch[NSUNPATCH];
704 double wta[NSUNPATCH], wtot;
705 int i, j, p;
706
707 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
708 return;
709 /* identify nsuns closest patches */
710 if (nsuns > NSUNPATCH)
711 nsuns = NSUNPATCH;
712 else if (nsuns <= 0)
713 nsuns = 1;
714 for (i = nsuns; i--; )
715 near_dprod[i] = -1.;
716 vector(svec, altitude, azimuth);
717 for (p = 1; p < nskypatch; p++) {
718 FVECT pvec;
719 double dprod;
720 rh_vector(pvec, p);
721 dprod = DOT(pvec, svec);
722 for (i = 0; i < nsuns; i++)
723 if (dprod > near_dprod[i]) {
724 for (j = nsuns; --j > i; ) {
725 near_dprod[j] = near_dprod[j-1];
726 near_patch[j] = near_patch[j-1];
727 }
728 near_dprod[i] = dprod;
729 near_patch[i] = p;
730 break;
731 }
732 }
733 wtot = 0; /* weight by proximity */
734 for (i = nsuns; i--; )
735 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
736 /* add to nearest patch radiances */
737 for (i = nsuns; i--; ) {
738 float *pdest = parr + 3*near_patch[i];
739 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
740
741 val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
742 : rh_dom[near_patch[i]] ;
743 *pdest++ += val_add*suncolor[0];
744 *pdest++ += val_add*suncolor[1];
745 *pdest++ += val_add*suncolor[2];
746 }
747 }
748
749 /* Initialize Reinhart sky patch positions (GW) */
750 int
751 rh_init(void)
752 {
753 #define NROW 7
754 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
755 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
756 int p, i, j;
757 /* allocate patch angle arrays */
758 nskypatch = 0;
759 for (p = 0; p < NROW; p++)
760 nskypatch += tnaz[p];
761 nskypatch *= rhsubdiv*rhsubdiv;
762 nskypatch += 2;
763 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
764 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
765 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
766 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
767 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
768 exit(1);
769 }
770 rh_palt[0] = -PI/2.; /* ground & zenith patches */
771 rh_pazi[0] = 0.;
772 rh_dom[0] = 2.*PI;
773 rh_palt[nskypatch-1] = PI/2.;
774 rh_pazi[nskypatch-1] = 0.;
775 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
776 p = 1; /* "normal" patches */
777 for (i = 0; i < NROW*rhsubdiv; i++) {
778 const float ralt = alpha*(i + .5);
779 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
780 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
781 (double)ninrow;
782 for (j = 0; j < ninrow; j++) {
783 rh_palt[p] = ralt;
784 rh_pazi[p] = 2.*PI * j / (double)ninrow;
785 rh_dom[p++] = dom;
786 }
787 }
788 return nskypatch;
789 #undef NROW
790 }
791
792 /* Resize daylight matrix (GW) */
793 float *
794 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
795 {
796 if (mtx_data == NULL)
797 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
798 else
799 mtx_data = (float *)realloc(mtx_data,
800 sizeof(float)*3*nsteps*npatch);
801 if (mtx_data == NULL) {
802 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
803 progname, nsteps, npatch);
804 exit(1);
805 }
806 return(mtx_data);
807 }
808
809 /* Determine category index */
810 int GetCategoryIndex()
811 {
812 int index; /* Loop index */
813
814 for (index = 0; index < 8; index++)
815 if ((sky_clearness >= SkyClearCat[index].lower) &&
816 (sky_clearness < SkyClearCat[index].upper))
817 break;
818
819 return index;
820 }
821
822 /* Calculate diffuse illuminance to diffuse irradiance ratio */
823
824 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
825 /* Stewart. 1990. ìModeling Daylight Availability and */
826 /* Irradiance Components from Direct and Global */
827 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
828
829 double CalcDiffuseIllumRatio( int index )
830 {
831 ModelCoeff const *pnle; /* Category coefficient pointer */
832
833 /* Get category coefficient pointer */
834 pnle = &(DiffuseLumEff[index]);
835
836 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
837 pnle->d * log(sky_brightness);
838 }
839
840 /* Calculate direct illuminance to direct irradiance ratio */
841
842 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
843 /* Stewart. 1990. ìModeling Daylight Availability and */
844 /* Irradiance Components from Direct and Global */
845 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
846
847 double CalcDirectIllumRatio( int index )
848 {
849 ModelCoeff const *pnle; /* Category coefficient pointer */
850
851 /* Get category coefficient pointer */
852 pnle = &(DirectLumEff[index]);
853
854 /* Calculate direct illuminance from direct irradiance */
855
856 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
857 sun_zenith - 5.0) + pnle->d * sky_brightness),
858 0.0);
859 }
860
861 /* Calculate sky brightness */
862
863 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
864 /* Stewart. 1990. ìModeling Daylight Availability and */
865 /* Irradiance Components from Direct and Global */
866 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
867
868 double CalcSkyBrightness()
869 {
870 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
871 CalcEccentricity());
872 }
873
874 /* Calculate sky clearness */
875
876 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
877 /* Stewart. 1990. ìModeling Daylight Availability and */
878 /* Irradiance Components from Direct and Global */
879 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
880
881 double CalcSkyClearness()
882 {
883 double sz_cubed; /* Sun zenith angle cubed */
884
885 /* Calculate sun zenith angle cubed */
886 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
887
888 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
889 sz_cubed) / (1.0 + 1.041 * sz_cubed);
890 }
891
892 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
893
894 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
895 /* Stewart. 1990. ìModeling Daylight Availability and */
896 /* Irradiance Components from Direct and Global */
897 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
898 /* (inverse). */
899
900 double CalcDiffuseIrradiance()
901 {
902 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
903 CalcAirMass();
904 }
905
906 /* Calculate direct normal irradiance from Perez sky clearness */
907
908 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
909 /* Stewart. 1990. ìModeling Daylight Availability and */
910 /* Irradiance Components from Direct and Global */
911 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
912 /* (inverse). */
913
914 double CalcDirectIrradiance()
915 {
916 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
917 * sun_zenith*sun_zenith*sun_zenith));
918 }
919
920 /* Calculate sky brightness and clearness from illuminance values */
921 int CalcSkyParamFromIllum()
922 {
923 double test1 = 0.1;
924 double test2 = 0.1;
925 int counter = 0;
926 int index = 0; /* Category index */
927
928 /* Convert illuminance to irradiance */
929 diff_irrad = diff_illum * DC_SolarConstantE /
930 (DC_SolarConstantL * 1000.0);
931 dir_irrad = dir_illum * DC_SolarConstantE /
932 (DC_SolarConstantL * 1000.0);
933
934 /* Calculate sky brightness and clearness */
935 sky_brightness = CalcSkyBrightness();
936 sky_clearness = CalcSkyClearness();
937
938 /* Limit sky clearness */
939 if (sky_clearness > 12.0)
940 sky_clearness = 12.0;
941
942 /* Limit sky brightness */
943 if (sky_brightness < 0.01)
944 sky_brightness = 0.01;
945
946 while (((fabs(diff_irrad - test1) > 10.0) ||
947 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
948 {
949 test1 = diff_irrad;
950 test2 = dir_irrad;
951 counter++;
952
953 /* Convert illuminance to irradiance */
954 index = GetCategoryIndex();
955 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
956 dir_irrad = CalcDirectIllumRatio(index);
957 if (dir_irrad > 0.1)
958 dir_irrad = dir_illum / dir_irrad;
959
960 /* Calculate sky brightness and clearness */
961 sky_brightness = CalcSkyBrightness();
962 sky_clearness = CalcSkyClearness();
963
964 /* Limit sky clearness */
965 if (sky_clearness > 12.0)
966 sky_clearness = 12.0;
967
968 /* Limit sky brightness */
969 if (sky_brightness < 0.01)
970 sky_brightness = 0.01;
971 }
972
973 return GetCategoryIndex();
974 }
975
976 /* Calculate relative luminance */
977
978 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
979 /* ìAll-Weather Model for Sky Luminance Distribution - */
980 /* Preliminary Configuration and Validation,î Solar Energy */
981 /* 50(3):235-245, Eqn. 1. */
982
983 double CalcRelLuminance( double gamma, double zeta )
984 {
985 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
986 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
987 perez_param[4] * cos(gamma) * cos(gamma));
988 }
989
990 /* Calculate Perez sky model parameters */
991
992 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
993 /* ìAll-Weather Model for Sky Luminance Distribution - */
994 /* Preliminary Configuration and Validation,î Solar Energy */
995 /* 50(3):235-245, Eqns. 6 - 8. */
996
997 void CalcPerezParam( double sz, double epsilon, double delta,
998 int index )
999 {
1000 double x[5][4]; /* Coefficents a, b, c, d, e */
1001 int i, j; /* Loop indices */
1002
1003 /* Limit sky brightness */
1004 if (epsilon > 1.065 && epsilon < 2.8)
1005 {
1006 if (delta < 0.2)
1007 delta = 0.2;
1008 }
1009
1010 /* Get Perez coefficients */
1011 for (i = 0; i < 5; i++)
1012 for (j = 0; j < 4; j++)
1013 x[i][j] = PerezCoeff[index][4 * i + j];
1014
1015 if (index != 0)
1016 {
1017 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1018 for (i = 0; i < 5; i++)
1019 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1020 x[i][3] * sz);
1021 }
1022 else
1023 {
1024 /* Parameters a, b and e (Eqn. 6) */
1025 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1026 x[0][3] * sz);
1027 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1028 x[1][3] * sz);
1029 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1030 x[4][3] * sz);
1031
1032 /* Parameter c (Eqn. 7) */
1033 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1034 x[2][2])) - x[2][3];
1035
1036 /* Parameter d (Eqn. 8) */
1037 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1038 x[3][2] + delta * x[3][3];
1039 }
1040 }
1041
1042 /* Calculate relative horizontal illuminance (modified by GW) */
1043
1044 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1045 /* ìAll-Weather Model for Sky Luminance Distribution - */
1046 /* Preliminary Configuration and Validation,î Solar Energy */
1047 /* 50(3):235-245, Eqn. 3. */
1048
1049 double CalcRelHorzIllum( float *parr )
1050 {
1051 int i;
1052 double rh_illum = 0.0; /* Relative horizontal illuminance */
1053
1054 for (i = 1; i < nskypatch; i++)
1055 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1056
1057 return rh_illum;
1058 }
1059
1060 /* Calculate earth orbit eccentricity correction factor */
1061
1062 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1063 /* Techniques. Springer, p. 72. */
1064
1065 double CalcEccentricity()
1066 {
1067 double day_angle; /* Day angle (radians) */
1068 double E0; /* Eccentricity */
1069
1070 /* Calculate day angle */
1071 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1072
1073 /* Calculate eccentricity */
1074 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1075 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1076 day_angle);
1077
1078 return E0;
1079 }
1080
1081 /* Calculate atmospheric precipitable water content */
1082
1083 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1084 /* Stewart. 1990. ìModeling Daylight Availability and */
1085 /* Irradiance Components from Direct and Global */
1086 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1087
1088 /* Note: The default surface dew point temperature is 11 deg. C */
1089 /* (52 deg. F). Typical values are: */
1090
1091 /* Celsius Fahrenheit Human Perception */
1092 /* > 24 > 75 Extremely uncomfortable */
1093 /* 21 - 24 70 - 74 Very humid */
1094 /* 18 - 21 65 - 69 Somewhat uncomfortable */
1095 /* 16 - 18 60 - 64 OK for most people */
1096 /* 13 - 16 55 - 59 Comfortable */
1097 /* 10 - 12 50 - 54 Very comfortable */
1098 /* < 10 < 49 A bit dry for some */
1099
1100 double CalcPrecipWater( double dpt )
1101 { return exp(0.07 * dpt - 0.075); }
1102
1103 /* Calculate relative air mass */
1104
1105 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1106 /* for the Relative Optical Air Mass," Arch. Meteorol. */
1107 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1108
1109 /* Note: More sophisticated relative air mass models are */
1110 /* available, but they differ significantly only for */
1111 /* sun zenith angles greater than 80 degrees. */
1112
1113 double CalcAirMass()
1114 {
1115 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1116 RadToDeg(sun_zenith), -1.253)));
1117 }
1118
1119 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1120
1121 /* NOTE: The sky patches centers are determined in accordance with the */
1122 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1123 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1124 /* for the Validation of Illuminance Prediction Techniques," */
1125 /* Lighting Research & Technology 33(2):117-136.) */
1126
1127 void CalcSkyPatchLumin( float *parr )
1128 {
1129 int i;
1130 double aas; /* Sun-sky point azimuthal angle */
1131 double sspa; /* Sun-sky point angle */
1132 double zsa; /* Zenithal sun angle */
1133
1134 for (i = 1; i < nskypatch; i++)
1135 {
1136 /* Calculate sun-sky point azimuthal angle */
1137 aas = fabs(rh_pazi[i] - azimuth);
1138
1139 /* Calculate zenithal sun angle */
1140 zsa = PI * 0.5 - rh_palt[i];
1141
1142 /* Calculate sun-sky point angle (Equation 8-20) */
1143 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1144 sin(zsa) * cos(aas));
1145
1146 /* Calculate patch luminance */
1147 parr[3*i] = CalcRelLuminance(sspa, zsa);
1148 if (parr[3*i] < 0) parr[3*i] = 0;
1149 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1150 }
1151 }