81 |
|
|
82 |
|
/* Include files */ |
83 |
|
#define _USE_MATH_DEFINES |
84 |
– |
#include <stdio.h> |
84 |
|
#include <stdlib.h> |
86 |
– |
#include <string.h> |
85 |
|
#include <ctype.h> |
86 |
+ |
#include "platform.h" |
87 |
|
#include "rtmath.h" |
88 |
+ |
#include "rtio.h" |
89 |
|
#include "color.h" |
90 |
+ |
#include "sun.h" |
91 |
+ |
#include "loadEPW.h" |
92 |
|
|
93 |
< |
char *progname; /* Program name */ |
92 |
< |
char errmsg[128]; /* Error message buffer */ |
93 |
> |
char *progname; /* Program name */ |
94 |
|
const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */ |
95 |
|
const double DC_SolarConstantL = 127.5; /* Solar constant klux */ |
96 |
|
|
109 |
|
double solar_rad; /* Solar radiance */ |
110 |
|
double sun_zenith; /* Sun zenith angle (radians) */ |
111 |
|
int input = 0; /* Input type */ |
112 |
+ |
int output = 0; /* Output type */ |
113 |
|
|
114 |
|
extern double dmax( double, double ); |
115 |
|
extern double CalcAirMass(); |
129 |
|
extern void CalcSkyPatchLumin( float *parr ); |
130 |
|
extern void ComputeSky( float *parr ); |
131 |
|
|
132 |
+ |
|
133 |
+ |
extern double solar_sunset(int month, int day); |
134 |
+ |
extern double solar_sunrise(int month, int day); |
135 |
+ |
|
136 |
|
/* Degrees into radians */ |
137 |
|
#define DegToRad(deg) ((deg)*(PI/180.)) |
138 |
|
|
139 |
|
/* Radiuans into degrees */ |
140 |
|
#define RadToDeg(rad) ((rad)*(180./PI)) |
141 |
|
|
136 |
– |
|
142 |
|
/* Perez sky model coefficients */ |
143 |
|
|
144 |
|
/* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */ |
213 |
|
{ 1.950, 2.800 }, |
214 |
|
{ 2.800, 4.500 }, |
215 |
|
{ 4.500, 6.200 }, |
216 |
< |
{ 6.200, 12.00 } /* Clear */ |
216 |
> |
{ 6.200, 12.01 } /* Clear */ |
217 |
|
}; |
218 |
|
|
219 |
|
/* Luminous efficacy model coefficients */ |
252 |
|
}; |
253 |
|
|
254 |
|
#ifndef NSUNPATCH |
255 |
< |
#define NSUNPATCH 4 /* # patches to spread sun into */ |
255 |
> |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
256 |
|
#endif |
257 |
|
|
258 |
< |
extern int jdate(int month, int day); |
254 |
< |
extern double stadj(int jd); |
255 |
< |
extern double sdec(int jd); |
256 |
< |
extern double salt(double sd, double st); |
257 |
< |
extern double sazi(double sd, double st); |
258 |
< |
/* sun calculation constants */ |
259 |
< |
extern double s_latitude; |
260 |
< |
extern double s_longitude; |
261 |
< |
extern double s_meridian; |
258 |
> |
#define SUN_ANG_DEG 0.533 /* sun full-angle in degrees */ |
259 |
|
|
260 |
< |
double grefl = 0.2; /* diffuse ground reflectance */ |
260 |
> |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
261 |
> |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
262 |
|
|
263 |
|
int verbose = 0; /* progress reports to stderr? */ |
264 |
|
|
266 |
|
|
267 |
|
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
268 |
|
|
269 |
< |
float skycolor[3] = {.96, 1.004, 1.118}; /* sky coloration */ |
269 |
> |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
270 |
> |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
271 |
> |
COLOR grefl = {.2, .2, .2}; /* ground reflectance */ |
272 |
|
|
273 |
– |
int do_sun = 1; /* output direct solar contribution? */ |
274 |
– |
|
273 |
|
int nskypatch; /* number of Reinhart patches */ |
274 |
|
float *rh_palt; /* sky patch altitudes (radians) */ |
275 |
|
float *rh_pazi; /* sky patch azimuths (radians) */ |
276 |
|
float *rh_dom; /* sky patch solid angle (sr) */ |
277 |
|
|
278 |
< |
#define vector(v,alt,azi) ( (v)[1] = tcos(alt), \ |
279 |
< |
(v)[0] = (v)[1]*tsin(azi), \ |
280 |
< |
(v)[1] *= tcos(azi), \ |
281 |
< |
(v)[2] = tsin(alt) ) |
278 |
> |
#define vector(v,alt,azi) ( (v)[1] = cos(alt), \ |
279 |
> |
(v)[0] = (v)[1]*sin(azi), \ |
280 |
> |
(v)[1] *= cos(azi), \ |
281 |
> |
(v)[2] = sin(alt) ) |
282 |
|
|
283 |
|
#define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i]) |
284 |
|
|
285 |
|
#define rh_cos(i) tsin(rh_palt[i]) |
286 |
|
|
287 |
+ |
#define solar_minute(jd,hr) ((24*60)*((jd)-1)+(int)((hr)*60.+.5)) |
288 |
+ |
|
289 |
|
extern int rh_init(void); |
290 |
|
extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch); |
291 |
+ |
extern void OutputSun(int id, int goodsun, FILE *fp, FILE *mfp); |
292 |
|
extern void AddDirect(float *parr); |
293 |
|
|
294 |
+ |
|
295 |
+ |
static const char * |
296 |
+ |
getfmtname(int fmt) |
297 |
+ |
{ |
298 |
+ |
switch (fmt) { |
299 |
+ |
case 'a': |
300 |
+ |
return("ascii"); |
301 |
+ |
case 'f': |
302 |
+ |
return("float"); |
303 |
+ |
case 'd': |
304 |
+ |
return("double"); |
305 |
+ |
} |
306 |
+ |
return("unknown"); |
307 |
+ |
} |
308 |
+ |
|
309 |
+ |
|
310 |
|
int |
311 |
|
main(int argc, char *argv[]) |
312 |
|
{ |
313 |
< |
char buf[256]; |
313 |
> |
EPWheader *epw = NULL; /* EPW/WEA input file */ |
314 |
> |
EPWrecord erec; /* current EPW/WEA input record */ |
315 |
> |
float dpthist[2]; /* previous dew point temps */ |
316 |
> |
double dir, dif; |
317 |
> |
int doheader = 1; /* output header? */ |
318 |
> |
double rotation = 0; /* site rotation (degrees) */ |
319 |
|
double elevation; /* site elevation (meters) */ |
320 |
+ |
int leap_day = 0; /* add leap day? */ |
321 |
+ |
int sun_hours_only = 0; /* only output sun hours? */ |
322 |
|
int dir_is_horiz; /* direct is meas. on horizontal? */ |
323 |
+ |
FILE *sunsfp = NULL; /* output file for individual suns */ |
324 |
+ |
FILE *modsfp = NULL; /* modifier output file */ |
325 |
|
float *mtx_data = NULL; /* our matrix data */ |
326 |
< |
int ntsteps = 0; /* number of rows in matrix */ |
326 |
> |
int avgSky = 0; /* compute average sky r.t. matrix? */ |
327 |
> |
int ntsteps = 0; /* number of time steps */ |
328 |
> |
int tstorage = 0; /* number of allocated time steps */ |
329 |
> |
int nstored = 0; /* number of time steps in matrix */ |
330 |
|
int last_monthly = 0; /* month of last report */ |
302 |
– |
int mo, da; /* month (1-12) and day (1-31) */ |
303 |
– |
double hr; /* hour (local standard time) */ |
304 |
– |
double dir, dif; /* direct and diffuse values */ |
331 |
|
int mtx_offset; |
332 |
|
int i, j; |
333 |
+ |
double timeinterval = 0; |
334 |
|
|
335 |
|
progname = argv[0]; |
336 |
|
/* get options */ |
337 |
|
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
338 |
|
switch (argv[i][1]) { |
339 |
< |
case 'g': |
340 |
< |
grefl = atof(argv[++i]); |
339 |
> |
case 'g': /* ground reflectance */ |
340 |
> |
grefl[0] = atof(argv[++i]); |
341 |
> |
grefl[1] = atof(argv[++i]); |
342 |
> |
grefl[2] = atof(argv[++i]); |
343 |
|
break; |
344 |
< |
case 'v': |
344 |
> |
case 'v': /* verbose progress reports */ |
345 |
|
verbose++; |
346 |
|
break; |
347 |
< |
case 'o': |
347 |
> |
case 'h': /* turn off header */ |
348 |
> |
doheader = 0; |
349 |
> |
break; |
350 |
> |
case 'o': /* output format */ |
351 |
|
switch (argv[i][2]) { |
352 |
|
case 'f': |
353 |
|
case 'd': |
358 |
|
goto userr; |
359 |
|
} |
360 |
|
break; |
361 |
< |
case 'm': |
361 |
> |
case 'O': /* output type */ |
362 |
> |
switch (argv[i][2]) { |
363 |
> |
case '0': |
364 |
> |
output = 0; |
365 |
> |
break; |
366 |
> |
case '1': |
367 |
> |
output = 1; |
368 |
> |
break; |
369 |
> |
default: |
370 |
> |
goto userr; |
371 |
> |
} |
372 |
> |
if (argv[i][3]) |
373 |
> |
goto userr; |
374 |
> |
break; |
375 |
> |
case 'm': /* Reinhart subdivisions */ |
376 |
|
rhsubdiv = atoi(argv[++i]); |
377 |
|
break; |
378 |
< |
case 'c': |
378 |
> |
case 'c': /* sky color */ |
379 |
|
skycolor[0] = atof(argv[++i]); |
380 |
|
skycolor[1] = atof(argv[++i]); |
381 |
|
skycolor[2] = atof(argv[++i]); |
382 |
|
break; |
383 |
< |
case 'd': |
384 |
< |
do_sun = 1; |
383 |
> |
case 'D': /* output suns to file */ |
384 |
> |
if (strcmp(argv[++i], "-")) { |
385 |
> |
sunsfp = fopen(argv[i], "w"); |
386 |
> |
if (sunsfp == NULL) { |
387 |
> |
fprintf(stderr, |
388 |
> |
"%s: cannot open '%s' for output\n", |
389 |
> |
progname, argv[i]); |
390 |
> |
exit(1); |
391 |
> |
} |
392 |
> |
break; /* still may output matrix */ |
393 |
> |
} |
394 |
> |
sunsfp = stdout; /* sending to stdout, so... */ |
395 |
> |
/* fall through */ |
396 |
> |
case 'n': /* no matrix output */ |
397 |
> |
avgSky = -1; |
398 |
> |
rhsubdiv = 1; |
399 |
> |
/* fall through */ |
400 |
> |
case 'd': /* solar (direct) only */ |
401 |
|
skycolor[0] = skycolor[1] = skycolor[2] = 0; |
402 |
+ |
grefl[0] = grefl[1] = grefl[2] = 0; |
403 |
|
break; |
404 |
< |
case 's': |
405 |
< |
do_sun = 0; |
406 |
< |
if (skycolor[1] <= 1e-4) |
407 |
< |
skycolor[0] = skycolor[1] = skycolor[2] = 1; |
404 |
> |
case 'M': /* send sun modifiers to file */ |
405 |
> |
if ((modsfp = fopen(argv[++i], "w")) == NULL) { |
406 |
> |
fprintf(stderr, "%s: cannot open '%s' for output\n", |
407 |
> |
progname, argv[i]); |
408 |
> |
exit(1); |
409 |
> |
} |
410 |
|
break; |
411 |
+ |
case 's': /* sky only (no direct) */ |
412 |
+ |
suncolor[0] = suncolor[1] = suncolor[2] = 0; |
413 |
+ |
break; |
414 |
+ |
case 'u': /* solar hours only */ |
415 |
+ |
sun_hours_only = 1; |
416 |
+ |
break; |
417 |
+ |
case 'r': /* rotate distribution */ |
418 |
+ |
if (argv[i][2] && argv[i][2] != 'z') |
419 |
+ |
goto userr; |
420 |
+ |
rotation = atof(argv[++i]); |
421 |
+ |
break; |
422 |
+ |
case '5': /* 5-phase calculation */ |
423 |
+ |
nsuns = 1; |
424 |
+ |
fixed_sun_sa = PI/360.*atof(argv[++i]); |
425 |
+ |
if (fixed_sun_sa <= 0) { |
426 |
+ |
fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n", |
427 |
+ |
progname); |
428 |
+ |
exit(1); |
429 |
+ |
} |
430 |
+ |
fixed_sun_sa *= fixed_sun_sa*PI; |
431 |
+ |
break; |
432 |
+ |
case 'A': /* compute average sky */ |
433 |
+ |
avgSky = 1; |
434 |
+ |
break; |
435 |
+ |
case 'i': |
436 |
+ |
timeinterval = atof(argv[++i]); |
437 |
+ |
break; |
438 |
|
default: |
439 |
|
goto userr; |
440 |
|
} |
441 |
< |
if (i < argc-1) |
441 |
> |
if ((i < argc-1) | (i > argc)) |
442 |
|
goto userr; |
443 |
< |
if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) { |
444 |
< |
fprintf(stderr, "%s: cannot open '%s' for input\n", |
353 |
< |
progname, argv[i]); |
443 |
> |
epw = EPWopen(argv[i]); |
444 |
> |
if (epw == NULL) |
445 |
|
exit(1); |
446 |
< |
} |
446 |
> |
if ((modsfp != NULL) & (sunsfp == NULL)) |
447 |
> |
fprintf(stderr, "%s: warning -M output will be empty without -D\n", |
448 |
> |
progname); |
449 |
|
if (verbose) { |
450 |
|
if (i == argc-1) |
451 |
|
fprintf(stderr, "%s: reading weather tape '%s'\n", |
455 |
|
progname); |
456 |
|
} |
457 |
|
/* read weather tape header */ |
458 |
< |
if (scanf("place %[^\r\n] ", buf) != 1) |
459 |
< |
goto fmterr; |
460 |
< |
if (scanf("latitude %lf\n", &s_latitude) != 1) |
461 |
< |
goto fmterr; |
462 |
< |
if (scanf("longitude %lf\n", &s_longitude) != 1) |
463 |
< |
goto fmterr; |
464 |
< |
if (scanf("time_zone %lf\n", &s_meridian) != 1) |
372 |
< |
goto fmterr; |
373 |
< |
if (scanf("site_elevation %lf\n", &elevation) != 1) |
374 |
< |
goto fmterr; |
375 |
< |
if (scanf("weather_data_file_units %d\n", &input) != 1) |
376 |
< |
goto fmterr; |
377 |
< |
switch (input) { /* translate units */ |
378 |
< |
case 1: |
458 |
> |
s_latitude = epw->loc.latitude; |
459 |
> |
s_longitude = -epw->loc.longitude; |
460 |
> |
s_meridian = -15.*epw->loc.timezone; |
461 |
> |
elevation = epw->loc.elevation; |
462 |
> |
switch (epw->isWEA) { /* translate units */ |
463 |
> |
case WEAnot: |
464 |
> |
case WEAradnorm: |
465 |
|
input = 1; /* radiometric quantities */ |
466 |
|
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
467 |
|
break; |
468 |
< |
case 2: |
468 |
> |
case WEAradhoriz: |
469 |
|
input = 1; /* radiometric quantities */ |
470 |
|
dir_is_horiz = 1; /* solar measured horizontally */ |
471 |
|
break; |
472 |
< |
case 3: |
472 |
> |
case WEAphotnorm: |
473 |
|
input = 2; /* photometric quantities */ |
474 |
|
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
475 |
|
break; |
478 |
|
} |
479 |
|
rh_init(); /* initialize sky patches */ |
480 |
|
if (verbose) { |
481 |
< |
fprintf(stderr, "%s: location '%s'\n", progname, buf); |
481 |
> |
fprintf(stderr, "%s: location '%s, %s'\n", progname, |
482 |
> |
epw->loc.city, epw->loc.country); |
483 |
|
fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
484 |
|
progname, s_latitude, s_longitude); |
485 |
< |
fprintf(stderr, "%s: %d sky patches per time step\n", |
486 |
< |
progname, nskypatch); |
485 |
> |
if (avgSky >= 0) |
486 |
> |
fprintf(stderr, "%s: %d sky patches\n", |
487 |
> |
progname, nskypatch); |
488 |
> |
if (sunsfp) |
489 |
> |
fprintf(stderr, "%s: outputting suns to %s\n", |
490 |
> |
progname, sunsfp==stdout ? "stdout" : "file"); |
491 |
> |
if (rotation != 0) |
492 |
> |
fprintf(stderr, "%s: rotating output %.0f degrees\n", |
493 |
> |
progname, rotation); |
494 |
|
} |
495 |
|
/* convert quantities to radians */ |
496 |
|
s_latitude = DegToRad(s_latitude); |
497 |
|
s_longitude = DegToRad(s_longitude); |
498 |
|
s_meridian = DegToRad(s_meridian); |
499 |
+ |
/* initial allocation */ |
500 |
+ |
mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch); |
501 |
+ |
dpthist[0] = -100; |
502 |
|
/* process each time step in tape */ |
503 |
< |
while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) { |
504 |
< |
double sda, sta; |
505 |
< |
/* make space for next time step */ |
506 |
< |
mtx_offset = 3*nskypatch*ntsteps++; |
507 |
< |
mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch); |
508 |
< |
if (dif <= 1e-4) { |
412 |
< |
memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); |
413 |
< |
continue; |
414 |
< |
} |
415 |
< |
if (verbose && mo != last_monthly) |
416 |
< |
fprintf(stderr, "%s: stepping through month %d...\n", |
417 |
< |
progname, last_monthly=mo); |
503 |
> |
while ((j = EPWread(epw, &erec)) > 0) { |
504 |
> |
int mo = erec.date.month+1; |
505 |
> |
int da = erec.date.day; |
506 |
> |
double hr = erec.date.hour; |
507 |
> |
double sda, sta, st; |
508 |
> |
int sun_in_sky; |
509 |
|
/* compute solar position */ |
510 |
< |
julian_date = jdate(mo, da); |
510 |
> |
if ((mo == 2) & (da == 29)) { |
511 |
> |
julian_date = 60; |
512 |
> |
leap_day = 1; |
513 |
> |
} else |
514 |
> |
julian_date = jdate(mo, da) + leap_day; |
515 |
|
sda = sdec(julian_date); |
516 |
|
sta = stadj(julian_date); |
517 |
< |
altitude = salt(sda, hr+sta); |
518 |
< |
azimuth = sazi(sda, hr+sta) + PI; |
517 |
> |
st = hr + sta; |
518 |
> |
|
519 |
> |
if (timeinterval > 0) { |
520 |
> |
if (fabs(solar_sunrise(mo, da) - st) <= timeinterval/120) |
521 |
> |
st = (st + timeinterval/120 + solar_sunrise(mo, da))/2; |
522 |
> |
else if (fabs(solar_sunset(mo, da) - st) < timeinterval/120) |
523 |
> |
st = (st - timeinterval/120 + solar_sunset(mo, da))/2; |
524 |
> |
} |
525 |
> |
altitude = salt(sda, st); |
526 |
> |
sun_in_sky = (altitude > -DegToRad(SUN_ANG_DEG/2.)); |
527 |
> |
if (sun_hours_only && !sun_in_sky) |
528 |
> |
continue; /* skipping nighttime points */ |
529 |
> |
azimuth = sazi(sda, st) + PI - DegToRad(rotation); |
530 |
> |
|
531 |
> |
switch (epw->isWEA) { /* translate units */ |
532 |
> |
case WEAnot: |
533 |
> |
case WEAradnorm: |
534 |
> |
if (!EPWisset(&erec,dirirrad) | |
535 |
> |
!EPWisset(&erec,horizdiffirrad)) { |
536 |
> |
fprintf(stderr, "%s: missing required irradiances at line %d\n", |
537 |
> |
progname, epw->lino); |
538 |
> |
exit(1); |
539 |
> |
} |
540 |
> |
dir = erec.dirirrad; |
541 |
> |
dif = erec.horizdiffirrad; |
542 |
> |
break; |
543 |
> |
case WEAradhoriz: |
544 |
> |
dir = erec.globhorizirrad - erec.horizdiffirrad; |
545 |
> |
dif = erec.horizdiffirrad; |
546 |
> |
break; |
547 |
> |
case WEAphotnorm: |
548 |
> |
dir = erec.dirillum; |
549 |
> |
dif = erec.diffillum; |
550 |
> |
break; |
551 |
> |
} |
552 |
> |
if (EPWisset(&erec,dptemp)) { /* 3-hour dew point temp */ |
553 |
> |
if (dpthist[0] < -99) |
554 |
> |
dpthist[0] = dpthist[1] = erec.dptemp; |
555 |
> |
dew_point = (1./3.)*(dpthist[0] + dpthist[1] + erec.dptemp); |
556 |
> |
dpthist[0] = dpthist[1]; dpthist[1] = erec.dptemp; |
557 |
> |
} |
558 |
> |
mtx_offset = 3*nskypatch*nstored; |
559 |
> |
nstored += !avgSky | !nstored; |
560 |
> |
/* make space for next row */ |
561 |
> |
if (nstored > tstorage) { |
562 |
> |
tstorage += (tstorage>>1) + nstored + 7; |
563 |
> |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
564 |
> |
} |
565 |
> |
ntsteps++; /* keep count of time steps */ |
566 |
> |
|
567 |
> |
if (dir+dif <= 1e-4) { /* effectively nighttime? */ |
568 |
> |
if (!avgSky | !mtx_offset) |
569 |
> |
memset(mtx_data+mtx_offset, 0, |
570 |
> |
sizeof(float)*3*nskypatch); |
571 |
> |
/* output black sun? */ |
572 |
> |
if (sunsfp && sun_in_sky) |
573 |
> |
OutputSun(solar_minute(julian_date,hr), 0, |
574 |
> |
sunsfp, modsfp); |
575 |
> |
continue; |
576 |
> |
} |
577 |
> |
if (!sun_in_sky && dir > (input==1 ? 20. : 20.*WHTEFFICACY)) |
578 |
> |
fprintf(stderr, |
579 |
> |
"%s: warning - unusually bright at %.1f on %d-%d\n", |
580 |
> |
progname, hr, mo, da); |
581 |
|
/* convert measured values */ |
582 |
< |
if (dir_is_horiz && altitude > 0.) |
582 |
> |
if (dir_is_horiz && altitude > FTINY) |
583 |
|
dir /= sin(altitude); |
584 |
|
if (input == 1) { |
585 |
|
dir_irrad = dir; |
590 |
|
} |
591 |
|
/* compute sky patch values */ |
592 |
|
ComputeSky(mtx_data+mtx_offset); |
593 |
< |
if (do_sun) |
594 |
< |
AddDirect(mtx_data+mtx_offset); |
593 |
> |
/* output sun if requested */ |
594 |
> |
if (sunsfp && sun_in_sky) |
595 |
> |
OutputSun(solar_minute(julian_date,hr), 1, |
596 |
> |
sunsfp, modsfp); |
597 |
> |
|
598 |
> |
if (avgSky < 0) /* no matrix? */ |
599 |
> |
continue; |
600 |
> |
|
601 |
> |
AddDirect(mtx_data+mtx_offset); |
602 |
> |
/* update cumulative sky? */ |
603 |
> |
for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; ) |
604 |
> |
mtx_data[i] += mtx_data[mtx_offset+i]; |
605 |
> |
/* monthly reporting */ |
606 |
> |
if (verbose && mo != last_monthly) |
607 |
> |
fprintf(stderr, "%s: stepping through month %d...\n", |
608 |
> |
progname, last_monthly=mo); |
609 |
> |
/* note whether leap-day was given */ |
610 |
|
} |
611 |
< |
/* check for junk at end */ |
612 |
< |
while ((i = fgetc(stdin)) != EOF) |
613 |
< |
if (!isspace(i)) { |
614 |
< |
fprintf(stderr, "%s: warning - unexpected data past EOT: ", |
615 |
< |
progname); |
616 |
< |
buf[0] = i; buf[1] = '\0'; |
617 |
< |
fgets(buf+1, sizeof(buf)-1, stdin); |
618 |
< |
fputs(buf, stderr); fputc('\n', stderr); |
619 |
< |
break; |
620 |
< |
} |
611 |
> |
if (j != EOF) { |
612 |
> |
fprintf(stderr, "%s: error on input\n", progname); |
613 |
> |
exit(1); |
614 |
> |
} |
615 |
> |
EPWclose(epw); epw = NULL; |
616 |
> |
if (!ntsteps) { |
617 |
> |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
618 |
> |
exit(1); |
619 |
> |
} |
620 |
> |
if (avgSky < 0) /* no matrix output? */ |
621 |
> |
goto alldone; |
622 |
> |
|
623 |
> |
dif = 1./(double)ntsteps; /* average sky? */ |
624 |
> |
for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; ) |
625 |
> |
mtx_data[i] *= dif; |
626 |
|
/* write out matrix */ |
627 |
+ |
if (outfmt != 'a') |
628 |
+ |
SET_FILE_BINARY(stdout); |
629 |
|
#ifdef getc_unlocked |
630 |
|
flockfile(stdout); |
631 |
|
#endif |
632 |
|
if (verbose) |
633 |
|
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", |
634 |
< |
progname, outfmt=='a' ? "" : "binary ", ntsteps); |
634 |
> |
progname, outfmt=='a' ? "" : "binary ", nstored); |
635 |
> |
if (doheader) { |
636 |
> |
newheader("RADIANCE", stdout); |
637 |
> |
printargs(argc, argv, stdout); |
638 |
> |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
639 |
> |
-RadToDeg(s_longitude)); |
640 |
> |
printf("NROWS=%d\n", nskypatch); |
641 |
> |
printf("NCOLS=%d\n", nstored); |
642 |
> |
printf("NCOMP=3\n"); |
643 |
> |
if ((outfmt == 'f') | (outfmt == 'd')) |
644 |
> |
fputendian(stdout); |
645 |
> |
fputformat((char *)getfmtname(outfmt), stdout); |
646 |
> |
putchar('\n'); |
647 |
> |
} |
648 |
|
/* patches are rows (outer sort) */ |
649 |
|
for (i = 0; i < nskypatch; i++) { |
650 |
|
mtx_offset = 3*i; |
651 |
|
switch (outfmt) { |
652 |
|
case 'a': |
653 |
< |
for (j = 0; j < ntsteps; j++) { |
653 |
> |
for (j = 0; j < nstored; j++) { |
654 |
|
printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset], |
655 |
|
mtx_data[mtx_offset+1], |
656 |
|
mtx_data[mtx_offset+2]); |
657 |
|
mtx_offset += 3*nskypatch; |
658 |
|
} |
659 |
< |
if (ntsteps > 1) |
659 |
> |
if (nstored > 1) |
660 |
|
fputc('\n', stdout); |
661 |
|
break; |
662 |
|
case 'f': |
663 |
< |
for (j = 0; j < ntsteps; j++) { |
664 |
< |
fwrite(mtx_data+mtx_offset, sizeof(float), 3, |
663 |
> |
for (j = 0; j < nstored; j++) { |
664 |
> |
putbinary(mtx_data+mtx_offset, sizeof(float), 3, |
665 |
|
stdout); |
666 |
|
mtx_offset += 3*nskypatch; |
667 |
|
} |
668 |
|
break; |
669 |
|
case 'd': |
670 |
< |
for (j = 0; j < ntsteps; j++) { |
670 |
> |
for (j = 0; j < nstored; j++) { |
671 |
|
double ment[3]; |
672 |
|
ment[0] = mtx_data[mtx_offset]; |
673 |
|
ment[1] = mtx_data[mtx_offset+1]; |
674 |
|
ment[2] = mtx_data[mtx_offset+2]; |
675 |
< |
fwrite(ment, sizeof(double), 3, stdout); |
675 |
> |
putbinary(ment, sizeof(double), 3, stdout); |
676 |
|
mtx_offset += 3*nskypatch; |
677 |
|
} |
678 |
|
break; |
680 |
|
if (ferror(stdout)) |
681 |
|
goto writerr; |
682 |
|
} |
683 |
< |
if (fflush(stdout) == EOF) |
683 |
> |
alldone: |
684 |
> |
if (fflush(NULL) == EOF) |
685 |
|
goto writerr; |
686 |
|
if (verbose) |
687 |
|
fprintf(stderr, "%s: done.\n", progname); |
688 |
|
exit(0); |
689 |
|
userr: |
690 |
< |
fprintf(stderr, "Usage: %s [-v][-d|-s][-m N][-g refl][-c r g b][-o{f|d}] [tape.wea]\n", |
690 |
> |
fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s|-n][-u][-D file [-M modfile]][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
691 |
|
progname); |
692 |
|
exit(1); |
693 |
|
fmterr: |
694 |
< |
fprintf(stderr, "%s: input weather tape format error\n", progname); |
694 |
> |
fprintf(stderr, "%s: weather tape format error in header\n", progname); |
695 |
|
exit(1); |
696 |
|
writerr: |
697 |
|
fprintf(stderr, "%s: write error on output\n", progname); |
698 |
|
exit(1); |
699 |
|
} |
700 |
|
|
701 |
+ |
|
702 |
|
/* Return maximum of two doubles */ |
703 |
|
double dmax( double a, double b ) |
704 |
|
{ return (a > b) ? a : b; } |
709 |
|
{ |
710 |
|
int index; /* Category index */ |
711 |
|
double norm_diff_illum; /* Normalized diffuse illuimnance */ |
518 |
– |
double zlumin; /* Zenith luminance */ |
712 |
|
int i; |
713 |
|
|
714 |
|
/* Calculate atmospheric precipitable water content */ |
715 |
|
apwc = CalcPrecipWater(dew_point); |
716 |
|
|
717 |
< |
/* Limit solar altitude to keep circumsolar off zenith */ |
718 |
< |
if (altitude > DegToRad(87.0)) |
719 |
< |
altitude = DegToRad(87.0); |
717 |
> |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
718 |
> |
/* Also limit minimum angle to keep circumsolar off zenith */ |
719 |
> |
if (altitude <= 0.0) |
720 |
> |
sun_zenith = DegToRad(90.0); |
721 |
> |
else if (altitude >= DegToRad(87.0)) |
722 |
> |
sun_zenith = DegToRad(3.0); |
723 |
> |
else |
724 |
> |
sun_zenith = DegToRad(90.0) - altitude; |
725 |
|
|
528 |
– |
/* Calculate sun zenith angle */ |
529 |
– |
sun_zenith = DegToRad(90.0) - altitude; |
530 |
– |
|
726 |
|
/* Compute the inputs for the calculation of the sky distribution */ |
727 |
|
|
728 |
|
if (input == 0) /* XXX never used */ |
741 |
|
sky_brightness = CalcSkyBrightness(); |
742 |
|
sky_clearness = CalcSkyClearness(); |
743 |
|
|
744 |
+ |
/* Limit sky clearness */ |
745 |
+ |
if (sky_clearness > 11.9) |
746 |
+ |
sky_clearness = 11.9; |
747 |
+ |
else if (sky_clearness < 1.0) |
748 |
+ |
sky_clearness = 1.0; |
749 |
+ |
|
750 |
+ |
/* Limit sky brightness */ |
751 |
+ |
if (sky_brightness < 0.01) |
752 |
+ |
sky_brightness = 0.01; |
753 |
+ |
else if (sky_brightness > 0.6) |
754 |
+ |
sky_brightness = 0.6; |
755 |
+ |
|
756 |
|
/* Calculate illuminance */ |
757 |
|
index = GetCategoryIndex(); |
758 |
|
diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); |
764 |
|
index = CalcSkyParamFromIllum(); |
765 |
|
} |
766 |
|
|
767 |
< |
if (bright(skycolor) <= 1e-4) { /* 0 sky component? */ |
768 |
< |
memset(parr, 0, sizeof(float)*3*nskypatch); |
769 |
< |
return; |
767 |
> |
if (output == 1) { /* hack for solar radiance */ |
768 |
> |
diff_illum = diff_irrad * WHTEFFICACY; |
769 |
> |
dir_illum = dir_irrad * WHTEFFICACY; |
770 |
|
} |
771 |
|
/* Compute ground radiance (include solar contribution if any) */ |
772 |
|
parr[0] = diff_illum; |
773 |
|
if (altitude > 0) |
774 |
|
parr[0] += dir_illum * sin(altitude); |
775 |
< |
parr[2] = parr[1] = parr[0] *= grefl*(1./PI/WHTEFFICACY); |
775 |
> |
parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY); |
776 |
> |
multcolor(parr, grefl); |
777 |
|
|
778 |
+ |
if (bright(skycolor) <= 1e-4) { /* 0 sky component? */ |
779 |
+ |
memset(parr+3, 0, sizeof(float)*3*(nskypatch-1)); |
780 |
+ |
return; |
781 |
+ |
} |
782 |
|
/* Calculate Perez sky model parameters */ |
783 |
|
CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index); |
784 |
|
|
788 |
|
/* Calculate relative horizontal illuminance */ |
789 |
|
norm_diff_illum = CalcRelHorzIllum(parr); |
790 |
|
|
791 |
+ |
/* Check for zero sky -- make uniform in that case */ |
792 |
+ |
if (norm_diff_illum <= FTINY) { |
793 |
+ |
for (i = 1; i < nskypatch; i++) |
794 |
+ |
setcolor(parr+3*i, 1., 1., 1.); |
795 |
+ |
norm_diff_illum = PI; |
796 |
+ |
} |
797 |
|
/* Normalization coefficient */ |
798 |
|
norm_diff_illum = diff_illum / norm_diff_illum; |
799 |
|
|
582 |
– |
/* Calculate relative zenith luminance */ |
583 |
– |
zlumin = CalcRelLuminance(sun_zenith, 0.0); |
584 |
– |
|
585 |
– |
/* Calculate absolute zenith illuminance */ |
586 |
– |
zlumin *= norm_diff_illum; |
587 |
– |
|
800 |
|
/* Apply to sky patches to get absolute radiance values */ |
801 |
|
for (i = 1; i < nskypatch; i++) { |
802 |
< |
scalecolor(parr+3*i, zlumin*(1./WHTEFFICACY)); |
802 |
> |
scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY)); |
803 |
|
multcolor(parr+3*i, skycolor); |
804 |
|
} |
805 |
|
} |
806 |
|
|
807 |
+ |
|
808 |
+ |
double |
809 |
+ |
solar_sunset(int month, int day) |
810 |
+ |
{ |
811 |
+ |
float W; |
812 |
+ |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
813 |
+ |
return(12 + (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
814 |
+ |
} |
815 |
+ |
|
816 |
+ |
|
817 |
+ |
double |
818 |
+ |
solar_sunrise(int month, int day) |
819 |
+ |
{ |
820 |
+ |
float W; |
821 |
+ |
W = -1 * (tan(s_latitude) * tan(sdec(jdate(month, day)))); |
822 |
+ |
return(12 - (M_PI / 2 - atan2(W, sqrt(1 - W * W))) * 180 / (M_PI * 15)); |
823 |
+ |
} |
824 |
+ |
|
825 |
+ |
|
826 |
|
/* Add in solar direct to nearest sky patches (GW) */ |
827 |
|
void |
828 |
|
AddDirect(float *parr) |
833 |
|
double wta[NSUNPATCH], wtot; |
834 |
|
int i, j, p; |
835 |
|
|
836 |
< |
if (!do_sun || dir_illum < 1e-4) |
836 |
> |
if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4) |
837 |
|
return; |
838 |
< |
/* identify NSUNPATCH closest patches */ |
839 |
< |
for (i = NSUNPATCH; i--; ) |
838 |
> |
/* identify nsuns closest patches */ |
839 |
> |
if (nsuns > NSUNPATCH) |
840 |
> |
nsuns = NSUNPATCH; |
841 |
> |
else if (nsuns <= 0) |
842 |
> |
nsuns = 1; |
843 |
> |
for (i = nsuns; i--; ) |
844 |
|
near_dprod[i] = -1.; |
845 |
|
vector(svec, altitude, azimuth); |
846 |
|
for (p = 1; p < nskypatch; p++) { |
848 |
|
double dprod; |
849 |
|
rh_vector(pvec, p); |
850 |
|
dprod = DOT(pvec, svec); |
851 |
< |
for (i = 0; i < NSUNPATCH; i++) |
851 |
> |
for (i = 0; i < nsuns; i++) |
852 |
|
if (dprod > near_dprod[i]) { |
853 |
< |
for (j = NSUNPATCH; --j > i; ) { |
853 |
> |
for (j = nsuns; --j > i; ) { |
854 |
|
near_dprod[j] = near_dprod[j-1]; |
855 |
|
near_patch[j] = near_patch[j-1]; |
856 |
|
} |
860 |
|
} |
861 |
|
} |
862 |
|
wtot = 0; /* weight by proximity */ |
863 |
< |
for (i = NSUNPATCH; i--; ) |
863 |
> |
for (i = nsuns; i--; ) |
864 |
|
wtot += wta[i] = 1./(1.002 - near_dprod[i]); |
865 |
|
/* add to nearest patch radiances */ |
866 |
< |
for (i = NSUNPATCH; i--; ) { |
866 |
> |
for (i = nsuns; i--; ) { |
867 |
|
float *pdest = parr + 3*near_patch[i]; |
868 |
< |
float val_add = wta[i] * dir_illum / |
869 |
< |
(WHTEFFICACY * wtot * rh_dom[near_patch[i]]); |
870 |
< |
*pdest++ += val_add; |
871 |
< |
*pdest++ += val_add; |
872 |
< |
*pdest++ += val_add; |
868 |
> |
float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot); |
869 |
> |
|
870 |
> |
val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa |
871 |
> |
: rh_dom[near_patch[i]] ; |
872 |
> |
*pdest++ += val_add*suncolor[0]; |
873 |
> |
*pdest++ += val_add*suncolor[1]; |
874 |
> |
*pdest++ += val_add*suncolor[2]; |
875 |
|
} |
876 |
|
} |
877 |
|
|
878 |
+ |
/* Output a sun to indicated file if appropriate for this time step */ |
879 |
+ |
void |
880 |
+ |
OutputSun(int id, int goodsun, FILE *fp, FILE *mfp) |
881 |
+ |
{ |
882 |
+ |
double srad; |
883 |
+ |
FVECT sv; |
884 |
+ |
|
885 |
+ |
srad = DegToRad(SUN_ANG_DEG/2.); |
886 |
+ |
srad = goodsun ? dir_illum/(WHTEFFICACY * PI*srad*srad) : 0; |
887 |
+ |
vector(sv, altitude, azimuth); |
888 |
+ |
fprintf(fp, "\nvoid light solar%d\n0\n0\n", id); |
889 |
+ |
fprintf(fp, "3 %.3e %.3e %.3e\n", srad*suncolor[0], |
890 |
+ |
srad*suncolor[1], srad*suncolor[2]); |
891 |
+ |
fprintf(fp, "\nsolar%d source sun%d\n0\n0\n", id, id); |
892 |
+ |
fprintf(fp, "4 %.6f %.6f %.6f %.4f\n", sv[0], sv[1], sv[2], SUN_ANG_DEG); |
893 |
+ |
|
894 |
+ |
if (mfp != NULL) /* saving modifier IDs? */ |
895 |
+ |
fprintf(mfp, "solar%d\n", id); |
896 |
+ |
} |
897 |
+ |
|
898 |
|
/* Initialize Reinhart sky patch positions (GW) */ |
899 |
|
int |
900 |
|
rh_init(void) |
1032 |
|
double sz_cubed; /* Sun zenith angle cubed */ |
1033 |
|
|
1034 |
|
/* Calculate sun zenith angle cubed */ |
1035 |
< |
sz_cubed = pow(sun_zenith, 3.0); |
1035 |
> |
sz_cubed = sun_zenith*sun_zenith*sun_zenith; |
1036 |
|
|
1037 |
|
return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 * |
1038 |
|
sz_cubed) / (1.0 + 1.041 * sz_cubed); |
1063 |
|
double CalcDirectIrradiance() |
1064 |
|
{ |
1065 |
|
return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041 |
1066 |
< |
* pow(sun_zenith, 3.0))); |
1066 |
> |
* sun_zenith*sun_zenith*sun_zenith)); |
1067 |
|
} |
1068 |
|
|
1069 |
|
/* Calculate sky brightness and clearness from illuminance values */ |
1089 |
|
sky_clearness = 12.0; |
1090 |
|
|
1091 |
|
/* Limit sky brightness */ |
1092 |
< |
if (sky_brightness < 0.05) |
1092 |
> |
if (sky_brightness < 0.01) |
1093 |
|
sky_brightness = 0.01; |
1094 |
|
|
1095 |
+ |
if (sky_clearness < 1.0000) |
1096 |
+ |
{ |
1097 |
+ |
sky_clearness = 1.0000; |
1098 |
+ |
} |
1099 |
+ |
|
1100 |
+ |
if (sky_brightness > 0.6) |
1101 |
+ |
{ |
1102 |
+ |
sky_brightness = 0.6; |
1103 |
+ |
} |
1104 |
+ |
|
1105 |
|
while (((fabs(diff_irrad - test1) > 10.0) || |
1106 |
|
(fabs(dir_irrad - test2) > 10.0)) && !(counter == 5)) |
1107 |
|
{ |
1112 |
|
/* Convert illuminance to irradiance */ |
1113 |
|
index = GetCategoryIndex(); |
1114 |
|
diff_irrad = diff_illum / CalcDiffuseIllumRatio(index); |
1115 |
< |
dir_irrad = dir_illum / CalcDirectIllumRatio(index); |
1115 |
> |
dir_irrad = CalcDirectIllumRatio(index); |
1116 |
> |
if (dir_irrad > 0.1) |
1117 |
> |
dir_irrad = dir_illum / dir_irrad; |
1118 |
|
|
1119 |
|
/* Calculate sky brightness and clearness */ |
1120 |
|
sky_brightness = CalcSkyBrightness(); |
1125 |
|
sky_clearness = 12.0; |
1126 |
|
|
1127 |
|
/* Limit sky brightness */ |
1128 |
< |
if (sky_brightness < 0.05) |
1128 |
> |
if (sky_brightness < 0.01) |
1129 |
|
sky_brightness = 0.01; |
1130 |
+ |
|
1131 |
+ |
if (sky_clearness < 1.0000) |
1132 |
+ |
{ |
1133 |
+ |
sky_clearness = 1.0000; |
1134 |
+ |
} |
1135 |
+ |
|
1136 |
+ |
if (sky_brightness > 0.6) |
1137 |
+ |
{ |
1138 |
+ |
sky_brightness = 0.6; |
1139 |
+ |
} |
1140 |
|
} |
1141 |
|
|
1142 |
|
return GetCategoryIndex(); |
1221 |
|
double rh_illum = 0.0; /* Relative horizontal illuminance */ |
1222 |
|
|
1223 |
|
for (i = 1; i < nskypatch; i++) |
1224 |
< |
rh_illum += parr[3*i+1] * rh_cos(i); |
1224 |
> |
rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i]; |
1225 |
|
|
1226 |
< |
return rh_illum * (2.0 * PI / (nskypatch-1)); |
1226 |
> |
return rh_illum; |
1227 |
|
} |
1228 |
|
|
1229 |
|
/* Calculate earth orbit eccentricity correction factor */ |