ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.10
Committed: Sat Apr 6 00:44:59 2013 UTC (11 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +23 -10 lines
Log Message:
Added -5 option for 5-phase calculation (1 sun with fixed 0.533-deg dia.)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaymtx.c,v 2.9 2013/02/09 00:20:24 greg Exp $";
3 #endif
4 /*
5 * gendaymtx.c
6 *
7 * Generate a daylight matrix based on Perez Sky Model.
8 *
9 * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10 * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11 *
12 * Created by Greg Ward on 1/16/13.
13 */
14
15 /*********************************************************************
16 *
17 * H32_gendaylit.CPP - Perez Sky Model Calculation
18 *
19 * Version: 1.00A
20 *
21 * History: 09/10/01 - Created.
22 * 11/10/08 - Modified for Unix compilation.
23 * 11/10/12 - Fixed conditional __max directive.
24 * 1/11/13 - Tweaks and optimizations (G.Ward)
25 *
26 * Compilers: Microsoft Visual C/C++ Professional V10.0
27 *
28 * Author: Ian Ashdown, P.Eng.
29 * byHeart Consultants Limited
30 * 620 Ballantree Road
31 * West Vancouver, B.C.
32 * Canada V7S 1W3
33 * e-mail: [email protected]
34 *
35 * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36 * Stewart. 1990. ìModeling Daylight Availability and
37 * Irradiance Components from Direct and Global
38 * Irradiance,î Solar Energy 44(5):271-289.
39 *
40 * Perez, R., R. Seals, and J. Michalsky. 1993.
41 * ìAll-Weather Model for Sky Luminance Distribution -
42 * Preliminary Configuration and Validation,î Solar Energy
43 * 50(3):235-245.
44 *
45 * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46 * All-Weather Model for Sky Luminance Distribution -
47 * Preliminary Configuration and Validation,î Solar Energy
48 * 51(5):423.
49 *
50 * NOTE: This program is a completely rewritten version of
51 * gendaylit.c written by Jean-Jacques Delaunay (1994).
52 *
53 * Copyright 2009-2012 byHeart Consultants Limited. All rights
54 * reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted for personal and commercial purposes
58 * provided that redistribution of source code must retain the above
59 * copyright notice, this list of conditions and the following
60 * disclaimer:
61 *
62 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65 * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66 * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 *
75 *********************************************************************/
76
77 /* Zenith is along the Z-axis */
78 /* X-axis points east */
79 /* Y-axis points north */
80 /* azimuth is measured as degrees or radians east of North */
81
82 /* Include files */
83 #define _USE_MATH_DEFINES
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <ctype.h>
88 #include "rtmath.h"
89 #include "color.h"
90
91 char *progname; /* Program name */
92 char errmsg[128]; /* Error message buffer */
93 const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
94 const double DC_SolarConstantL = 127.5; /* Solar constant klux */
95
96 double altitude; /* Solar altitude (radians) */
97 double azimuth; /* Solar azimuth (radians) */
98 double apwc; /* Atmospheric precipitable water content */
99 double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
100 double diff_illum; /* Diffuse illuminance */
101 double diff_irrad; /* Diffuse irradiance */
102 double dir_illum; /* Direct illuminance */
103 double dir_irrad; /* Direct irradiance */
104 int julian_date; /* Julian date */
105 double perez_param[5]; /* Perez sky model parameters */
106 double sky_brightness; /* Sky brightness */
107 double sky_clearness; /* Sky clearness */
108 double solar_rad; /* Solar radiance */
109 double sun_zenith; /* Sun zenith angle (radians) */
110 int input = 0; /* Input type */
111
112 extern double dmax( double, double );
113 extern double CalcAirMass();
114 extern double CalcDiffuseIllumRatio( int );
115 extern double CalcDiffuseIrradiance();
116 extern double CalcDirectIllumRatio( int );
117 extern double CalcDirectIrradiance();
118 extern double CalcEccentricity();
119 extern double CalcPrecipWater( double );
120 extern double CalcRelHorzIllum( float *parr );
121 extern double CalcRelLuminance( double, double );
122 extern double CalcSkyBrightness();
123 extern double CalcSkyClearness();
124 extern int CalcSkyParamFromIllum();
125 extern int GetCategoryIndex();
126 extern void CalcPerezParam( double, double, double, int );
127 extern void CalcSkyPatchLumin( float *parr );
128 extern void ComputeSky( float *parr );
129
130 /* Degrees into radians */
131 #define DegToRad(deg) ((deg)*(PI/180.))
132
133 /* Radiuans into degrees */
134 #define RadToDeg(rad) ((rad)*(180./PI))
135
136
137 /* Perez sky model coefficients */
138
139 /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
140 /* Weather Model for Sky Luminance Distribution - */
141 /* Preliminary Configuration and Validation," Solar */
142 /* Energy 50(3):235-245, Table 1. */
143
144 static const double PerezCoeff[8][20] =
145 {
146 /* Sky clearness (epsilon): 1.000 to 1.065 */
147 { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
148 0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
149 1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
150 0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
151 /* Sky clearness (epsilon): 1.065 to 1.230 */
152 { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
153 0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
154 6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
155 0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
156 /* Sky clearness (epsilon): 1.230 to 1.500 */
157 { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
158 -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
159 -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
160 -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
161 /* Sky clearness (epsilon): 1.500 to 1.950 */
162 { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
163 -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
164 -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
165 0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
166 /* Sky clearness (epsilon): 1.950 to 2.800 */
167 { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
168 0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
169 -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
170 0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
171 /* Sky clearness (epsilon): 2.800 to 4.500 */
172 { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
173 -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
174 -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
175 1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
176 /* Sky clearness (epsilon): 4.500 to 6.200 */
177 { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
178 0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
179 1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
180 0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
181 /* Sky clearness (epsilon): 6.200 to ... */
182 { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
183 0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
184 -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
185 0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
186 };
187
188 /* Perez irradiance component model coefficients */
189
190 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
191 /* Stewart. 1990. ìModeling Daylight Availability and */
192 /* Irradiance Components from Direct and Global */
193 /* Irradiance,î Solar Energy 44(5):271-289. */
194
195 typedef struct
196 {
197 double lower; /* Lower bound */
198 double upper; /* Upper bound */
199 } CategoryBounds;
200
201 /* Perez sky clearness (epsilon) categories (Table 1) */
202 static const CategoryBounds SkyClearCat[8] =
203 {
204 { 1.000, 1.065 }, /* Overcast */
205 { 1.065, 1.230 },
206 { 1.230, 1.500 },
207 { 1.500, 1.950 },
208 { 1.950, 2.800 },
209 { 2.800, 4.500 },
210 { 4.500, 6.200 },
211 { 6.200, 12.00 } /* Clear */
212 };
213
214 /* Luminous efficacy model coefficients */
215 typedef struct
216 {
217 double a;
218 double b;
219 double c;
220 double d;
221 } ModelCoeff;
222
223 /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
224 static const ModelCoeff DiffuseLumEff[8] =
225 {
226 { 97.24, -0.46, 12.00, -8.91 },
227 { 107.22, 1.15, 0.59, -3.95 },
228 { 104.97, 2.96, -5.53, -8.77 },
229 { 102.39, 5.59, -13.95, -13.90 },
230 { 100.71, 5.94, -22.75, -23.74 },
231 { 106.42, 3.83, -36.15, -28.83 },
232 { 141.88, 1.90, -53.24, -14.03 },
233 { 152.23, 0.35, -45.27, -7.98 }
234 };
235
236 /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
237 static const ModelCoeff DirectLumEff[8] =
238 {
239 { 57.20, -4.55, -2.98, 117.12 },
240 { 98.99, -3.46, -1.21, 12.38 },
241 { 109.83, -4.90, -1.71, -8.81 },
242 { 110.34, -5.84, -1.99, -4.56 },
243 { 106.36, -3.97, -1.75, -6.16 },
244 { 107.19, -1.25, -1.51, -26.73 },
245 { 105.75, 0.77, -1.26, -34.44 },
246 { 101.18, 1.58, -1.10, -8.29 }
247 };
248
249 #ifndef NSUNPATCH
250 #define NSUNPATCH 4 /* max. # patches to spread sun into */
251 #endif
252
253 extern int jdate(int month, int day);
254 extern double stadj(int jd);
255 extern double sdec(int jd);
256 extern double salt(double sd, double st);
257 extern double sazi(double sd, double st);
258 /* sun calculation constants */
259 extern double s_latitude;
260 extern double s_longitude;
261 extern double s_meridian;
262
263 int nsuns = NSUNPATCH; /* number of sun patches to use */
264 double fixed_sun_sa = -1; /* fixed solid angle per sun? */
265
266 int verbose = 0; /* progress reports to stderr? */
267
268 int outfmt = 'a'; /* output format */
269
270 int rhsubdiv = 1; /* Reinhart sky subdivisions */
271
272 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
273 COLOR suncolor = {1., 1., 1.}; /* sun color */
274 COLOR grefl = {.2, .2, .2}; /* ground reflectance */
275
276 int nskypatch; /* number of Reinhart patches */
277 float *rh_palt; /* sky patch altitudes (radians) */
278 float *rh_pazi; /* sky patch azimuths (radians) */
279 float *rh_dom; /* sky patch solid angle (sr) */
280
281 #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
282 (v)[0] = (v)[1]*tsin(azi), \
283 (v)[1] *= tcos(azi), \
284 (v)[2] = tsin(alt) )
285
286 #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
287
288 #define rh_cos(i) tsin(rh_palt[i])
289
290 extern int rh_init(void);
291 extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
292 extern void AddDirect(float *parr);
293
294 int
295 main(int argc, char *argv[])
296 {
297 char buf[256];
298 double rotation = 0; /* site rotation (degrees) */
299 double elevation; /* site elevation (meters) */
300 int dir_is_horiz; /* direct is meas. on horizontal? */
301 float *mtx_data = NULL; /* our matrix data */
302 int ntsteps = 0; /* number of rows in matrix */
303 int last_monthly = 0; /* month of last report */
304 int mo, da; /* month (1-12) and day (1-31) */
305 double hr; /* hour (local standard time) */
306 double dir, dif; /* direct and diffuse values */
307 int mtx_offset;
308 int i, j;
309
310 progname = argv[0];
311 /* get options */
312 for (i = 1; i < argc && argv[i][0] == '-'; i++)
313 switch (argv[i][1]) {
314 case 'g': /* ground reflectance */
315 grefl[0] = atof(argv[++i]);
316 grefl[1] = atof(argv[++i]);
317 grefl[2] = atof(argv[++i]);
318 break;
319 case 'v': /* verbose progress reports */
320 verbose++;
321 break;
322 case 'o': /* output format */
323 switch (argv[i][2]) {
324 case 'f':
325 case 'd':
326 case 'a':
327 outfmt = argv[i][2];
328 break;
329 default:
330 goto userr;
331 }
332 break;
333 case 'm': /* Reinhart subdivisions */
334 rhsubdiv = atoi(argv[++i]);
335 break;
336 case 'c': /* sky color */
337 skycolor[0] = atof(argv[++i]);
338 skycolor[1] = atof(argv[++i]);
339 skycolor[2] = atof(argv[++i]);
340 break;
341 case 'd': /* solar (direct) only */
342 skycolor[0] = skycolor[1] = skycolor[2] = 0;
343 if (suncolor[1] <= 1e-4)
344 suncolor[0] = suncolor[1] = suncolor[2] = 1;
345 break;
346 case 's': /* sky only (no direct) */
347 suncolor[0] = suncolor[1] = suncolor[2] = 0;
348 if (skycolor[1] <= 1e-4)
349 skycolor[0] = skycolor[1] = skycolor[2] = 1;
350 break;
351 case 'r': /* rotate distribution */
352 if (argv[i][2] && argv[i][2] != 'z')
353 goto userr;
354 rotation = atof(argv[++i]);
355 break;
356 case '5': /* 5-phase calculation */
357 nsuns = 1;
358 fixed_sun_sa = 6.797e-05;
359 break;
360 default:
361 goto userr;
362 }
363 if (i < argc-1)
364 goto userr;
365 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
366 fprintf(stderr, "%s: cannot open '%s' for input\n",
367 progname, argv[i]);
368 exit(1);
369 }
370 if (verbose) {
371 if (i == argc-1)
372 fprintf(stderr, "%s: reading weather tape '%s'\n",
373 progname, argv[i]);
374 else
375 fprintf(stderr, "%s: reading weather tape from <stdin>\n",
376 progname);
377 }
378 /* read weather tape header */
379 if (scanf("place %[^\r\n] ", buf) != 1)
380 goto fmterr;
381 if (scanf("latitude %lf\n", &s_latitude) != 1)
382 goto fmterr;
383 if (scanf("longitude %lf\n", &s_longitude) != 1)
384 goto fmterr;
385 if (scanf("time_zone %lf\n", &s_meridian) != 1)
386 goto fmterr;
387 if (scanf("site_elevation %lf\n", &elevation) != 1)
388 goto fmterr;
389 if (scanf("weather_data_file_units %d\n", &input) != 1)
390 goto fmterr;
391 switch (input) { /* translate units */
392 case 1:
393 input = 1; /* radiometric quantities */
394 dir_is_horiz = 0; /* direct is perpendicular meas. */
395 break;
396 case 2:
397 input = 1; /* radiometric quantities */
398 dir_is_horiz = 1; /* solar measured horizontally */
399 break;
400 case 3:
401 input = 2; /* photometric quantities */
402 dir_is_horiz = 0; /* direct is perpendicular meas. */
403 break;
404 default:
405 goto fmterr;
406 }
407 rh_init(); /* initialize sky patches */
408 if (verbose) {
409 fprintf(stderr, "%s: location '%s'\n", progname, buf);
410 fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
411 progname, s_latitude, s_longitude);
412 fprintf(stderr, "%s: %d sky patches per time step\n",
413 progname, nskypatch);
414 if (rotation != 0)
415 fprintf(stderr, "%s: rotating output %.0f degrees\n",
416 progname, rotation);
417 }
418 /* convert quantities to radians */
419 s_latitude = DegToRad(s_latitude);
420 s_longitude = DegToRad(s_longitude);
421 s_meridian = DegToRad(s_meridian);
422 /* process each time step in tape */
423 while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
424 double sda, sta;
425 /* make space for next time step */
426 mtx_offset = 3*nskypatch*ntsteps++;
427 mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch);
428 if (dif <= 1e-4) {
429 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
430 continue;
431 }
432 if (verbose && mo != last_monthly)
433 fprintf(stderr, "%s: stepping through month %d...\n",
434 progname, last_monthly=mo);
435 /* compute solar position */
436 julian_date = jdate(mo, da);
437 sda = sdec(julian_date);
438 sta = stadj(julian_date);
439 altitude = salt(sda, hr+sta);
440 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
441 /* convert measured values */
442 if (dir_is_horiz && altitude > 0.)
443 dir /= sin(altitude);
444 if (input == 1) {
445 dir_irrad = dir;
446 diff_irrad = dif;
447 } else /* input == 2 */ {
448 dir_illum = dir;
449 diff_illum = dif;
450 }
451 /* compute sky patch values */
452 ComputeSky(mtx_data+mtx_offset);
453 AddDirect(mtx_data+mtx_offset);
454 }
455 /* check for junk at end */
456 while ((i = fgetc(stdin)) != EOF)
457 if (!isspace(i)) {
458 fprintf(stderr, "%s: warning - unexpected data past EOT: ",
459 progname);
460 buf[0] = i; buf[1] = '\0';
461 fgets(buf+1, sizeof(buf)-1, stdin);
462 fputs(buf, stderr); fputc('\n', stderr);
463 break;
464 }
465 /* write out matrix */
466 #ifdef getc_unlocked
467 flockfile(stdout);
468 #endif
469 if (verbose)
470 fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
471 progname, outfmt=='a' ? "" : "binary ", ntsteps);
472 /* patches are rows (outer sort) */
473 for (i = 0; i < nskypatch; i++) {
474 mtx_offset = 3*i;
475 switch (outfmt) {
476 case 'a':
477 for (j = 0; j < ntsteps; j++) {
478 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
479 mtx_data[mtx_offset+1],
480 mtx_data[mtx_offset+2]);
481 mtx_offset += 3*nskypatch;
482 }
483 if (ntsteps > 1)
484 fputc('\n', stdout);
485 break;
486 case 'f':
487 for (j = 0; j < ntsteps; j++) {
488 fwrite(mtx_data+mtx_offset, sizeof(float), 3,
489 stdout);
490 mtx_offset += 3*nskypatch;
491 }
492 break;
493 case 'd':
494 for (j = 0; j < ntsteps; j++) {
495 double ment[3];
496 ment[0] = mtx_data[mtx_offset];
497 ment[1] = mtx_data[mtx_offset+1];
498 ment[2] = mtx_data[mtx_offset+2];
499 fwrite(ment, sizeof(double), 3, stdout);
500 mtx_offset += 3*nskypatch;
501 }
502 break;
503 }
504 if (ferror(stdout))
505 goto writerr;
506 }
507 if (fflush(stdout) == EOF)
508 goto writerr;
509 if (verbose)
510 fprintf(stderr, "%s: done.\n", progname);
511 exit(0);
512 userr:
513 fprintf(stderr, "Usage: %s [-v][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}] [tape.wea]\n",
514 progname);
515 exit(1);
516 fmterr:
517 fprintf(stderr, "%s: input weather tape format error\n", progname);
518 exit(1);
519 writerr:
520 fprintf(stderr, "%s: write error on output\n", progname);
521 exit(1);
522 }
523
524 /* Return maximum of two doubles */
525 double dmax( double a, double b )
526 { return (a > b) ? a : b; }
527
528 /* Compute sky patch radiance values (modified by GW) */
529 void
530 ComputeSky(float *parr)
531 {
532 int index; /* Category index */
533 double norm_diff_illum; /* Normalized diffuse illuimnance */
534 int i;
535
536 /* Calculate atmospheric precipitable water content */
537 apwc = CalcPrecipWater(dew_point);
538
539 /* Calculate sun zenith angle (don't let it dip below horizon) */
540 /* Also limit minimum angle to keep circumsolar off zenith */
541 if (altitude <= 0.0)
542 sun_zenith = DegToRad(90.0);
543 else if (altitude >= DegToRad(87.0))
544 sun_zenith = DegToRad(3.0);
545 else
546 sun_zenith = DegToRad(90.0) - altitude;
547
548 /* Compute the inputs for the calculation of the sky distribution */
549
550 if (input == 0) /* XXX never used */
551 {
552 /* Calculate irradiance */
553 diff_irrad = CalcDiffuseIrradiance();
554 dir_irrad = CalcDirectIrradiance();
555
556 /* Calculate illuminance */
557 index = GetCategoryIndex();
558 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
559 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
560 }
561 else if (input == 1)
562 {
563 sky_brightness = CalcSkyBrightness();
564 sky_clearness = CalcSkyClearness();
565
566 /* Limit sky clearness */
567 if (sky_clearness > 11.9)
568 sky_clearness = 11.9;
569
570 /* Limit sky brightness */
571 if (sky_brightness < 0.01)
572 sky_brightness = 0.01;
573
574 /* Calculate illuminance */
575 index = GetCategoryIndex();
576 diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
577 dir_illum = dir_irrad * CalcDirectIllumRatio(index);
578 }
579 else if (input == 2)
580 {
581 /* Calculate sky brightness and clearness from illuminance values */
582 index = CalcSkyParamFromIllum();
583 }
584
585 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
586 memset(parr, 0, sizeof(float)*3*nskypatch);
587 return;
588 }
589 /* Compute ground radiance (include solar contribution if any) */
590 parr[0] = diff_illum;
591 if (altitude > 0)
592 parr[0] += dir_illum * sin(altitude);
593 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
594 multcolor(parr, grefl);
595
596 /* Calculate Perez sky model parameters */
597 CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
598
599 /* Calculate sky patch luminance values */
600 CalcSkyPatchLumin(parr);
601
602 /* Calculate relative horizontal illuminance */
603 norm_diff_illum = CalcRelHorzIllum(parr);
604
605 /* Normalization coefficient */
606 norm_diff_illum = diff_illum / norm_diff_illum;
607
608 /* Apply to sky patches to get absolute radiance values */
609 for (i = 1; i < nskypatch; i++) {
610 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
611 multcolor(parr+3*i, skycolor);
612 }
613 }
614
615 /* Add in solar direct to nearest sky patches (GW) */
616 void
617 AddDirect(float *parr)
618 {
619 FVECT svec;
620 double near_dprod[NSUNPATCH];
621 int near_patch[NSUNPATCH];
622 double wta[NSUNPATCH], wtot;
623 int i, j, p;
624
625 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
626 return;
627 /* identify nsuns closest patches */
628 if (nsuns > NSUNPATCH)
629 nsuns = NSUNPATCH;
630 else if (nsuns <= 0)
631 nsuns = 1;
632 for (i = nsuns; i--; )
633 near_dprod[i] = -1.;
634 vector(svec, altitude, azimuth);
635 for (p = 1; p < nskypatch; p++) {
636 FVECT pvec;
637 double dprod;
638 rh_vector(pvec, p);
639 dprod = DOT(pvec, svec);
640 for (i = 0; i < nsuns; i++)
641 if (dprod > near_dprod[i]) {
642 for (j = nsuns; --j > i; ) {
643 near_dprod[j] = near_dprod[j-1];
644 near_patch[j] = near_patch[j-1];
645 }
646 near_dprod[i] = dprod;
647 near_patch[i] = p;
648 break;
649 }
650 }
651 wtot = 0; /* weight by proximity */
652 for (i = nsuns; i--; )
653 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
654 /* add to nearest patch radiances */
655 for (i = nsuns; i--; ) {
656 float *pdest = parr + 3*near_patch[i];
657 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
658
659 val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
660 : rh_dom[near_patch[i]] ;
661 *pdest++ += val_add*suncolor[0];
662 *pdest++ += val_add*suncolor[1];
663 *pdest++ += val_add*suncolor[2];
664 }
665 }
666
667 /* Initialize Reinhart sky patch positions (GW) */
668 int
669 rh_init(void)
670 {
671 #define NROW 7
672 static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
673 const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
674 int p, i, j;
675 /* allocate patch angle arrays */
676 nskypatch = 0;
677 for (p = 0; p < NROW; p++)
678 nskypatch += tnaz[p];
679 nskypatch *= rhsubdiv*rhsubdiv;
680 nskypatch += 2;
681 rh_palt = (float *)malloc(sizeof(float)*nskypatch);
682 rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
683 rh_dom = (float *)malloc(sizeof(float)*nskypatch);
684 if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
685 fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
686 exit(1);
687 }
688 rh_palt[0] = -PI/2.; /* ground & zenith patches */
689 rh_pazi[0] = 0.;
690 rh_dom[0] = 2.*PI;
691 rh_palt[nskypatch-1] = PI/2.;
692 rh_pazi[nskypatch-1] = 0.;
693 rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
694 p = 1; /* "normal" patches */
695 for (i = 0; i < NROW*rhsubdiv; i++) {
696 const float ralt = alpha*(i + .5);
697 const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
698 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
699 (double)ninrow;
700 for (j = 0; j < ninrow; j++) {
701 rh_palt[p] = ralt;
702 rh_pazi[p] = 2.*PI * j / (double)ninrow;
703 rh_dom[p++] = dom;
704 }
705 }
706 return nskypatch;
707 #undef NROW
708 }
709
710 /* Resize daylight matrix (GW) */
711 float *
712 resize_dmatrix(float *mtx_data, int nsteps, int npatch)
713 {
714 if (mtx_data == NULL)
715 mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
716 else
717 mtx_data = (float *)realloc(mtx_data,
718 sizeof(float)*3*nsteps*npatch);
719 if (mtx_data == NULL) {
720 fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
721 progname, nsteps, npatch);
722 exit(1);
723 }
724 return(mtx_data);
725 }
726
727 /* Determine category index */
728 int GetCategoryIndex()
729 {
730 int index; /* Loop index */
731
732 for (index = 0; index < 8; index++)
733 if ((sky_clearness >= SkyClearCat[index].lower) &&
734 (sky_clearness < SkyClearCat[index].upper))
735 break;
736
737 return index;
738 }
739
740 /* Calculate diffuse illuminance to diffuse irradiance ratio */
741
742 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
743 /* Stewart. 1990. ìModeling Daylight Availability and */
744 /* Irradiance Components from Direct and Global */
745 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
746
747 double CalcDiffuseIllumRatio( int index )
748 {
749 ModelCoeff const *pnle; /* Category coefficient pointer */
750
751 /* Get category coefficient pointer */
752 pnle = &(DiffuseLumEff[index]);
753
754 return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
755 pnle->d * log(sky_brightness);
756 }
757
758 /* Calculate direct illuminance to direct irradiance ratio */
759
760 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
761 /* Stewart. 1990. ìModeling Daylight Availability and */
762 /* Irradiance Components from Direct and Global */
763 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
764
765 double CalcDirectIllumRatio( int index )
766 {
767 ModelCoeff const *pnle; /* Category coefficient pointer */
768
769 /* Get category coefficient pointer */
770 pnle = &(DirectLumEff[index]);
771
772 /* Calculate direct illuminance from direct irradiance */
773
774 return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
775 sun_zenith - 5.0) + pnle->d * sky_brightness),
776 0.0);
777 }
778
779 /* Calculate sky brightness */
780
781 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
782 /* Stewart. 1990. ìModeling Daylight Availability and */
783 /* Irradiance Components from Direct and Global */
784 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
785
786 double CalcSkyBrightness()
787 {
788 return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
789 CalcEccentricity());
790 }
791
792 /* Calculate sky clearness */
793
794 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
795 /* Stewart. 1990. ìModeling Daylight Availability and */
796 /* Irradiance Components from Direct and Global */
797 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
798
799 double CalcSkyClearness()
800 {
801 double sz_cubed; /* Sun zenith angle cubed */
802
803 /* Calculate sun zenith angle cubed */
804 sz_cubed = pow(sun_zenith, 3.0);
805
806 return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
807 sz_cubed) / (1.0 + 1.041 * sz_cubed);
808 }
809
810 /* Calculate diffuse horizontal irradiance from Perez sky brightness */
811
812 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
813 /* Stewart. 1990. ìModeling Daylight Availability and */
814 /* Irradiance Components from Direct and Global */
815 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
816 /* (inverse). */
817
818 double CalcDiffuseIrradiance()
819 {
820 return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
821 CalcAirMass();
822 }
823
824 /* Calculate direct normal irradiance from Perez sky clearness */
825
826 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
827 /* Stewart. 1990. ìModeling Daylight Availability and */
828 /* Irradiance Components from Direct and Global */
829 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
830 /* (inverse). */
831
832 double CalcDirectIrradiance()
833 {
834 return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
835 * pow(sun_zenith, 3.0)));
836 }
837
838 /* Calculate sky brightness and clearness from illuminance values */
839 int CalcSkyParamFromIllum()
840 {
841 double test1 = 0.1;
842 double test2 = 0.1;
843 int counter = 0;
844 int index = 0; /* Category index */
845
846 /* Convert illuminance to irradiance */
847 diff_irrad = diff_illum * DC_SolarConstantE /
848 (DC_SolarConstantL * 1000.0);
849 dir_irrad = dir_illum * DC_SolarConstantE /
850 (DC_SolarConstantL * 1000.0);
851
852 /* Calculate sky brightness and clearness */
853 sky_brightness = CalcSkyBrightness();
854 sky_clearness = CalcSkyClearness();
855
856 /* Limit sky clearness */
857 if (sky_clearness > 12.0)
858 sky_clearness = 12.0;
859
860 /* Limit sky brightness */
861 if (sky_brightness < 0.01)
862 sky_brightness = 0.01;
863
864 while (((fabs(diff_irrad - test1) > 10.0) ||
865 (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
866 {
867 test1 = diff_irrad;
868 test2 = dir_irrad;
869 counter++;
870
871 /* Convert illuminance to irradiance */
872 index = GetCategoryIndex();
873 diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
874 dir_irrad = dir_illum / CalcDirectIllumRatio(index);
875
876 /* Calculate sky brightness and clearness */
877 sky_brightness = CalcSkyBrightness();
878 sky_clearness = CalcSkyClearness();
879
880 /* Limit sky clearness */
881 if (sky_clearness > 12.0)
882 sky_clearness = 12.0;
883
884 /* Limit sky brightness */
885 if (sky_brightness < 0.01)
886 sky_brightness = 0.01;
887 }
888
889 return GetCategoryIndex();
890 }
891
892 /* Calculate relative luminance */
893
894 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
895 /* ìAll-Weather Model for Sky Luminance Distribution - */
896 /* Preliminary Configuration and Validation,î Solar Energy */
897 /* 50(3):235-245, Eqn. 1. */
898
899 double CalcRelLuminance( double gamma, double zeta )
900 {
901 return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
902 (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
903 perez_param[4] * cos(gamma) * cos(gamma));
904 }
905
906 /* Calculate Perez sky model parameters */
907
908 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
909 /* ìAll-Weather Model for Sky Luminance Distribution - */
910 /* Preliminary Configuration and Validation,î Solar Energy */
911 /* 50(3):235-245, Eqns. 6 - 8. */
912
913 void CalcPerezParam( double sz, double epsilon, double delta,
914 int index )
915 {
916 double x[5][4]; /* Coefficents a, b, c, d, e */
917 int i, j; /* Loop indices */
918
919 /* Limit sky brightness */
920 if (epsilon > 1.065 && epsilon < 2.8)
921 {
922 if (delta < 0.2)
923 delta = 0.2;
924 }
925
926 /* Get Perez coefficients */
927 for (i = 0; i < 5; i++)
928 for (j = 0; j < 4; j++)
929 x[i][j] = PerezCoeff[index][4 * i + j];
930
931 if (index != 0)
932 {
933 /* Calculate parameter a, b, c, d and e (Eqn. 6) */
934 for (i = 0; i < 5; i++)
935 perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
936 x[i][3] * sz);
937 }
938 else
939 {
940 /* Parameters a, b and e (Eqn. 6) */
941 perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
942 x[0][3] * sz);
943 perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
944 x[1][3] * sz);
945 perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
946 x[4][3] * sz);
947
948 /* Parameter c (Eqn. 7) */
949 perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
950 x[2][2])) - x[2][3];
951
952 /* Parameter d (Eqn. 8) */
953 perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
954 x[3][2] + delta * x[3][3];
955 }
956 }
957
958 /* Calculate relative horizontal illuminance (modified by GW) */
959
960 /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
961 /* ìAll-Weather Model for Sky Luminance Distribution - */
962 /* Preliminary Configuration and Validation,î Solar Energy */
963 /* 50(3):235-245, Eqn. 3. */
964
965 double CalcRelHorzIllum( float *parr )
966 {
967 int i;
968 double rh_illum = 0.0; /* Relative horizontal illuminance */
969
970 for (i = 1; i < nskypatch; i++)
971 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
972
973 return rh_illum;
974 }
975
976 /* Calculate earth orbit eccentricity correction factor */
977
978 /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
979 /* Techniques. Springer, p. 72. */
980
981 double CalcEccentricity()
982 {
983 double day_angle; /* Day angle (radians) */
984 double E0; /* Eccentricity */
985
986 /* Calculate day angle */
987 day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
988
989 /* Calculate eccentricity */
990 E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
991 + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
992 day_angle);
993
994 return E0;
995 }
996
997 /* Calculate atmospheric precipitable water content */
998
999 /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1000 /* Stewart. 1990. ìModeling Daylight Availability and */
1001 /* Irradiance Components from Direct and Global */
1002 /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1003
1004 /* Note: The default surface dew point temperature is 11 deg. C */
1005 /* (52 deg. F). Typical values are: */
1006
1007 /* Celsius Fahrenheit Human Perception */
1008 /* > 24 > 75 Extremely uncomfortable */
1009 /* 21 - 24 70 - 74 Very humid */
1010 /* 18 - 21 65 - 69 Somewhat uncomfortable */
1011 /* 16 - 18 60 - 64 OK for most people */
1012 /* 13 - 16 55 - 59 Comfortable */
1013 /* 10 - 12 50 - 54 Very comfortable */
1014 /* < 10 < 49 A bit dry for some */
1015
1016 double CalcPrecipWater( double dpt )
1017 { return exp(0.07 * dpt - 0.075); }
1018
1019 /* Calculate relative air mass */
1020
1021 /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1022 /* for the Relative Optical Air Mass," Arch. Meteorol. */
1023 /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1024
1025 /* Note: More sophisticated relative air mass models are */
1026 /* available, but they differ significantly only for */
1027 /* sun zenith angles greater than 80 degrees. */
1028
1029 double CalcAirMass()
1030 {
1031 return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1032 RadToDeg(sun_zenith), -1.253)));
1033 }
1034
1035 /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1036
1037 /* NOTE: The sky patches centers are determined in accordance with the */
1038 /* BRE-IDMP sky luminance measurement procedures. (See for example */
1039 /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1040 /* for the Validation of Illuminance Prediction Techniques," */
1041 /* Lighting Research & Technology 33(2):117-136.) */
1042
1043 void CalcSkyPatchLumin( float *parr )
1044 {
1045 int i;
1046 double aas; /* Sun-sky point azimuthal angle */
1047 double sspa; /* Sun-sky point angle */
1048 double zsa; /* Zenithal sun angle */
1049
1050 for (i = 1; i < nskypatch; i++)
1051 {
1052 /* Calculate sun-sky point azimuthal angle */
1053 aas = fabs(rh_pazi[i] - azimuth);
1054
1055 /* Calculate zenithal sun angle */
1056 zsa = PI * 0.5 - rh_palt[i];
1057
1058 /* Calculate sun-sky point angle (Equation 8-20) */
1059 sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1060 sin(zsa) * cos(aas));
1061
1062 /* Calculate patch luminance */
1063 parr[3*i] = CalcRelLuminance(sspa, zsa);
1064 if (parr[3*i] < 0) parr[3*i] = 0;
1065 parr[3*i+2] = parr[3*i+1] = parr[3*i];
1066 }
1067 }