ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.13
Committed: Fri Oct 4 04:31:18 2013 UTC (10 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +7 -1 lines
Log Message:
Fixed problem case when computed sky is everywhere zero

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.12 2013/06/06 20:21:10 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <ctype.h>
88 #include "rtmath.h"
89 #include "color.h"
90
91 char *progname; /* Program name */
92 char errmsg[128]; /* Error message buffer */
93 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
94 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
95
96 double altitude; /* Solar altitude (radians) */
97 double azimuth; /* Solar azimuth (radians) */
98 double apwc; /* Atmospheric precipitable water content */
99 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
100 double diff_illum; /* Diffuse illuminance */
101 double diff_irrad; /* Diffuse irradiance */
102 double dir_illum; /* Direct illuminance */
103 double dir_irrad; /* Direct irradiance */
104 int julian_date; /* Julian date */
105 double perez_param[5]; /* Perez sky model parameters */
106 double sky_brightness; /* Sky brightness */
107 double sky_clearness; /* Sky clearness */
108 double solar_rad; /* Solar radiance */
109 double sun_zenith; /* Sun zenith angle (radians) */
110 int input = 0; /* Input type */
111 int output = 0; /* Output type */
112
113 extern double dmax( double, double );
114 extern double CalcAirMass();
115 extern double CalcDiffuseIllumRatio( int );
116 extern double CalcDiffuseIrradiance();
117 extern double CalcDirectIllumRatio( int );
118 extern double CalcDirectIrradiance();
119 extern double CalcEccentricity();
120 extern double CalcPrecipWater( double );
121 extern double CalcRelHorzIllum( float *parr );
122 extern double CalcRelLuminance( double, double );
123 extern double CalcSkyBrightness();
124 extern double CalcSkyClearness();
125 extern int CalcSkyParamFromIllum();
126 extern int GetCategoryIndex();
127 extern void CalcPerezParam( double, double, double, int );
128 extern void CalcSkyPatchLumin( float *parr );
129 extern void ComputeSky( float *parr );
130
131 /* Degrees into radians */
132 #define DegToRad(deg) ((deg)*(PI/180.))
133
134 /* Radiuans into degrees */
135 #define RadToDeg(rad) ((rad)*(180./PI))
136
137
138 /* Perez sky model coefficients */
139
140 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
141 /* Weather Model for Sky Luminance Distribution - */
142 /* Preliminary Configuration and Validation," Solar */
143 /* Energy 50(3):235-245, Table 1. */
144
145 static const double PerezCoeff[8][20] =
146 {
147 /* Sky clearness (epsilon): 1.000 to 1.065 */
148 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
149 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
150 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
151 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
152 /* Sky clearness (epsilon): 1.065 to 1.230 */
153 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
154 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
155 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
156 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
157 /* Sky clearness (epsilon): 1.230 to 1.500 */
158 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
159 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
160 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
161 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
162 /* Sky clearness (epsilon): 1.500 to 1.950 */
163 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
164 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
165 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
166 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
167 /* Sky clearness (epsilon): 1.950 to 2.800 */
168 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
169 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
170 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
171 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
172 /* Sky clearness (epsilon): 2.800 to 4.500 */
173 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
174 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
175 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
176 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
177 /* Sky clearness (epsilon): 4.500 to 6.200 */
178 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
179 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
180 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
181 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
182 /* Sky clearness (epsilon): 6.200 to ... */
183 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
184 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
185 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
186 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
187 };
188
189 /* Perez irradiance component model coefficients */
190
191 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
192 /* Stewart. 1990. ìModeling Daylight Availability and */
193 /* Irradiance Components from Direct and Global */
194 /* Irradiance,î Solar Energy 44(5):271-289. */
195
196 typedef struct
197 {
198 double lower; /* Lower bound */
199 double upper; /* Upper bound */
200 } CategoryBounds;
201
202 /* Perez sky clearness (epsilon) categories (Table 1) */
203 static const CategoryBounds SkyClearCat[8] =
204 {
205 { 1.000, 1.065 }, /* Overcast */
206 { 1.065, 1.230 },
207 { 1.230, 1.500 },
208 { 1.500, 1.950 },
209 { 1.950, 2.800 },
210 { 2.800, 4.500 },
211 { 4.500, 6.200 },
212 { 6.200, 12.01 } /* Clear */
213 };
214
215 /* Luminous efficacy model coefficients */
216 typedef struct
217 {
218 double a;
219 double b;
220 double c;
221 double d;
222 } ModelCoeff;
223
224 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
225 static const ModelCoeff DiffuseLumEff[8] =
226 {
227 { 97.24, -0.46, 12.00, -8.91 },
228 { 107.22, 1.15, 0.59, -3.95 },
229 { 104.97, 2.96, -5.53, -8.77 },
230 { 102.39, 5.59, -13.95, -13.90 },
231 { 100.71, 5.94, -22.75, -23.74 },
232 { 106.42, 3.83, -36.15, -28.83 },
233 { 141.88, 1.90, -53.24, -14.03 },
234 { 152.23, 0.35, -45.27, -7.98 }
235 };
236
237 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
238 static const ModelCoeff DirectLumEff[8] =
239 {
240 { 57.20, -4.55, -2.98, 117.12 },
241 { 98.99, -3.46, -1.21, 12.38 },
242 { 109.83, -4.90, -1.71, -8.81 },
243 { 110.34, -5.84, -1.99, -4.56 },
244 { 106.36, -3.97, -1.75, -6.16 },
245 { 107.19, -1.25, -1.51, -26.73 },
246 { 105.75, 0.77, -1.26, -34.44 },
247 { 101.18, 1.58, -1.10, -8.29 }
248 };
249
250 #ifndef NSUNPATCH
251 #define NSUNPATCH 4 /* max. # patches to spread sun into */
252 #endif
253
254 extern int jdate(int month, int day);
255 extern double stadj(int jd);
256 extern double sdec(int jd);
257 extern double salt(double sd, double st);
258 extern double sazi(double sd, double st);
259 /* sun calculation constants */
260 extern double s_latitude;
261 extern double s_longitude;
262 extern double s_meridian;
263
264 int nsuns = NSUNPATCH; /* number of sun patches to use */
265 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
266
267 int verbose = 0; /* progress reports to stderr? */
268
269 int outfmt = 'a'; /* output format */
270
271 int rhsubdiv = 1; /* Reinhart sky subdivisions */
272
273 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
274 COLOR suncolor = {1., 1., 1.}; /* sun color */
275 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
276
277 int nskypatch; /* number of Reinhart patches */
278 float *rh_palt; /* sky patch altitudes (radians) */
279 float *rh_pazi; /* sky patch azimuths (radians) */
280 float *rh_dom; /* sky patch solid angle (sr) */
281
282 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
283 (v)[0] = (v)[1]*tsin(azi), \
284 (v)[1] *= tcos(azi), \
285 (v)[2] = tsin(alt) )
286
287 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
288
289 #define rh_cos(i) tsin(rh_palt[i])
290
291 extern int rh_init(void);
292 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
293 extern void AddDirect(float *parr);
294
295 int
296 main(int argc, char *argv[])
297 {
298 char buf[256];
299 double rotation = 0; /* site rotation (degrees) */
300 double elevation; /* site elevation (meters) */
301 int dir_is_horiz; /* direct is meas. on horizontal? */
302 float *mtx_data = NULL; /* our matrix data */
303 int ntsteps = 0; /* number of rows in matrix */
304 int last_monthly = 0; /* month of last report */
305 int mo, da; /* month (1-12) and day (1-31) */
306 double hr; /* hour (local standard time) */
307 double dir, dif; /* direct and diffuse values */
308 int mtx_offset;
309 int i, j;
310
311 progname = argv[0];
312 /* get options */
313 for (i = 1; i < argc && argv[i][0] == '-'; i++)
314 switch (argv[i][1]) {
315 case 'g': /* ground reflectance */
316 grefl[0] = atof(argv[++i]);
317 grefl[1] = atof(argv[++i]);
318 grefl[2] = atof(argv[++i]);
319 break;
320 case 'v': /* verbose progress reports */
321 verbose++;
322 break;
323 case 'o': /* output format */
324 switch (argv[i][2]) {
325 case 'f':
326 case 'd':
327 case 'a':
328 outfmt = argv[i][2];
329 break;
330 default:
331 goto userr;
332 }
333 break;
334 case 'O': /* output type */
335 switch (argv[i][2]) {
336 case '0':
337 output = 0;
338 break;
339 case '1':
340 output = 1;
341 break;
342 default:
343 goto userr;
344 }
345 if (argv[i][3])
346 goto userr;
347 break;
348 case 'm': /* Reinhart subdivisions */
349 rhsubdiv = atoi(argv[++i]);
350 break;
351 case 'c': /* sky color */
352 skycolor[0] = atof(argv[++i]);
353 skycolor[1] = atof(argv[++i]);
354 skycolor[2] = atof(argv[++i]);
355 break;
356 case 'd': /* solar (direct) only */
357 skycolor[0] = skycolor[1] = skycolor[2] = 0;
358 if (suncolor[1] <= 1e-4)
359 suncolor[0] = suncolor[1] = suncolor[2] = 1;
360 break;
361 case 's': /* sky only (no direct) */
362 suncolor[0] = suncolor[1] = suncolor[2] = 0;
363 if (skycolor[1] <= 1e-4)
364 skycolor[0] = skycolor[1] = skycolor[2] = 1;
365 break;
366 case 'r': /* rotate distribution */
367 if (argv[i][2] && argv[i][2] != 'z')
368 goto userr;
369 rotation = atof(argv[++i]);
370 break;
371 case '5': /* 5-phase calculation */
372 nsuns = 1;
373 fixed_sun_sa = 6.797e-05;
374 break;
375 default:
376 goto userr;
377 }
378 if (i < argc-1)
379 goto userr;
380 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
381 fprintf(stderr, "%s: cannot open '%s' for input\n",
382 progname, argv[i]);
383 exit(1);
384 }
385 if (verbose) {
386 if (i == argc-1)
387 fprintf(stderr, "%s: reading weather tape '%s'\n",
388 progname, argv[i]);
389 else
390 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
391 progname);
392 }
393 /* read weather tape header */
394 if (scanf("place %[^\r\n] ", buf) != 1)
395 goto fmterr;
396 if (scanf("latitude %lf\n", &s_latitude) != 1)
397 goto fmterr;
398 if (scanf("longitude %lf\n", &s_longitude) != 1)
399 goto fmterr;
400 if (scanf("time_zone %lf\n", &s_meridian) != 1)
401 goto fmterr;
402 if (scanf("site_elevation %lf\n", &elevation) != 1)
403 goto fmterr;
404 if (scanf("weather_data_file_units %d\n", &input) != 1)
405 goto fmterr;
406 switch (input) { /* translate units */
407 case 1:
408 input = 1; /* radiometric quantities */
409 dir_is_horiz = 0; /* direct is perpendicular meas. */
410 break;
411 case 2:
412 input = 1; /* radiometric quantities */
413 dir_is_horiz = 1; /* solar measured horizontally */
414 break;
415 case 3:
416 input = 2; /* photometric quantities */
417 dir_is_horiz = 0; /* direct is perpendicular meas. */
418 break;
419 default:
420 goto fmterr;
421 }
422 rh_init(); /* initialize sky patches */
423 if (verbose) {
424 fprintf(stderr, "%s: location '%s'\n", progname, buf);
425 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
426 progname, s_latitude, s_longitude);
427 fprintf(stderr, "%s: %d sky patches per time step\n",
428 progname, nskypatch);
429 if (rotation != 0)
430 fprintf(stderr, "%s: rotating output %.0f degrees\n",
431 progname, rotation);
432 }
433 /* convert quantities to radians */
434 s_latitude = DegToRad(s_latitude);
435 s_longitude = DegToRad(s_longitude);
436 s_meridian = DegToRad(s_meridian);
437 /* process each time step in tape */
438 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
439 double sda, sta;
440 /* make space for next time step */
441 mtx_offset = 3*nskypatch*ntsteps++;
442 mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch);
443 if (dif <= 1e-4) {
444 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
445 continue;
446 }
447 if (verbose && mo != last_monthly)
448 fprintf(stderr, "%s: stepping through month %d...\n",
449 progname, last_monthly=mo);
450 /* compute solar position */
451 julian_date = jdate(mo, da);
452 sda = sdec(julian_date);
453 sta = stadj(julian_date);
454 altitude = salt(sda, hr+sta);
455 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
456 /* convert measured values */
457 if (dir_is_horiz && altitude > 0.)
458 dir /= sin(altitude);
459 if (input == 1) {
460 dir_irrad = dir;
461 diff_irrad = dif;
462 } else /* input == 2 */ {
463 dir_illum = dir;
464 diff_illum = dif;
465 }
466 /* compute sky patch values */
467 ComputeSky(mtx_data+mtx_offset);
468 AddDirect(mtx_data+mtx_offset);
469 }
470 /* check for junk at end */
471 while ((i = fgetc(stdin)) != EOF)
472 if (!isspace(i)) {
473 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
474 progname);
475 buf[0] = i; buf[1] = '\0';
476 fgets(buf+1, sizeof(buf)-1, stdin);
477 fputs(buf, stderr); fputc('\n', stderr);
478 break;
479 }
480 /* write out matrix */
481 #ifdef getc_unlocked
482 flockfile(stdout);
483 #endif
484 if (verbose)
485 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
486 progname, outfmt=='a' ? "" : "binary ", ntsteps);
487 /* patches are rows (outer sort) */
488 for (i = 0; i < nskypatch; i++) {
489 mtx_offset = 3*i;
490 switch (outfmt) {
491 case 'a':
492 for (j = 0; j < ntsteps; j++) {
493 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
494 mtx_data[mtx_offset+1],
495 mtx_data[mtx_offset+2]);
496 mtx_offset += 3*nskypatch;
497 }
498 if (ntsteps > 1)
499 fputc('\n', stdout);
500 break;
501 case 'f':
502 for (j = 0; j < ntsteps; j++) {
503 fwrite(mtx_data+mtx_offset, sizeof(float), 3,
504 stdout);
505 mtx_offset += 3*nskypatch;
506 }
507 break;
508 case 'd':
509 for (j = 0; j < ntsteps; j++) {
510 double ment[3];
511 ment[0] = mtx_data[mtx_offset];
512 ment[1] = mtx_data[mtx_offset+1];
513 ment[2] = mtx_data[mtx_offset+2];
514 fwrite(ment, sizeof(double), 3, stdout);
515 mtx_offset += 3*nskypatch;
516 }
517 break;
518 }
519 if (ferror(stdout))
520 goto writerr;
521 }
522 if (fflush(stdout) == EOF)
523 goto writerr;
524 if (verbose)
525 fprintf(stderr, "%s: done.\n", progname);
526 exit(0);
527 userr:
528 fprintf(stderr, "Usage: %s [-v][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
529 progname);
530 exit(1);
531 fmterr:
532 fprintf(stderr, "%s: input weather tape format error\n", progname);
533 exit(1);
534 writerr:
535 fprintf(stderr, "%s: write error on output\n", progname);
536 exit(1);
537 }
538
539 /* Return maximum of two doubles */
540 double dmax( double a, double b )
541 { return (a > b) ? a : b; }
542
543 /* Compute sky patch radiance values (modified by GW) */
544 void
545 ComputeSky(float *parr)
546 {
547 int index; /* Category index */
548 double norm_diff_illum; /* Normalized diffuse illuimnance */
549 int i;
550
551 /* Calculate atmospheric precipitable water content */
552 apwc = CalcPrecipWater(dew_point);
553
554 /* Calculate sun zenith angle (don't let it dip below horizon) */
555 /* Also limit minimum angle to keep circumsolar off zenith */
556 if (altitude <= 0.0)
557 sun_zenith = DegToRad(90.0);
558 else if (altitude >= DegToRad(87.0))
559 sun_zenith = DegToRad(3.0);
560 else
561 sun_zenith = DegToRad(90.0) - altitude;
562
563 /* Compute the inputs for the calculation of the sky distribution */
564
565 if (input == 0) /* XXX never used */
566 {
567 /* Calculate irradiance */
568 diff_irrad = CalcDiffuseIrradiance();
569 dir_irrad = CalcDirectIrradiance();
570
571 /* Calculate illuminance */
572 index = GetCategoryIndex();
573 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
574 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
575 }
576 else if (input == 1)
577 {
578 sky_brightness = CalcSkyBrightness();
579 sky_clearness = CalcSkyClearness();
580
581 /* Limit sky clearness */
582 if (sky_clearness > 11.9)
583 sky_clearness = 11.9;
584
585 /* Limit sky brightness */
586 if (sky_brightness < 0.01)
587 sky_brightness = 0.01;
588
589 /* Calculate illuminance */
590 index = GetCategoryIndex();
591 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
592 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
593 }
594 else if (input == 2)
595 {
596 /* Calculate sky brightness and clearness from illuminance values */
597 index = CalcSkyParamFromIllum();
598 }
599
600 if (output == 1) { /* hack for solar radiance */
601 diff_illum = diff_irrad * WHTEFFICACY;
602 dir_illum = dir_irrad * WHTEFFICACY;
603 }
604
605 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
606 memset(parr, 0, sizeof(float)*3*nskypatch);
607 return;
608 }
609 /* Compute ground radiance (include solar contribution if any) */
610 parr[0] = diff_illum;
611 if (altitude > 0)
612 parr[0] += dir_illum * sin(altitude);
613 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
614 multcolor(parr, grefl);
615
616 /* Calculate Perez sky model parameters */
617 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
618
619 /* Calculate sky patch luminance values */
620 CalcSkyPatchLumin(parr);
621
622 /* Calculate relative horizontal illuminance */
623 norm_diff_illum = CalcRelHorzIllum(parr);
624
625 /* Check for zero sky -- make uniform in that case */
626 if (norm_diff_illum <= FTINY) {
627 for (i = 1; i < nskypatch; i++)
628 setcolor(parr+3*i, 1., 1., 1.);
629 norm_diff_illum = PI;
630 }
631 /* Normalization coefficient */
632 norm_diff_illum = diff_illum / norm_diff_illum;
633
634 /* Apply to sky patches to get absolute radiance values */
635 for (i = 1; i < nskypatch; i++) {
636 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
637 multcolor(parr+3*i, skycolor);
638 }
639 }
640
641 /* Add in solar direct to nearest sky patches (GW) */
642 void
643 AddDirect(float *parr)
644 {
645 FVECT svec;
646 double near_dprod[NSUNPATCH];
647 int near_patch[NSUNPATCH];
648 double wta[NSUNPATCH], wtot;
649 int i, j, p;
650
651 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
652 return;
653 /* identify nsuns closest patches */
654 if (nsuns > NSUNPATCH)
655 nsuns = NSUNPATCH;
656 else if (nsuns <= 0)
657 nsuns = 1;
658 for (i = nsuns; i--; )
659 near_dprod[i] = -1.;
660 vector(svec, altitude, azimuth);
661 for (p = 1; p < nskypatch; p++) {
662 FVECT pvec;
663 double dprod;
664 rh_vector(pvec, p);
665 dprod = DOT(pvec, svec);
666 for (i = 0; i < nsuns; i++)
667 if (dprod > near_dprod[i]) {
668 for (j = nsuns; --j > i; ) {
669 near_dprod[j] = near_dprod[j-1];
670 near_patch[j] = near_patch[j-1];
671 }
672 near_dprod[i] = dprod;
673 near_patch[i] = p;
674 break;
675 }
676 }
677 wtot = 0; /* weight by proximity */
678 for (i = nsuns; i--; )
679 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
680 /* add to nearest patch radiances */
681 for (i = nsuns; i--; ) {
682 float *pdest = parr + 3*near_patch[i];
683 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
684
685 val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
686 : rh_dom[near_patch[i]] ;
687 *pdest++ += val_add*suncolor[0];
688 *pdest++ += val_add*suncolor[1];
689 *pdest++ += val_add*suncolor[2];
690 }
691 }
692
693 /* Initialize Reinhart sky patch positions (GW) */
694 int
695 rh_init(void)
696 {
697 #define NROW 7
698 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
699 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
700 int p, i, j;
701 /* allocate patch angle arrays */
702 nskypatch = 0;
703 for (p = 0; p < NROW; p++)
704 nskypatch += tnaz[p];
705 nskypatch *= rhsubdiv*rhsubdiv;
706 nskypatch += 2;
707 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
708 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
709 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
710 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
711 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
712 exit(1);
713 }
714 rh_palt[0] = -PI/2.; /* ground & zenith patches */
715 rh_pazi[0] = 0.;
716 rh_dom[0] = 2.*PI;
717 rh_palt[nskypatch-1] = PI/2.;
718 rh_pazi[nskypatch-1] = 0.;
719 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
720 p = 1; /* "normal" patches */
721 for (i = 0; i < NROW*rhsubdiv; i++) {
722 const float ralt = alpha*(i + .5);
723 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
724 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
725 (double)ninrow;
726 for (j = 0; j < ninrow; j++) {
727 rh_palt[p] = ralt;
728 rh_pazi[p] = 2.*PI * j / (double)ninrow;
729 rh_dom[p++] = dom;
730 }
731 }
732 return nskypatch;
733 #undef NROW
734 }
735
736 /* Resize daylight matrix (GW) */
737 float *
738 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
739 {
740 if (mtx_data == NULL)
741 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
742 else
743 mtx_data = (float *)realloc(mtx_data,
744 sizeof(float)*3*nsteps*npatch);
745 if (mtx_data == NULL) {
746 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
747 progname, nsteps, npatch);
748 exit(1);
749 }
750 return(mtx_data);
751 }
752
753 /* Determine category index */
754 int GetCategoryIndex()
755 {
756 int index; /* Loop index */
757
758 for (index = 0; index < 8; index++)
759 if ((sky_clearness >= SkyClearCat[index].lower) &&
760 (sky_clearness < SkyClearCat[index].upper))
761 break;
762
763 return index;
764 }
765
766 /* Calculate diffuse illuminance to diffuse irradiance ratio */
767
768 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
769 /* Stewart. 1990. ìModeling Daylight Availability and */
770 /* Irradiance Components from Direct and Global */
771 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
772
773 double CalcDiffuseIllumRatio( int index )
774 {
775 ModelCoeff const *pnle; /* Category coefficient pointer */
776
777 /* Get category coefficient pointer */
778 pnle = &(DiffuseLumEff[index]);
779
780 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
781 pnle->d * log(sky_brightness);
782 }
783
784 /* Calculate direct illuminance to direct irradiance ratio */
785
786 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
787 /* Stewart. 1990. ìModeling Daylight Availability and */
788 /* Irradiance Components from Direct and Global */
789 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
790
791 double CalcDirectIllumRatio( int index )
792 {
793 ModelCoeff const *pnle; /* Category coefficient pointer */
794
795 /* Get category coefficient pointer */
796 pnle = &(DirectLumEff[index]);
797
798 /* Calculate direct illuminance from direct irradiance */
799
800 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
801 sun_zenith - 5.0) + pnle->d * sky_brightness),
802 0.0);
803 }
804
805 /* Calculate sky brightness */
806
807 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
808 /* Stewart. 1990. ìModeling Daylight Availability and */
809 /* Irradiance Components from Direct and Global */
810 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
811
812 double CalcSkyBrightness()
813 {
814 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
815 CalcEccentricity());
816 }
817
818 /* Calculate sky clearness */
819
820 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
821 /* Stewart. 1990. ìModeling Daylight Availability and */
822 /* Irradiance Components from Direct and Global */
823 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
824
825 double CalcSkyClearness()
826 {
827 double sz_cubed; /* Sun zenith angle cubed */
828
829 /* Calculate sun zenith angle cubed */
830 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
831
832 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
833 sz_cubed) / (1.0 + 1.041 * sz_cubed);
834 }
835
836 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
837
838 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
839 /* Stewart. 1990. ìModeling Daylight Availability and */
840 /* Irradiance Components from Direct and Global */
841 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
842 /* (inverse). */
843
844 double CalcDiffuseIrradiance()
845 {
846 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
847 CalcAirMass();
848 }
849
850 /* Calculate direct normal irradiance from Perez sky clearness */
851
852 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
853 /* Stewart. 1990. ìModeling Daylight Availability and */
854 /* Irradiance Components from Direct and Global */
855 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
856 /* (inverse). */
857
858 double CalcDirectIrradiance()
859 {
860 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
861 * sun_zenith*sun_zenith*sun_zenith));
862 }
863
864 /* Calculate sky brightness and clearness from illuminance values */
865 int CalcSkyParamFromIllum()
866 {
867 double test1 = 0.1;
868 double test2 = 0.1;
869 int counter = 0;
870 int index = 0; /* Category index */
871
872 /* Convert illuminance to irradiance */
873 diff_irrad = diff_illum * DC_SolarConstantE /
874 (DC_SolarConstantL * 1000.0);
875 dir_irrad = dir_illum * DC_SolarConstantE /
876 (DC_SolarConstantL * 1000.0);
877
878 /* Calculate sky brightness and clearness */
879 sky_brightness = CalcSkyBrightness();
880 sky_clearness = CalcSkyClearness();
881
882 /* Limit sky clearness */
883 if (sky_clearness > 12.0)
884 sky_clearness = 12.0;
885
886 /* Limit sky brightness */
887 if (sky_brightness < 0.01)
888 sky_brightness = 0.01;
889
890 while (((fabs(diff_irrad - test1) > 10.0) ||
891 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
892 {
893 test1 = diff_irrad;
894 test2 = dir_irrad;
895 counter++;
896
897 /* Convert illuminance to irradiance */
898 index = GetCategoryIndex();
899 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
900 dir_irrad = dir_illum / CalcDirectIllumRatio(index);
901
902 /* Calculate sky brightness and clearness */
903 sky_brightness = CalcSkyBrightness();
904 sky_clearness = CalcSkyClearness();
905
906 /* Limit sky clearness */
907 if (sky_clearness > 12.0)
908 sky_clearness = 12.0;
909
910 /* Limit sky brightness */
911 if (sky_brightness < 0.01)
912 sky_brightness = 0.01;
913 }
914
915 return GetCategoryIndex();
916 }
917
918 /* Calculate relative luminance */
919
920 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
921 /* ìAll-Weather Model for Sky Luminance Distribution - */
922 /* Preliminary Configuration and Validation,î Solar Energy */
923 /* 50(3):235-245, Eqn. 1. */
924
925 double CalcRelLuminance( double gamma, double zeta )
926 {
927 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
928 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
929 perez_param[4] * cos(gamma) * cos(gamma));
930 }
931
932 /* Calculate Perez sky model parameters */
933
934 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
935 /* ìAll-Weather Model for Sky Luminance Distribution - */
936 /* Preliminary Configuration and Validation,î Solar Energy */
937 /* 50(3):235-245, Eqns. 6 - 8. */
938
939 void CalcPerezParam( double sz, double epsilon, double delta,
940 int index )
941 {
942 double x[5][4]; /* Coefficents a, b, c, d, e */
943 int i, j; /* Loop indices */
944
945 /* Limit sky brightness */
946 if (epsilon > 1.065 && epsilon < 2.8)
947 {
948 if (delta < 0.2)
949 delta = 0.2;
950 }
951
952 /* Get Perez coefficients */
953 for (i = 0; i < 5; i++)
954 for (j = 0; j < 4; j++)
955 x[i][j] = PerezCoeff[index][4 * i + j];
956
957 if (index != 0)
958 {
959 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
960 for (i = 0; i < 5; i++)
961 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
962 x[i][3] * sz);
963 }
964 else
965 {
966 /* Parameters a, b and e (Eqn. 6) */
967 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
968 x[0][3] * sz);
969 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
970 x[1][3] * sz);
971 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
972 x[4][3] * sz);
973
974 /* Parameter c (Eqn. 7) */
975 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
976 x[2][2])) - x[2][3];
977
978 /* Parameter d (Eqn. 8) */
979 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
980 x[3][2] + delta * x[3][3];
981 }
982 }
983
984 /* Calculate relative horizontal illuminance (modified by GW) */
985
986 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
987 /* ìAll-Weather Model for Sky Luminance Distribution - */
988 /* Preliminary Configuration and Validation,î Solar Energy */
989 /* 50(3):235-245, Eqn. 3. */
990
991 double CalcRelHorzIllum( float *parr )
992 {
993 int i;
994 double rh_illum = 0.0; /* Relative horizontal illuminance */
995
996 for (i = 1; i < nskypatch; i++)
997 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
998
999 return rh_illum;
1000 }
1001
1002 /* Calculate earth orbit eccentricity correction factor */
1003
1004 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1005 /* Techniques. Springer, p. 72. */
1006
1007 double CalcEccentricity()
1008 {
1009 double day_angle; /* Day angle (radians) */
1010 double E0; /* Eccentricity */
1011
1012 /* Calculate day angle */
1013 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1014
1015 /* Calculate eccentricity */
1016 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1017 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1018 day_angle);
1019
1020 return E0;
1021 }
1022
1023 /* Calculate atmospheric precipitable water content */
1024
1025 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1026 /* Stewart. 1990. ìModeling Daylight Availability and */
1027 /* Irradiance Components from Direct and Global */
1028 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1029
1030 /* Note: The default surface dew point temperature is 11 deg. C */
1031 /* (52 deg. F). Typical values are: */
1032
1033 /* Celsius Fahrenheit Human Perception */
1034 /* > 24 > 75 Extremely uncomfortable */
1035 /* 21 - 24 70 - 74 Very humid */
1036 /* 18 - 21 65 - 69 Somewhat uncomfortable */
1037 /* 16 - 18 60 - 64 OK for most people */
1038 /* 13 - 16 55 - 59 Comfortable */
1039 /* 10 - 12 50 - 54 Very comfortable */
1040 /* < 10 < 49 A bit dry for some */
1041
1042 double CalcPrecipWater( double dpt )
1043 { return exp(0.07 * dpt - 0.075); }
1044
1045 /* Calculate relative air mass */
1046
1047 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1048 /* for the Relative Optical Air Mass," Arch. Meteorol. */
1049 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1050
1051 /* Note: More sophisticated relative air mass models are */
1052 /* available, but they differ significantly only for */
1053 /* sun zenith angles greater than 80 degrees. */
1054
1055 double CalcAirMass()
1056 {
1057 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1058 RadToDeg(sun_zenith), -1.253)));
1059 }
1060
1061 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1062
1063 /* NOTE: The sky patches centers are determined in accordance with the */
1064 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1065 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1066 /* for the Validation of Illuminance Prediction Techniques," */
1067 /* Lighting Research & Technology 33(2):117-136.) */
1068
1069 void CalcSkyPatchLumin( float *parr )
1070 {
1071 int i;
1072 double aas; /* Sun-sky point azimuthal angle */
1073 double sspa; /* Sun-sky point angle */
1074 double zsa; /* Zenithal sun angle */
1075
1076 for (i = 1; i < nskypatch; i++)
1077 {
1078 /* Calculate sun-sky point azimuthal angle */
1079 aas = fabs(rh_pazi[i] - azimuth);
1080
1081 /* Calculate zenithal sun angle */
1082 zsa = PI * 0.5 - rh_palt[i];
1083
1084 /* Calculate sun-sky point angle (Equation 8-20) */
1085 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1086 sin(zsa) * cos(aas));
1087
1088 /* Calculate patch luminance */
1089 parr[3*i] = CalcRelLuminance(sspa, zsa);
1090 if (parr[3*i] < 0) parr[3*i] = 0;
1091 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1092 }
1093 }