#ifndef lint static const char RCSid[] = "$Id: gendaymtx.c,v 2.17 2014/10/26 17:35:53 greg Exp $"; #endif /* * gendaymtx.c * * Generate a daylight matrix based on Perez Sky Model. * * Most of this code is borrowed (see copyright below) from Ian Ashdown's * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c * * Created by Greg Ward on 1/16/13. */ /********************************************************************* * * H32_gendaylit.CPP - Perez Sky Model Calculation * * Version: 1.00A * * History: 09/10/01 - Created. * 11/10/08 - Modified for Unix compilation. * 11/10/12 - Fixed conditional __max directive. * 1/11/13 - Tweaks and optimizations (G.Ward) * * Compilers: Microsoft Visual C/C++ Professional V10.0 * * Author: Ian Ashdown, P.Eng. * byHeart Consultants Limited * 620 Ballantree Road * West Vancouver, B.C. * Canada V7S 1W3 * e-mail: ian_ashdown@helios32.com * * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. * Stewart. 1990. ìModeling Daylight Availability and * Irradiance Components from Direct and Global * Irradiance,î Solar Energy 44(5):271-289. * * Perez, R., R. Seals, and J. Michalsky. 1993. * ìAll-Weather Model for Sky Luminance Distribution - * Preliminary Configuration and Validation,î Solar Energy * 50(3):235-245. * * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to * All-Weather Model for Sky Luminance Distribution - * Preliminary Configuration and Validation,î Solar Energy * 51(5):423. * * NOTE: This program is a completely rewritten version of * gendaylit.c written by Jean-Jacques Delaunay (1994). * * Copyright 2009-2012 byHeart Consultants Limited. All rights * reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted for personal and commercial purposes * provided that redistribution of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer: * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *********************************************************************/ /* Zenith is along the Z-axis */ /* X-axis points east */ /* Y-axis points north */ /* azimuth is measured as degrees or radians east of North */ /* Include files */ #define _USE_MATH_DEFINES #include #include #include #include #include "rtmath.h" #include "platform.h" #include "color.h" #include "resolu.h" char *progname; /* Program name */ char errmsg[128]; /* Error message buffer */ const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */ const double DC_SolarConstantL = 127.5; /* Solar constant klux */ double altitude; /* Solar altitude (radians) */ double azimuth; /* Solar azimuth (radians) */ double apwc; /* Atmospheric precipitable water content */ double dew_point = 11.0; /* Surface dew point temperature (deg. C) */ double diff_illum; /* Diffuse illuminance */ double diff_irrad; /* Diffuse irradiance */ double dir_illum; /* Direct illuminance */ double dir_irrad; /* Direct irradiance */ int julian_date; /* Julian date */ double perez_param[5]; /* Perez sky model parameters */ double sky_brightness; /* Sky brightness */ double sky_clearness; /* Sky clearness */ double solar_rad; /* Solar radiance */ double sun_zenith; /* Sun zenith angle (radians) */ int input = 0; /* Input type */ int output = 0; /* Output type */ extern double dmax( double, double ); extern double CalcAirMass(); extern double CalcDiffuseIllumRatio( int ); extern double CalcDiffuseIrradiance(); extern double CalcDirectIllumRatio( int ); extern double CalcDirectIrradiance(); extern double CalcEccentricity(); extern double CalcPrecipWater( double ); extern double CalcRelHorzIllum( float *parr ); extern double CalcRelLuminance( double, double ); extern double CalcSkyBrightness(); extern double CalcSkyClearness(); extern int CalcSkyParamFromIllum(); extern int GetCategoryIndex(); extern void CalcPerezParam( double, double, double, int ); extern void CalcSkyPatchLumin( float *parr ); extern void ComputeSky( float *parr ); /* Degrees into radians */ #define DegToRad(deg) ((deg)*(PI/180.)) /* Radiuans into degrees */ #define RadToDeg(rad) ((rad)*(180./PI)) /* Perez sky model coefficients */ /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */ /* Weather Model for Sky Luminance Distribution - */ /* Preliminary Configuration and Validation," Solar */ /* Energy 50(3):235-245, Table 1. */ static const double PerezCoeff[8][20] = { /* Sky clearness (epsilon): 1.000 to 1.065 */ { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670, 0.0007, 1.2734, -0.1233, 2.8000, 0.6004, 1.2375, 1.0000, 1.8734, 0.6297, 0.9738, 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 }, /* Sky clearness (epsilon): 1.065 to 1.230 */ { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054, 0.0367, -3.9128, 0.9156, 6.9750, 0.1774, 6.4477, -0.1239, -1.5798, -0.5081, -1.7812, 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 }, /* Sky clearness (epsilon): 1.230 to 1.500 */ { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782, -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812, -37.7000, 34.8438, -5.0000, 1.5218, 3.9229, -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 }, /* Sky clearness (epsilon): 1.500 to 1.950 */ { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234, -0.6219, -5.6812, 2.6297, 33.3389, -18.3000, -62.2500, 52.0781, -3.5000, 0.0016, 1.1477, 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 }, /* Sky clearness (epsilon): 1.950 to 2.800 */ { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937, 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 , -21.5906, 7.2492, -3.5000, -0.1554, 1.4062, 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 }, /* Sky clearness (epsilon): 2.800 to 4.500 */ { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875, -0.5328, -3.8500, 3.3750, 14.0000, -0.9999, -7.1406, 7.5469, -3.4000, -0.1078, -1.0750, 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 }, /* Sky clearness (epsilon): 4.500 to 6.200 */ { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000, 0.1922, 0.7023, -1.6317, 19.0000, -5.0000, 1.2438, -1.9094, -4.0000, 0.0250, 0.3844, 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 }, /* Sky clearness (epsilon): 6.200 to ... */ { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250, 0.1156, 0.7781, 0.0025, 31.0625, -14.5000, -46.1148, 55.3750, -7.2312, 0.4050, 13.3500, 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 } }; /* Perez irradiance component model coefficients */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289. */ typedef struct { double lower; /* Lower bound */ double upper; /* Upper bound */ } CategoryBounds; /* Perez sky clearness (epsilon) categories (Table 1) */ static const CategoryBounds SkyClearCat[8] = { { 1.000, 1.065 }, /* Overcast */ { 1.065, 1.230 }, { 1.230, 1.500 }, { 1.500, 1.950 }, { 1.950, 2.800 }, { 2.800, 4.500 }, { 4.500, 6.200 }, { 6.200, 12.01 } /* Clear */ }; /* Luminous efficacy model coefficients */ typedef struct { double a; double b; double c; double d; } ModelCoeff; /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */ static const ModelCoeff DiffuseLumEff[8] = { { 97.24, -0.46, 12.00, -8.91 }, { 107.22, 1.15, 0.59, -3.95 }, { 104.97, 2.96, -5.53, -8.77 }, { 102.39, 5.59, -13.95, -13.90 }, { 100.71, 5.94, -22.75, -23.74 }, { 106.42, 3.83, -36.15, -28.83 }, { 141.88, 1.90, -53.24, -14.03 }, { 152.23, 0.35, -45.27, -7.98 } }; /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */ static const ModelCoeff DirectLumEff[8] = { { 57.20, -4.55, -2.98, 117.12 }, { 98.99, -3.46, -1.21, 12.38 }, { 109.83, -4.90, -1.71, -8.81 }, { 110.34, -5.84, -1.99, -4.56 }, { 106.36, -3.97, -1.75, -6.16 }, { 107.19, -1.25, -1.51, -26.73 }, { 105.75, 0.77, -1.26, -34.44 }, { 101.18, 1.58, -1.10, -8.29 } }; #ifndef NSUNPATCH #define NSUNPATCH 4 /* max. # patches to spread sun into */ #endif extern int jdate(int month, int day); extern double stadj(int jd); extern double sdec(int jd); extern double salt(double sd, double st); extern double sazi(double sd, double st); /* sun calculation constants */ extern double s_latitude; extern double s_longitude; extern double s_meridian; int nsuns = NSUNPATCH; /* number of sun patches to use */ double fixed_sun_sa = -1; /* fixed solid angle per sun? */ int verbose = 0; /* progress reports to stderr? */ int outfmt = 'a'; /* output format */ int rhsubdiv = 1; /* Reinhart sky subdivisions */ COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ COLOR suncolor = {1., 1., 1.}; /* sun color */ COLOR grefl = {.2, .2, .2}; /* ground reflectance */ int nskypatch; /* number of Reinhart patches */ float *rh_palt; /* sky patch altitudes (radians) */ float *rh_pazi; /* sky patch azimuths (radians) */ float *rh_dom; /* sky patch solid angle (sr) */ #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \ (v)[0] = (v)[1]*tsin(azi), \ (v)[1] *= tcos(azi), \ (v)[2] = tsin(alt) ) #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i]) #define rh_cos(i) tsin(rh_palt[i]) extern int rh_init(void); extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch); extern void AddDirect(float *parr); static const char * getfmtname(int fmt) { switch (fmt) { case 'a': return("ascii"); case 'f': return("float"); case 'd': return("double"); } return("unknown"); } int main(int argc, char *argv[]) { char buf[256]; int doheader = 1; /* output header? */ double rotation = 0; /* site rotation (degrees) */ double elevation; /* site elevation (meters) */ int dir_is_horiz; /* direct is meas. on horizontal? */ float *mtx_data = NULL; /* our matrix data */ int ntsteps = 0; /* number of rows in matrix */ int step_alloc = 0; int last_monthly = 0; /* month of last report */ int mo, da; /* month (1-12) and day (1-31) */ double hr; /* hour (local standard time) */ double dir, dif; /* direct and diffuse values */ int mtx_offset; int i, j; progname = argv[0]; /* get options */ for (i = 1; i < argc && argv[i][0] == '-'; i++) switch (argv[i][1]) { case 'g': /* ground reflectance */ grefl[0] = atof(argv[++i]); grefl[1] = atof(argv[++i]); grefl[2] = atof(argv[++i]); break; case 'v': /* verbose progress reports */ verbose++; break; case 'h': /* turn off header */ doheader = 0; break; case 'o': /* output format */ switch (argv[i][2]) { case 'f': case 'd': case 'a': outfmt = argv[i][2]; break; default: goto userr; } break; case 'O': /* output type */ switch (argv[i][2]) { case '0': output = 0; break; case '1': output = 1; break; default: goto userr; } if (argv[i][3]) goto userr; break; case 'm': /* Reinhart subdivisions */ rhsubdiv = atoi(argv[++i]); break; case 'c': /* sky color */ skycolor[0] = atof(argv[++i]); skycolor[1] = atof(argv[++i]); skycolor[2] = atof(argv[++i]); break; case 'd': /* solar (direct) only */ skycolor[0] = skycolor[1] = skycolor[2] = 0; if (suncolor[1] <= 1e-4) suncolor[0] = suncolor[1] = suncolor[2] = 1; break; case 's': /* sky only (no direct) */ suncolor[0] = suncolor[1] = suncolor[2] = 0; if (skycolor[1] <= 1e-4) skycolor[0] = skycolor[1] = skycolor[2] = 1; break; case 'r': /* rotate distribution */ if (argv[i][2] && argv[i][2] != 'z') goto userr; rotation = atof(argv[++i]); break; case '5': /* 5-phase calculation */ nsuns = 1; fixed_sun_sa = 6.797e-05; break; default: goto userr; } if (i < argc-1) goto userr; if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) { fprintf(stderr, "%s: cannot open '%s' for input\n", progname, argv[i]); exit(1); } if (verbose) { if (i == argc-1) fprintf(stderr, "%s: reading weather tape '%s'\n", progname, argv[i]); else fprintf(stderr, "%s: reading weather tape from \n", progname); } /* read weather tape header */ if (scanf("place %[^\r\n] ", buf) != 1) goto fmterr; if (scanf("latitude %lf\n", &s_latitude) != 1) goto fmterr; if (scanf("longitude %lf\n", &s_longitude) != 1) goto fmterr; if (scanf("time_zone %lf\n", &s_meridian) != 1) goto fmterr; if (scanf("site_elevation %lf\n", &elevation) != 1) goto fmterr; if (scanf("weather_data_file_units %d\n", &input) != 1) goto fmterr; switch (input) { /* translate units */ case 1: input = 1; /* radiometric quantities */ dir_is_horiz = 0; /* direct is perpendicular meas. */ break; case 2: input = 1; /* radiometric quantities */ dir_is_horiz = 1; /* solar measured horizontally */ break; case 3: input = 2; /* photometric quantities */ dir_is_horiz = 0; /* direct is perpendicular meas. */ break; default: goto fmterr; } rh_init(); /* initialize sky patches */ if (verbose) { fprintf(stderr, "%s: location '%s'\n", progname, buf); fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", progname, s_latitude, s_longitude); fprintf(stderr, "%s: %d sky patches per time step\n", progname, nskypatch); if (rotation != 0) fprintf(stderr, "%s: rotating output %.0f degrees\n", progname, rotation); } /* convert quantities to radians */ s_latitude = DegToRad(s_latitude); s_longitude = DegToRad(s_longitude); s_meridian = DegToRad(s_meridian); /* process each time step in tape */ while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) { double sda, sta; /* make space for next time step */ mtx_offset = 3*nskypatch*ntsteps++; if (ntsteps > step_alloc) { step_alloc += (step_alloc>>1) + ntsteps + 7; mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch); } if (dif <= 1e-4) { memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); continue; } if (verbose && mo != last_monthly) fprintf(stderr, "%s: stepping through month %d...\n", progname, last_monthly=mo); /* compute solar position */ julian_date = jdate(mo, da); sda = sdec(julian_date); sta = stadj(julian_date); altitude = salt(sda, hr+sta); azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation); /* convert measured values */ if (dir_is_horiz && altitude > 0.) dir /= sin(altitude); if (input == 1) { dir_irrad = dir; diff_irrad = dif; } else /* input == 2 */ { dir_illum = dir; diff_illum = dif; } /* compute sky patch values */ ComputeSky(mtx_data+mtx_offset); AddDirect(mtx_data+mtx_offset); } /* check for junk at end */ while ((i = fgetc(stdin)) != EOF) if (!isspace(i)) { fprintf(stderr, "%s: warning - unexpected data past EOT: ", progname); buf[0] = i; buf[1] = '\0'; fgets(buf+1, sizeof(buf)-1, stdin); fputs(buf, stderr); fputc('\n', stderr); break; } /* write out matrix */ if (outfmt != 'a') SET_FILE_BINARY(stdout); #ifdef getc_unlocked flockfile(stdout); #endif if (verbose) fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", progname, outfmt=='a' ? "" : "binary ", ntsteps); if (doheader) { newheader("RADIANCE", stdout); printargs(argc, argv, stdout); printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), -RadToDeg(s_longitude)); printf("NROWS=%d\n", nskypatch); printf("NCOLS=%d\n", ntsteps); printf("NCOMP=3\n"); fputformat(getfmtname(outfmt), stdout); putchar('\n'); } /* patches are rows (outer sort) */ for (i = 0; i < nskypatch; i++) { mtx_offset = 3*i; switch (outfmt) { case 'a': for (j = 0; j < ntsteps; j++) { printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset], mtx_data[mtx_offset+1], mtx_data[mtx_offset+2]); mtx_offset += 3*nskypatch; } if (ntsteps > 1) fputc('\n', stdout); break; case 'f': for (j = 0; j < ntsteps; j++) { fwrite(mtx_data+mtx_offset, sizeof(float), 3, stdout); mtx_offset += 3*nskypatch; } break; case 'd': for (j = 0; j < ntsteps; j++) { double ment[3]; ment[0] = mtx_data[mtx_offset]; ment[1] = mtx_data[mtx_offset+1]; ment[2] = mtx_data[mtx_offset+2]; fwrite(ment, sizeof(double), 3, stdout); mtx_offset += 3*nskypatch; } break; } if (ferror(stdout)) goto writerr; } if (fflush(stdout) == EOF) goto writerr; if (verbose) fprintf(stderr, "%s: done.\n", progname); exit(0); userr: fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", progname); exit(1); fmterr: fprintf(stderr, "%s: input weather tape format error\n", progname); exit(1); writerr: fprintf(stderr, "%s: write error on output\n", progname); exit(1); } /* Return maximum of two doubles */ double dmax( double a, double b ) { return (a > b) ? a : b; } /* Compute sky patch radiance values (modified by GW) */ void ComputeSky(float *parr) { int index; /* Category index */ double norm_diff_illum; /* Normalized diffuse illuimnance */ int i; /* Calculate atmospheric precipitable water content */ apwc = CalcPrecipWater(dew_point); /* Calculate sun zenith angle (don't let it dip below horizon) */ /* Also limit minimum angle to keep circumsolar off zenith */ if (altitude <= 0.0) sun_zenith = DegToRad(90.0); else if (altitude >= DegToRad(87.0)) sun_zenith = DegToRad(3.0); else sun_zenith = DegToRad(90.0) - altitude; /* Compute the inputs for the calculation of the sky distribution */ if (input == 0) /* XXX never used */ { /* Calculate irradiance */ diff_irrad = CalcDiffuseIrradiance(); dir_irrad = CalcDirectIrradiance(); /* Calculate illuminance */ index = GetCategoryIndex(); diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); dir_illum = dir_irrad * CalcDirectIllumRatio(index); } else if (input == 1) { sky_brightness = CalcSkyBrightness(); sky_clearness = CalcSkyClearness(); /* Limit sky clearness */ if (sky_clearness > 11.9) sky_clearness = 11.9; /* Limit sky brightness */ if (sky_brightness < 0.01) sky_brightness = 0.01; /* Calculate illuminance */ index = GetCategoryIndex(); diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); dir_illum = dir_irrad * CalcDirectIllumRatio(index); } else if (input == 2) { /* Calculate sky brightness and clearness from illuminance values */ index = CalcSkyParamFromIllum(); } if (output == 1) { /* hack for solar radiance */ diff_illum = diff_irrad * WHTEFFICACY; dir_illum = dir_irrad * WHTEFFICACY; } if (bright(skycolor) <= 1e-4) { /* 0 sky component? */ memset(parr, 0, sizeof(float)*3*nskypatch); return; } /* Compute ground radiance (include solar contribution if any) */ parr[0] = diff_illum; if (altitude > 0) parr[0] += dir_illum * sin(altitude); parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY); multcolor(parr, grefl); /* Calculate Perez sky model parameters */ CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index); /* Calculate sky patch luminance values */ CalcSkyPatchLumin(parr); /* Calculate relative horizontal illuminance */ norm_diff_illum = CalcRelHorzIllum(parr); /* Check for zero sky -- make uniform in that case */ if (norm_diff_illum <= FTINY) { for (i = 1; i < nskypatch; i++) setcolor(parr+3*i, 1., 1., 1.); norm_diff_illum = PI; } /* Normalization coefficient */ norm_diff_illum = diff_illum / norm_diff_illum; /* Apply to sky patches to get absolute radiance values */ for (i = 1; i < nskypatch; i++) { scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY)); multcolor(parr+3*i, skycolor); } } /* Add in solar direct to nearest sky patches (GW) */ void AddDirect(float *parr) { FVECT svec; double near_dprod[NSUNPATCH]; int near_patch[NSUNPATCH]; double wta[NSUNPATCH], wtot; int i, j, p; if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4) return; /* identify nsuns closest patches */ if (nsuns > NSUNPATCH) nsuns = NSUNPATCH; else if (nsuns <= 0) nsuns = 1; for (i = nsuns; i--; ) near_dprod[i] = -1.; vector(svec, altitude, azimuth); for (p = 1; p < nskypatch; p++) { FVECT pvec; double dprod; rh_vector(pvec, p); dprod = DOT(pvec, svec); for (i = 0; i < nsuns; i++) if (dprod > near_dprod[i]) { for (j = nsuns; --j > i; ) { near_dprod[j] = near_dprod[j-1]; near_patch[j] = near_patch[j-1]; } near_dprod[i] = dprod; near_patch[i] = p; break; } } wtot = 0; /* weight by proximity */ for (i = nsuns; i--; ) wtot += wta[i] = 1./(1.002 - near_dprod[i]); /* add to nearest patch radiances */ for (i = nsuns; i--; ) { float *pdest = parr + 3*near_patch[i]; float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot); val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa : rh_dom[near_patch[i]] ; *pdest++ += val_add*suncolor[0]; *pdest++ += val_add*suncolor[1]; *pdest++ += val_add*suncolor[2]; } } /* Initialize Reinhart sky patch positions (GW) */ int rh_init(void) { #define NROW 7 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; const double alpha = (PI/2.)/(NROW*rhsubdiv + .5); int p, i, j; /* allocate patch angle arrays */ nskypatch = 0; for (p = 0; p < NROW; p++) nskypatch += tnaz[p]; nskypatch *= rhsubdiv*rhsubdiv; nskypatch += 2; rh_palt = (float *)malloc(sizeof(float)*nskypatch); rh_pazi = (float *)malloc(sizeof(float)*nskypatch); rh_dom = (float *)malloc(sizeof(float)*nskypatch); if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { fprintf(stderr, "%s: out of memory in rh_init()\n", progname); exit(1); } rh_palt[0] = -PI/2.; /* ground & zenith patches */ rh_pazi[0] = 0.; rh_dom[0] = 2.*PI; rh_palt[nskypatch-1] = PI/2.; rh_pazi[nskypatch-1] = 0.; rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5)); p = 1; /* "normal" patches */ for (i = 0; i < NROW*rhsubdiv; i++) { const float ralt = alpha*(i + .5); const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv; const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) / (double)ninrow; for (j = 0; j < ninrow; j++) { rh_palt[p] = ralt; rh_pazi[p] = 2.*PI * j / (double)ninrow; rh_dom[p++] = dom; } } return nskypatch; #undef NROW } /* Resize daylight matrix (GW) */ float * resize_dmatrix(float *mtx_data, int nsteps, int npatch) { if (mtx_data == NULL) mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch); else mtx_data = (float *)realloc(mtx_data, sizeof(float)*3*nsteps*npatch); if (mtx_data == NULL) { fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", progname, nsteps, npatch); exit(1); } return(mtx_data); } /* Determine category index */ int GetCategoryIndex() { int index; /* Loop index */ for (index = 0; index < 8; index++) if ((sky_clearness >= SkyClearCat[index].lower) && (sky_clearness < SkyClearCat[index].upper)) break; return index; } /* Calculate diffuse illuminance to diffuse irradiance ratio */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */ double CalcDiffuseIllumRatio( int index ) { ModelCoeff const *pnle; /* Category coefficient pointer */ /* Get category coefficient pointer */ pnle = &(DiffuseLumEff[index]); return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) + pnle->d * log(sky_brightness); } /* Calculate direct illuminance to direct irradiance ratio */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */ double CalcDirectIllumRatio( int index ) { ModelCoeff const *pnle; /* Category coefficient pointer */ /* Get category coefficient pointer */ pnle = &(DirectLumEff[index]); /* Calculate direct illuminance from direct irradiance */ return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 * sun_zenith - 5.0) + pnle->d * sky_brightness), 0.0); } /* Calculate sky brightness */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */ double CalcSkyBrightness() { return diff_irrad * CalcAirMass() / (DC_SolarConstantE * CalcEccentricity()); } /* Calculate sky clearness */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */ double CalcSkyClearness() { double sz_cubed; /* Sun zenith angle cubed */ /* Calculate sun zenith angle cubed */ sz_cubed = sun_zenith*sun_zenith*sun_zenith; return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 * sz_cubed) / (1.0 + 1.041 * sz_cubed); } /* Calculate diffuse horizontal irradiance from Perez sky brightness */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */ /* (inverse). */ double CalcDiffuseIrradiance() { return sky_brightness * DC_SolarConstantE * CalcEccentricity() / CalcAirMass(); } /* Calculate direct normal irradiance from Perez sky clearness */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */ /* (inverse). */ double CalcDirectIrradiance() { return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041 * sun_zenith*sun_zenith*sun_zenith)); } /* Calculate sky brightness and clearness from illuminance values */ int CalcSkyParamFromIllum() { double test1 = 0.1; double test2 = 0.1; int counter = 0; int index = 0; /* Category index */ /* Convert illuminance to irradiance */ diff_irrad = diff_illum * DC_SolarConstantE / (DC_SolarConstantL * 1000.0); dir_irrad = dir_illum * DC_SolarConstantE / (DC_SolarConstantL * 1000.0); /* Calculate sky brightness and clearness */ sky_brightness = CalcSkyBrightness(); sky_clearness = CalcSkyClearness(); /* Limit sky clearness */ if (sky_clearness > 12.0) sky_clearness = 12.0; /* Limit sky brightness */ if (sky_brightness < 0.01) sky_brightness = 0.01; while (((fabs(diff_irrad - test1) > 10.0) || (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5)) { test1 = diff_irrad; test2 = dir_irrad; counter++; /* Convert illuminance to irradiance */ index = GetCategoryIndex(); diff_irrad = diff_illum / CalcDiffuseIllumRatio(index); dir_irrad = dir_illum / CalcDirectIllumRatio(index); /* Calculate sky brightness and clearness */ sky_brightness = CalcSkyBrightness(); sky_clearness = CalcSkyClearness(); /* Limit sky clearness */ if (sky_clearness > 12.0) sky_clearness = 12.0; /* Limit sky brightness */ if (sky_brightness < 0.01) sky_brightness = 0.01; } return GetCategoryIndex(); } /* Calculate relative luminance */ /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ /* ìAll-Weather Model for Sky Luminance Distribution - */ /* Preliminary Configuration and Validation,î Solar Energy */ /* 50(3):235-245, Eqn. 1. */ double CalcRelLuminance( double gamma, double zeta ) { return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) * (1.0 + perez_param[2] * exp(perez_param[3] * gamma) + perez_param[4] * cos(gamma) * cos(gamma)); } /* Calculate Perez sky model parameters */ /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ /* ìAll-Weather Model for Sky Luminance Distribution - */ /* Preliminary Configuration and Validation,î Solar Energy */ /* 50(3):235-245, Eqns. 6 - 8. */ void CalcPerezParam( double sz, double epsilon, double delta, int index ) { double x[5][4]; /* Coefficents a, b, c, d, e */ int i, j; /* Loop indices */ /* Limit sky brightness */ if (epsilon > 1.065 && epsilon < 2.8) { if (delta < 0.2) delta = 0.2; } /* Get Perez coefficients */ for (i = 0; i < 5; i++) for (j = 0; j < 4; j++) x[i][j] = PerezCoeff[index][4 * i + j]; if (index != 0) { /* Calculate parameter a, b, c, d and e (Eqn. 6) */ for (i = 0; i < 5; i++) perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] + x[i][3] * sz); } else { /* Parameters a, b and e (Eqn. 6) */ perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] + x[0][3] * sz); perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] + x[1][3] * sz); perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] + x[4][3] * sz); /* Parameter c (Eqn. 7) */ perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz), x[2][2])) - x[2][3]; /* Parameter d (Eqn. 8) */ perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) + x[3][2] + delta * x[3][3]; } } /* Calculate relative horizontal illuminance (modified by GW) */ /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ /* ìAll-Weather Model for Sky Luminance Distribution - */ /* Preliminary Configuration and Validation,î Solar Energy */ /* 50(3):235-245, Eqn. 3. */ double CalcRelHorzIllum( float *parr ) { int i; double rh_illum = 0.0; /* Relative horizontal illuminance */ for (i = 1; i < nskypatch; i++) rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i]; return rh_illum; } /* Calculate earth orbit eccentricity correction factor */ /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */ /* Techniques. Springer, p. 72. */ double CalcEccentricity() { double day_angle; /* Day angle (radians) */ double E0; /* Eccentricity */ /* Calculate day angle */ day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0); /* Calculate eccentricity */ E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle) + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 * day_angle); return E0; } /* Calculate atmospheric precipitable water content */ /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ /* Stewart. 1990. ìModeling Daylight Availability and */ /* Irradiance Components from Direct and Global */ /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */ /* Note: The default surface dew point temperature is 11 deg. C */ /* (52 deg. F). Typical values are: */ /* Celsius Fahrenheit Human Perception */ /* > 24 > 75 Extremely uncomfortable */ /* 21 - 24 70 - 74 Very humid */ /* 18 - 21 65 - 69 Somewhat uncomfortable */ /* 16 - 18 60 - 64 OK for most people */ /* 13 - 16 55 - 59 Comfortable */ /* 10 - 12 50 - 54 Very comfortable */ /* < 10 < 49 A bit dry for some */ double CalcPrecipWater( double dpt ) { return exp(0.07 * dpt - 0.075); } /* Calculate relative air mass */ /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */ /* for the Relative Optical Air Mass," Arch. Meteorol. */ /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */ /* Note: More sophisticated relative air mass models are */ /* available, but they differ significantly only for */ /* sun zenith angles greater than 80 degrees. */ double CalcAirMass() { return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 - RadToDeg(sun_zenith), -1.253))); } /* Calculate Perez All-Weather sky patch luminances (modified by GW) */ /* NOTE: The sky patches centers are determined in accordance with the */ /* BRE-IDMP sky luminance measurement procedures. (See for example */ /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */ /* for the Validation of Illuminance Prediction Techniques," */ /* Lighting Research & Technology 33(2):117-136.) */ void CalcSkyPatchLumin( float *parr ) { int i; double aas; /* Sun-sky point azimuthal angle */ double sspa; /* Sun-sky point angle */ double zsa; /* Zenithal sun angle */ for (i = 1; i < nskypatch; i++) { /* Calculate sun-sky point azimuthal angle */ aas = fabs(rh_pazi[i] - azimuth); /* Calculate zenithal sun angle */ zsa = PI * 0.5 - rh_palt[i]; /* Calculate sun-sky point angle (Equation 8-20) */ sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) * sin(zsa) * cos(aas)); /* Calculate patch luminance */ parr[3*i] = CalcRelLuminance(sspa, zsa); if (parr[3*i] < 0) parr[3*i] = 0; parr[3*i+2] = parr[3*i+1] = parr[3*i]; } }