ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.19
Committed: Tue Dec 30 20:35:34 2014 UTC (9 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.18: +3 -2 lines
Log Message:
Changed "secret" -5 option so it now takes sun diameter (in degrees) as arg

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.18 2014/10/26 17:37:34 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <ctype.h>
88 #include "rtmath.h"
89 #include "platform.h"
90 #include "color.h"
91 #include "resolu.h"
92
93 char *progname; /* Program name */
94 char errmsg[128]; /* Error message buffer */
95 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
96 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
97
98 double altitude; /* Solar altitude (radians) */
99 double azimuth; /* Solar azimuth (radians) */
100 double apwc; /* Atmospheric precipitable water content */
101 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
102 double diff_illum; /* Diffuse illuminance */
103 double diff_irrad; /* Diffuse irradiance */
104 double dir_illum; /* Direct illuminance */
105 double dir_irrad; /* Direct irradiance */
106 int julian_date; /* Julian date */
107 double perez_param[5]; /* Perez sky model parameters */
108 double sky_brightness; /* Sky brightness */
109 double sky_clearness; /* Sky clearness */
110 double solar_rad; /* Solar radiance */
111 double sun_zenith; /* Sun zenith angle (radians) */
112 int input = 0; /* Input type */
113 int output = 0; /* Output type */
114
115 extern double dmax( double, double );
116 extern double CalcAirMass();
117 extern double CalcDiffuseIllumRatio( int );
118 extern double CalcDiffuseIrradiance();
119 extern double CalcDirectIllumRatio( int );
120 extern double CalcDirectIrradiance();
121 extern double CalcEccentricity();
122 extern double CalcPrecipWater( double );
123 extern double CalcRelHorzIllum( float *parr );
124 extern double CalcRelLuminance( double, double );
125 extern double CalcSkyBrightness();
126 extern double CalcSkyClearness();
127 extern int CalcSkyParamFromIllum();
128 extern int GetCategoryIndex();
129 extern void CalcPerezParam( double, double, double, int );
130 extern void CalcSkyPatchLumin( float *parr );
131 extern void ComputeSky( float *parr );
132
133 /* Degrees into radians */
134 #define DegToRad(deg) ((deg)*(PI/180.))
135
136 /* Radiuans into degrees */
137 #define RadToDeg(rad) ((rad)*(180./PI))
138
139
140 /* Perez sky model coefficients */
141
142 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
143 /* Weather Model for Sky Luminance Distribution - */
144 /* Preliminary Configuration and Validation," Solar */
145 /* Energy 50(3):235-245, Table 1. */
146
147 static const double PerezCoeff[8][20] =
148 {
149 /* Sky clearness (epsilon): 1.000 to 1.065 */
150 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
151 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
152 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
153 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
154 /* Sky clearness (epsilon): 1.065 to 1.230 */
155 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
156 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
157 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
158 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
159 /* Sky clearness (epsilon): 1.230 to 1.500 */
160 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
161 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
162 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
163 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
164 /* Sky clearness (epsilon): 1.500 to 1.950 */
165 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
166 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
167 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
168 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
169 /* Sky clearness (epsilon): 1.950 to 2.800 */
170 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
171 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
172 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
173 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
174 /* Sky clearness (epsilon): 2.800 to 4.500 */
175 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
176 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
177 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
178 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
179 /* Sky clearness (epsilon): 4.500 to 6.200 */
180 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
181 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
182 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
183 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
184 /* Sky clearness (epsilon): 6.200 to ... */
185 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
186 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
187 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
188 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
189 };
190
191 /* Perez irradiance component model coefficients */
192
193 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
194 /* Stewart. 1990. ìModeling Daylight Availability and */
195 /* Irradiance Components from Direct and Global */
196 /* Irradiance,î Solar Energy 44(5):271-289. */
197
198 typedef struct
199 {
200 double lower; /* Lower bound */
201 double upper; /* Upper bound */
202 } CategoryBounds;
203
204 /* Perez sky clearness (epsilon) categories (Table 1) */
205 static const CategoryBounds SkyClearCat[8] =
206 {
207 { 1.000, 1.065 }, /* Overcast */
208 { 1.065, 1.230 },
209 { 1.230, 1.500 },
210 { 1.500, 1.950 },
211 { 1.950, 2.800 },
212 { 2.800, 4.500 },
213 { 4.500, 6.200 },
214 { 6.200, 12.01 } /* Clear */
215 };
216
217 /* Luminous efficacy model coefficients */
218 typedef struct
219 {
220 double a;
221 double b;
222 double c;
223 double d;
224 } ModelCoeff;
225
226 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
227 static const ModelCoeff DiffuseLumEff[8] =
228 {
229 { 97.24, -0.46, 12.00, -8.91 },
230 { 107.22, 1.15, 0.59, -3.95 },
231 { 104.97, 2.96, -5.53, -8.77 },
232 { 102.39, 5.59, -13.95, -13.90 },
233 { 100.71, 5.94, -22.75, -23.74 },
234 { 106.42, 3.83, -36.15, -28.83 },
235 { 141.88, 1.90, -53.24, -14.03 },
236 { 152.23, 0.35, -45.27, -7.98 }
237 };
238
239 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
240 static const ModelCoeff DirectLumEff[8] =
241 {
242 { 57.20, -4.55, -2.98, 117.12 },
243 { 98.99, -3.46, -1.21, 12.38 },
244 { 109.83, -4.90, -1.71, -8.81 },
245 { 110.34, -5.84, -1.99, -4.56 },
246 { 106.36, -3.97, -1.75, -6.16 },
247 { 107.19, -1.25, -1.51, -26.73 },
248 { 105.75, 0.77, -1.26, -34.44 },
249 { 101.18, 1.58, -1.10, -8.29 }
250 };
251
252 #ifndef NSUNPATCH
253 #define NSUNPATCH 4 /* max. # patches to spread sun into */
254 #endif
255
256 extern int jdate(int month, int day);
257 extern double stadj(int jd);
258 extern double sdec(int jd);
259 extern double salt(double sd, double st);
260 extern double sazi(double sd, double st);
261 /* sun calculation constants */
262 extern double s_latitude;
263 extern double s_longitude;
264 extern double s_meridian;
265
266 int nsuns = NSUNPATCH; /* number of sun patches to use */
267 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
268
269 int verbose = 0; /* progress reports to stderr? */
270
271 int outfmt = 'a'; /* output format */
272
273 int rhsubdiv = 1; /* Reinhart sky subdivisions */
274
275 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
276 COLOR suncolor = {1., 1., 1.}; /* sun color */
277 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
278
279 int nskypatch; /* number of Reinhart patches */
280 float *rh_palt; /* sky patch altitudes (radians) */
281 float *rh_pazi; /* sky patch azimuths (radians) */
282 float *rh_dom; /* sky patch solid angle (sr) */
283
284 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
285 (v)[0] = (v)[1]*tsin(azi), \
286 (v)[1] *= tcos(azi), \
287 (v)[2] = tsin(alt) )
288
289 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
290
291 #define rh_cos(i) tsin(rh_palt[i])
292
293 extern int rh_init(void);
294 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
295 extern void AddDirect(float *parr);
296
297
298 static const char *
299 getfmtname(int fmt)
300 {
301 switch (fmt) {
302 case 'a':
303 return("ascii");
304 case 'f':
305 return("float");
306 case 'd':
307 return("double");
308 }
309 return("unknown");
310 }
311
312
313 int
314 main(int argc, char *argv[])
315 {
316 char buf[256];
317 int doheader = 1; /* output header? */
318 double rotation = 0; /* site rotation (degrees) */
319 double elevation; /* site elevation (meters) */
320 int dir_is_horiz; /* direct is meas. on horizontal? */
321 float *mtx_data = NULL; /* our matrix data */
322 int ntsteps = 0; /* number of rows in matrix */
323 int step_alloc = 0;
324 int last_monthly = 0; /* month of last report */
325 int mo, da; /* month (1-12) and day (1-31) */
326 double hr; /* hour (local standard time) */
327 double dir, dif; /* direct and diffuse values */
328 int mtx_offset;
329 int i, j;
330
331 progname = argv[0];
332 /* get options */
333 for (i = 1; i < argc && argv[i][0] == '-'; i++)
334 switch (argv[i][1]) {
335 case 'g': /* ground reflectance */
336 grefl[0] = atof(argv[++i]);
337 grefl[1] = atof(argv[++i]);
338 grefl[2] = atof(argv[++i]);
339 break;
340 case 'v': /* verbose progress reports */
341 verbose++;
342 break;
343 case 'h': /* turn off header */
344 doheader = 0;
345 break;
346 case 'o': /* output format */
347 switch (argv[i][2]) {
348 case 'f':
349 case 'd':
350 case 'a':
351 outfmt = argv[i][2];
352 break;
353 default:
354 goto userr;
355 }
356 break;
357 case 'O': /* output type */
358 switch (argv[i][2]) {
359 case '0':
360 output = 0;
361 break;
362 case '1':
363 output = 1;
364 break;
365 default:
366 goto userr;
367 }
368 if (argv[i][3])
369 goto userr;
370 break;
371 case 'm': /* Reinhart subdivisions */
372 rhsubdiv = atoi(argv[++i]);
373 break;
374 case 'c': /* sky color */
375 skycolor[0] = atof(argv[++i]);
376 skycolor[1] = atof(argv[++i]);
377 skycolor[2] = atof(argv[++i]);
378 break;
379 case 'd': /* solar (direct) only */
380 skycolor[0] = skycolor[1] = skycolor[2] = 0;
381 if (suncolor[1] <= 1e-4)
382 suncolor[0] = suncolor[1] = suncolor[2] = 1;
383 break;
384 case 's': /* sky only (no direct) */
385 suncolor[0] = suncolor[1] = suncolor[2] = 0;
386 if (skycolor[1] <= 1e-4)
387 skycolor[0] = skycolor[1] = skycolor[2] = 1;
388 break;
389 case 'r': /* rotate distribution */
390 if (argv[i][2] && argv[i][2] != 'z')
391 goto userr;
392 rotation = atof(argv[++i]);
393 break;
394 case '5': /* 5-phase calculation */
395 nsuns = 1;
396 fixed_sun_sa = PI/360.*atof(argv[++i]);
397 fixed_sun_sa *= fixed_sun_sa*PI;
398 break;
399 default:
400 goto userr;
401 }
402 if (i < argc-1)
403 goto userr;
404 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
405 fprintf(stderr, "%s: cannot open '%s' for input\n",
406 progname, argv[i]);
407 exit(1);
408 }
409 if (verbose) {
410 if (i == argc-1)
411 fprintf(stderr, "%s: reading weather tape '%s'\n",
412 progname, argv[i]);
413 else
414 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
415 progname);
416 }
417 /* read weather tape header */
418 if (scanf("place %[^\r\n] ", buf) != 1)
419 goto fmterr;
420 if (scanf("latitude %lf\n", &s_latitude) != 1)
421 goto fmterr;
422 if (scanf("longitude %lf\n", &s_longitude) != 1)
423 goto fmterr;
424 if (scanf("time_zone %lf\n", &s_meridian) != 1)
425 goto fmterr;
426 if (scanf("site_elevation %lf\n", &elevation) != 1)
427 goto fmterr;
428 if (scanf("weather_data_file_units %d\n", &input) != 1)
429 goto fmterr;
430 switch (input) { /* translate units */
431 case 1:
432 input = 1; /* radiometric quantities */
433 dir_is_horiz = 0; /* direct is perpendicular meas. */
434 break;
435 case 2:
436 input = 1; /* radiometric quantities */
437 dir_is_horiz = 1; /* solar measured horizontally */
438 break;
439 case 3:
440 input = 2; /* photometric quantities */
441 dir_is_horiz = 0; /* direct is perpendicular meas. */
442 break;
443 default:
444 goto fmterr;
445 }
446 rh_init(); /* initialize sky patches */
447 if (verbose) {
448 fprintf(stderr, "%s: location '%s'\n", progname, buf);
449 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
450 progname, s_latitude, s_longitude);
451 fprintf(stderr, "%s: %d sky patches per time step\n",
452 progname, nskypatch);
453 if (rotation != 0)
454 fprintf(stderr, "%s: rotating output %.0f degrees\n",
455 progname, rotation);
456 }
457 /* convert quantities to radians */
458 s_latitude = DegToRad(s_latitude);
459 s_longitude = DegToRad(s_longitude);
460 s_meridian = DegToRad(s_meridian);
461 /* process each time step in tape */
462 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
463 double sda, sta;
464 /* make space for next time step */
465 mtx_offset = 3*nskypatch*ntsteps++;
466 if (ntsteps > step_alloc) {
467 step_alloc += (step_alloc>>1) + ntsteps + 7;
468 mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch);
469 }
470 if (dif <= 1e-4) {
471 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
472 continue;
473 }
474 if (verbose && mo != last_monthly)
475 fprintf(stderr, "%s: stepping through month %d...\n",
476 progname, last_monthly=mo);
477 /* compute solar position */
478 julian_date = jdate(mo, da);
479 sda = sdec(julian_date);
480 sta = stadj(julian_date);
481 altitude = salt(sda, hr+sta);
482 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
483 /* convert measured values */
484 if (dir_is_horiz && altitude > 0.)
485 dir /= sin(altitude);
486 if (input == 1) {
487 dir_irrad = dir;
488 diff_irrad = dif;
489 } else /* input == 2 */ {
490 dir_illum = dir;
491 diff_illum = dif;
492 }
493 /* compute sky patch values */
494 ComputeSky(mtx_data+mtx_offset);
495 AddDirect(mtx_data+mtx_offset);
496 }
497 /* check for junk at end */
498 while ((i = fgetc(stdin)) != EOF)
499 if (!isspace(i)) {
500 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
501 progname);
502 buf[0] = i; buf[1] = '\0';
503 fgets(buf+1, sizeof(buf)-1, stdin);
504 fputs(buf, stderr); fputc('\n', stderr);
505 break;
506 }
507 /* write out matrix */
508 if (outfmt != 'a')
509 SET_FILE_BINARY(stdout);
510 #ifdef getc_unlocked
511 flockfile(stdout);
512 #endif
513 if (verbose)
514 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
515 progname, outfmt=='a' ? "" : "binary ", ntsteps);
516 if (doheader) {
517 newheader("RADIANCE", stdout);
518 printargs(argc, argv, stdout);
519 printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
520 -RadToDeg(s_longitude));
521 printf("NROWS=%d\n", nskypatch);
522 printf("NCOLS=%d\n", ntsteps);
523 printf("NCOMP=3\n");
524 fputformat((char *)getfmtname(outfmt), stdout);
525 putchar('\n');
526 }
527 /* patches are rows (outer sort) */
528 for (i = 0; i < nskypatch; i++) {
529 mtx_offset = 3*i;
530 switch (outfmt) {
531 case 'a':
532 for (j = 0; j < ntsteps; j++) {
533 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
534 mtx_data[mtx_offset+1],
535 mtx_data[mtx_offset+2]);
536 mtx_offset += 3*nskypatch;
537 }
538 if (ntsteps > 1)
539 fputc('\n', stdout);
540 break;
541 case 'f':
542 for (j = 0; j < ntsteps; j++) {
543 fwrite(mtx_data+mtx_offset, sizeof(float), 3,
544 stdout);
545 mtx_offset += 3*nskypatch;
546 }
547 break;
548 case 'd':
549 for (j = 0; j < ntsteps; j++) {
550 double ment[3];
551 ment[0] = mtx_data[mtx_offset];
552 ment[1] = mtx_data[mtx_offset+1];
553 ment[2] = mtx_data[mtx_offset+2];
554 fwrite(ment, sizeof(double), 3, stdout);
555 mtx_offset += 3*nskypatch;
556 }
557 break;
558 }
559 if (ferror(stdout))
560 goto writerr;
561 }
562 if (fflush(stdout) == EOF)
563 goto writerr;
564 if (verbose)
565 fprintf(stderr, "%s: done.\n", progname);
566 exit(0);
567 userr:
568 fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
569 progname);
570 exit(1);
571 fmterr:
572 fprintf(stderr, "%s: input weather tape format error\n", progname);
573 exit(1);
574 writerr:
575 fprintf(stderr, "%s: write error on output\n", progname);
576 exit(1);
577 }
578
579 /* Return maximum of two doubles */
580 double dmax( double a, double b )
581 { return (a > b) ? a : b; }
582
583 /* Compute sky patch radiance values (modified by GW) */
584 void
585 ComputeSky(float *parr)
586 {
587 int index; /* Category index */
588 double norm_diff_illum; /* Normalized diffuse illuimnance */
589 int i;
590
591 /* Calculate atmospheric precipitable water content */
592 apwc = CalcPrecipWater(dew_point);
593
594 /* Calculate sun zenith angle (don't let it dip below horizon) */
595 /* Also limit minimum angle to keep circumsolar off zenith */
596 if (altitude <= 0.0)
597 sun_zenith = DegToRad(90.0);
598 else if (altitude >= DegToRad(87.0))
599 sun_zenith = DegToRad(3.0);
600 else
601 sun_zenith = DegToRad(90.0) - altitude;
602
603 /* Compute the inputs for the calculation of the sky distribution */
604
605 if (input == 0) /* XXX never used */
606 {
607 /* Calculate irradiance */
608 diff_irrad = CalcDiffuseIrradiance();
609 dir_irrad = CalcDirectIrradiance();
610
611 /* Calculate illuminance */
612 index = GetCategoryIndex();
613 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
614 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
615 }
616 else if (input == 1)
617 {
618 sky_brightness = CalcSkyBrightness();
619 sky_clearness = CalcSkyClearness();
620
621 /* Limit sky clearness */
622 if (sky_clearness > 11.9)
623 sky_clearness = 11.9;
624
625 /* Limit sky brightness */
626 if (sky_brightness < 0.01)
627 sky_brightness = 0.01;
628
629 /* Calculate illuminance */
630 index = GetCategoryIndex();
631 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
632 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
633 }
634 else if (input == 2)
635 {
636 /* Calculate sky brightness and clearness from illuminance values */
637 index = CalcSkyParamFromIllum();
638 }
639
640 if (output == 1) { /* hack for solar radiance */
641 diff_illum = diff_irrad * WHTEFFICACY;
642 dir_illum = dir_irrad * WHTEFFICACY;
643 }
644
645 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
646 memset(parr, 0, sizeof(float)*3*nskypatch);
647 return;
648 }
649 /* Compute ground radiance (include solar contribution if any) */
650 parr[0] = diff_illum;
651 if (altitude > 0)
652 parr[0] += dir_illum * sin(altitude);
653 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
654 multcolor(parr, grefl);
655
656 /* Calculate Perez sky model parameters */
657 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
658
659 /* Calculate sky patch luminance values */
660 CalcSkyPatchLumin(parr);
661
662 /* Calculate relative horizontal illuminance */
663 norm_diff_illum = CalcRelHorzIllum(parr);
664
665 /* Check for zero sky -- make uniform in that case */
666 if (norm_diff_illum <= FTINY) {
667 for (i = 1; i < nskypatch; i++)
668 setcolor(parr+3*i, 1., 1., 1.);
669 norm_diff_illum = PI;
670 }
671 /* Normalization coefficient */
672 norm_diff_illum = diff_illum / norm_diff_illum;
673
674 /* Apply to sky patches to get absolute radiance values */
675 for (i = 1; i < nskypatch; i++) {
676 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
677 multcolor(parr+3*i, skycolor);
678 }
679 }
680
681 /* Add in solar direct to nearest sky patches (GW) */
682 void
683 AddDirect(float *parr)
684 {
685 FVECT svec;
686 double near_dprod[NSUNPATCH];
687 int near_patch[NSUNPATCH];
688 double wta[NSUNPATCH], wtot;
689 int i, j, p;
690
691 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
692 return;
693 /* identify nsuns closest patches */
694 if (nsuns > NSUNPATCH)
695 nsuns = NSUNPATCH;
696 else if (nsuns <= 0)
697 nsuns = 1;
698 for (i = nsuns; i--; )
699 near_dprod[i] = -1.;
700 vector(svec, altitude, azimuth);
701 for (p = 1; p < nskypatch; p++) {
702 FVECT pvec;
703 double dprod;
704 rh_vector(pvec, p);
705 dprod = DOT(pvec, svec);
706 for (i = 0; i < nsuns; i++)
707 if (dprod > near_dprod[i]) {
708 for (j = nsuns; --j > i; ) {
709 near_dprod[j] = near_dprod[j-1];
710 near_patch[j] = near_patch[j-1];
711 }
712 near_dprod[i] = dprod;
713 near_patch[i] = p;
714 break;
715 }
716 }
717 wtot = 0; /* weight by proximity */
718 for (i = nsuns; i--; )
719 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
720 /* add to nearest patch radiances */
721 for (i = nsuns; i--; ) {
722 float *pdest = parr + 3*near_patch[i];
723 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
724
725 val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
726 : rh_dom[near_patch[i]] ;
727 *pdest++ += val_add*suncolor[0];
728 *pdest++ += val_add*suncolor[1];
729 *pdest++ += val_add*suncolor[2];
730 }
731 }
732
733 /* Initialize Reinhart sky patch positions (GW) */
734 int
735 rh_init(void)
736 {
737 #define NROW 7
738 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
739 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
740 int p, i, j;
741 /* allocate patch angle arrays */
742 nskypatch = 0;
743 for (p = 0; p < NROW; p++)
744 nskypatch += tnaz[p];
745 nskypatch *= rhsubdiv*rhsubdiv;
746 nskypatch += 2;
747 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
748 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
749 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
750 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
751 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
752 exit(1);
753 }
754 rh_palt[0] = -PI/2.; /* ground & zenith patches */
755 rh_pazi[0] = 0.;
756 rh_dom[0] = 2.*PI;
757 rh_palt[nskypatch-1] = PI/2.;
758 rh_pazi[nskypatch-1] = 0.;
759 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
760 p = 1; /* "normal" patches */
761 for (i = 0; i < NROW*rhsubdiv; i++) {
762 const float ralt = alpha*(i + .5);
763 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
764 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
765 (double)ninrow;
766 for (j = 0; j < ninrow; j++) {
767 rh_palt[p] = ralt;
768 rh_pazi[p] = 2.*PI * j / (double)ninrow;
769 rh_dom[p++] = dom;
770 }
771 }
772 return nskypatch;
773 #undef NROW
774 }
775
776 /* Resize daylight matrix (GW) */
777 float *
778 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
779 {
780 if (mtx_data == NULL)
781 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
782 else
783 mtx_data = (float *)realloc(mtx_data,
784 sizeof(float)*3*nsteps*npatch);
785 if (mtx_data == NULL) {
786 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
787 progname, nsteps, npatch);
788 exit(1);
789 }
790 return(mtx_data);
791 }
792
793 /* Determine category index */
794 int GetCategoryIndex()
795 {
796 int index; /* Loop index */
797
798 for (index = 0; index < 8; index++)
799 if ((sky_clearness >= SkyClearCat[index].lower) &&
800 (sky_clearness < SkyClearCat[index].upper))
801 break;
802
803 return index;
804 }
805
806 /* Calculate diffuse illuminance to diffuse irradiance ratio */
807
808 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
809 /* Stewart. 1990. ìModeling Daylight Availability and */
810 /* Irradiance Components from Direct and Global */
811 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
812
813 double CalcDiffuseIllumRatio( int index )
814 {
815 ModelCoeff const *pnle; /* Category coefficient pointer */
816
817 /* Get category coefficient pointer */
818 pnle = &(DiffuseLumEff[index]);
819
820 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
821 pnle->d * log(sky_brightness);
822 }
823
824 /* Calculate direct illuminance to direct irradiance ratio */
825
826 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
827 /* Stewart. 1990. ìModeling Daylight Availability and */
828 /* Irradiance Components from Direct and Global */
829 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
830
831 double CalcDirectIllumRatio( int index )
832 {
833 ModelCoeff const *pnle; /* Category coefficient pointer */
834
835 /* Get category coefficient pointer */
836 pnle = &(DirectLumEff[index]);
837
838 /* Calculate direct illuminance from direct irradiance */
839
840 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
841 sun_zenith - 5.0) + pnle->d * sky_brightness),
842 0.0);
843 }
844
845 /* Calculate sky brightness */
846
847 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
848 /* Stewart. 1990. ìModeling Daylight Availability and */
849 /* Irradiance Components from Direct and Global */
850 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
851
852 double CalcSkyBrightness()
853 {
854 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
855 CalcEccentricity());
856 }
857
858 /* Calculate sky clearness */
859
860 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
861 /* Stewart. 1990. ìModeling Daylight Availability and */
862 /* Irradiance Components from Direct and Global */
863 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
864
865 double CalcSkyClearness()
866 {
867 double sz_cubed; /* Sun zenith angle cubed */
868
869 /* Calculate sun zenith angle cubed */
870 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
871
872 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
873 sz_cubed) / (1.0 + 1.041 * sz_cubed);
874 }
875
876 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
877
878 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
879 /* Stewart. 1990. ìModeling Daylight Availability and */
880 /* Irradiance Components from Direct and Global */
881 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
882 /* (inverse). */
883
884 double CalcDiffuseIrradiance()
885 {
886 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
887 CalcAirMass();
888 }
889
890 /* Calculate direct normal irradiance from Perez sky clearness */
891
892 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
893 /* Stewart. 1990. ìModeling Daylight Availability and */
894 /* Irradiance Components from Direct and Global */
895 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
896 /* (inverse). */
897
898 double CalcDirectIrradiance()
899 {
900 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
901 * sun_zenith*sun_zenith*sun_zenith));
902 }
903
904 /* Calculate sky brightness and clearness from illuminance values */
905 int CalcSkyParamFromIllum()
906 {
907 double test1 = 0.1;
908 double test2 = 0.1;
909 int counter = 0;
910 int index = 0; /* Category index */
911
912 /* Convert illuminance to irradiance */
913 diff_irrad = diff_illum * DC_SolarConstantE /
914 (DC_SolarConstantL * 1000.0);
915 dir_irrad = dir_illum * DC_SolarConstantE /
916 (DC_SolarConstantL * 1000.0);
917
918 /* Calculate sky brightness and clearness */
919 sky_brightness = CalcSkyBrightness();
920 sky_clearness = CalcSkyClearness();
921
922 /* Limit sky clearness */
923 if (sky_clearness > 12.0)
924 sky_clearness = 12.0;
925
926 /* Limit sky brightness */
927 if (sky_brightness < 0.01)
928 sky_brightness = 0.01;
929
930 while (((fabs(diff_irrad - test1) > 10.0) ||
931 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
932 {
933 test1 = diff_irrad;
934 test2 = dir_irrad;
935 counter++;
936
937 /* Convert illuminance to irradiance */
938 index = GetCategoryIndex();
939 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
940 dir_irrad = dir_illum / CalcDirectIllumRatio(index);
941
942 /* Calculate sky brightness and clearness */
943 sky_brightness = CalcSkyBrightness();
944 sky_clearness = CalcSkyClearness();
945
946 /* Limit sky clearness */
947 if (sky_clearness > 12.0)
948 sky_clearness = 12.0;
949
950 /* Limit sky brightness */
951 if (sky_brightness < 0.01)
952 sky_brightness = 0.01;
953 }
954
955 return GetCategoryIndex();
956 }
957
958 /* Calculate relative luminance */
959
960 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
961 /* ìAll-Weather Model for Sky Luminance Distribution - */
962 /* Preliminary Configuration and Validation,î Solar Energy */
963 /* 50(3):235-245, Eqn. 1. */
964
965 double CalcRelLuminance( double gamma, double zeta )
966 {
967 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
968 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
969 perez_param[4] * cos(gamma) * cos(gamma));
970 }
971
972 /* Calculate Perez sky model parameters */
973
974 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
975 /* ìAll-Weather Model for Sky Luminance Distribution - */
976 /* Preliminary Configuration and Validation,î Solar Energy */
977 /* 50(3):235-245, Eqns. 6 - 8. */
978
979 void CalcPerezParam( double sz, double epsilon, double delta,
980 int index )
981 {
982 double x[5][4]; /* Coefficents a, b, c, d, e */
983 int i, j; /* Loop indices */
984
985 /* Limit sky brightness */
986 if (epsilon > 1.065 && epsilon < 2.8)
987 {
988 if (delta < 0.2)
989 delta = 0.2;
990 }
991
992 /* Get Perez coefficients */
993 for (i = 0; i < 5; i++)
994 for (j = 0; j < 4; j++)
995 x[i][j] = PerezCoeff[index][4 * i + j];
996
997 if (index != 0)
998 {
999 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1000 for (i = 0; i < 5; i++)
1001 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1002 x[i][3] * sz);
1003 }
1004 else
1005 {
1006 /* Parameters a, b and e (Eqn. 6) */
1007 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1008 x[0][3] * sz);
1009 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1010 x[1][3] * sz);
1011 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1012 x[4][3] * sz);
1013
1014 /* Parameter c (Eqn. 7) */
1015 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1016 x[2][2])) - x[2][3];
1017
1018 /* Parameter d (Eqn. 8) */
1019 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1020 x[3][2] + delta * x[3][3];
1021 }
1022 }
1023
1024 /* Calculate relative horizontal illuminance (modified by GW) */
1025
1026 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1027 /* ìAll-Weather Model for Sky Luminance Distribution - */
1028 /* Preliminary Configuration and Validation,î Solar Energy */
1029 /* 50(3):235-245, Eqn. 3. */
1030
1031 double CalcRelHorzIllum( float *parr )
1032 {
1033 int i;
1034 double rh_illum = 0.0; /* Relative horizontal illuminance */
1035
1036 for (i = 1; i < nskypatch; i++)
1037 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1038
1039 return rh_illum;
1040 }
1041
1042 /* Calculate earth orbit eccentricity correction factor */
1043
1044 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1045 /* Techniques. Springer, p. 72. */
1046
1047 double CalcEccentricity()
1048 {
1049 double day_angle; /* Day angle (radians) */
1050 double E0; /* Eccentricity */
1051
1052 /* Calculate day angle */
1053 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1054
1055 /* Calculate eccentricity */
1056 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1057 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1058 day_angle);
1059
1060 return E0;
1061 }
1062
1063 /* Calculate atmospheric precipitable water content */
1064
1065 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1066 /* Stewart. 1990. ìModeling Daylight Availability and */
1067 /* Irradiance Components from Direct and Global */
1068 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1069
1070 /* Note: The default surface dew point temperature is 11 deg. C */
1071 /* (52 deg. F). Typical values are: */
1072
1073 /* Celsius Fahrenheit Human Perception */
1074 /* > 24 > 75 Extremely uncomfortable */
1075 /* 21 - 24 70 - 74 Very humid */
1076 /* 18 - 21 65 - 69 Somewhat uncomfortable */
1077 /* 16 - 18 60 - 64 OK for most people */
1078 /* 13 - 16 55 - 59 Comfortable */
1079 /* 10 - 12 50 - 54 Very comfortable */
1080 /* < 10 < 49 A bit dry for some */
1081
1082 double CalcPrecipWater( double dpt )
1083 { return exp(0.07 * dpt - 0.075); }
1084
1085 /* Calculate relative air mass */
1086
1087 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1088 /* for the Relative Optical Air Mass," Arch. Meteorol. */
1089 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1090
1091 /* Note: More sophisticated relative air mass models are */
1092 /* available, but they differ significantly only for */
1093 /* sun zenith angles greater than 80 degrees. */
1094
1095 double CalcAirMass()
1096 {
1097 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1098 RadToDeg(sun_zenith), -1.253)));
1099 }
1100
1101 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1102
1103 /* NOTE: The sky patches centers are determined in accordance with the */
1104 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1105 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1106 /* for the Validation of Illuminance Prediction Techniques," */
1107 /* Lighting Research & Technology 33(2):117-136.) */
1108
1109 void CalcSkyPatchLumin( float *parr )
1110 {
1111 int i;
1112 double aas; /* Sun-sky point azimuthal angle */
1113 double sspa; /* Sun-sky point angle */
1114 double zsa; /* Zenithal sun angle */
1115
1116 for (i = 1; i < nskypatch; i++)
1117 {
1118 /* Calculate sun-sky point azimuthal angle */
1119 aas = fabs(rh_pazi[i] - azimuth);
1120
1121 /* Calculate zenithal sun angle */
1122 zsa = PI * 0.5 - rh_palt[i];
1123
1124 /* Calculate sun-sky point angle (Equation 8-20) */
1125 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1126 sin(zsa) * cos(aas));
1127
1128 /* Calculate patch luminance */
1129 parr[3*i] = CalcRelLuminance(sspa, zsa);
1130 if (parr[3*i] < 0) parr[3*i] = 0;
1131 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1132 }
1133 }