1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: gendaymtx.c,v 2.15 2014/06/17 18:51:47 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* gendaymtx.c |
6 |
* |
7 |
* Generate a daylight matrix based on Perez Sky Model. |
8 |
* |
9 |
* Most of this code is borrowed (see copyright below) from Ian Ashdown's |
10 |
* excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c |
11 |
* |
12 |
* Created by Greg Ward on 1/16/13. |
13 |
*/ |
14 |
|
15 |
/********************************************************************* |
16 |
* |
17 |
* H32_gendaylit.CPP - Perez Sky Model Calculation |
18 |
* |
19 |
* Version: 1.00A |
20 |
* |
21 |
* History: 09/10/01 - Created. |
22 |
* 11/10/08 - Modified for Unix compilation. |
23 |
* 11/10/12 - Fixed conditional __max directive. |
24 |
* 1/11/13 - Tweaks and optimizations (G.Ward) |
25 |
* |
26 |
* Compilers: Microsoft Visual C/C++ Professional V10.0 |
27 |
* |
28 |
* Author: Ian Ashdown, P.Eng. |
29 |
* byHeart Consultants Limited |
30 |
* 620 Ballantree Road |
31 |
* West Vancouver, B.C. |
32 |
* Canada V7S 1W3 |
33 |
* e-mail: [email protected] |
34 |
* |
35 |
* References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. |
36 |
* Stewart. 1990. ìModeling Daylight Availability and |
37 |
* Irradiance Components from Direct and Global |
38 |
* Irradiance,î Solar Energy 44(5):271-289. |
39 |
* |
40 |
* Perez, R., R. Seals, and J. Michalsky. 1993. |
41 |
* ìAll-Weather Model for Sky Luminance Distribution - |
42 |
* Preliminary Configuration and Validation,î Solar Energy |
43 |
* 50(3):235-245. |
44 |
* |
45 |
* Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to |
46 |
* All-Weather Model for Sky Luminance Distribution - |
47 |
* Preliminary Configuration and Validation,î Solar Energy |
48 |
* 51(5):423. |
49 |
* |
50 |
* NOTE: This program is a completely rewritten version of |
51 |
* gendaylit.c written by Jean-Jacques Delaunay (1994). |
52 |
* |
53 |
* Copyright 2009-2012 byHeart Consultants Limited. All rights |
54 |
* reserved. |
55 |
* |
56 |
* Redistribution and use in source and binary forms, with or without |
57 |
* modification, are permitted for personal and commercial purposes |
58 |
* provided that redistribution of source code must retain the above |
59 |
* copyright notice, this list of conditions and the following |
60 |
* disclaimer: |
61 |
* |
62 |
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED |
63 |
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
64 |
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
65 |
* DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR |
66 |
* ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
67 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
68 |
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
69 |
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
70 |
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
71 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
72 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
73 |
* POSSIBILITY OF SUCH DAMAGE. |
74 |
* |
75 |
*********************************************************************/ |
76 |
|
77 |
/* Zenith is along the Z-axis */ |
78 |
/* X-axis points east */ |
79 |
/* Y-axis points north */ |
80 |
/* azimuth is measured as degrees or radians east of North */ |
81 |
|
82 |
/* Include files */ |
83 |
#define _USE_MATH_DEFINES |
84 |
#include <stdio.h> |
85 |
#include <stdlib.h> |
86 |
#include <string.h> |
87 |
#include <ctype.h> |
88 |
#include "rtmath.h" |
89 |
#include "platform.h" |
90 |
#include "color.h" |
91 |
|
92 |
char *progname; /* Program name */ |
93 |
char errmsg[128]; /* Error message buffer */ |
94 |
const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */ |
95 |
const double DC_SolarConstantL = 127.5; /* Solar constant klux */ |
96 |
|
97 |
double altitude; /* Solar altitude (radians) */ |
98 |
double azimuth; /* Solar azimuth (radians) */ |
99 |
double apwc; /* Atmospheric precipitable water content */ |
100 |
double dew_point = 11.0; /* Surface dew point temperature (deg. C) */ |
101 |
double diff_illum; /* Diffuse illuminance */ |
102 |
double diff_irrad; /* Diffuse irradiance */ |
103 |
double dir_illum; /* Direct illuminance */ |
104 |
double dir_irrad; /* Direct irradiance */ |
105 |
int julian_date; /* Julian date */ |
106 |
double perez_param[5]; /* Perez sky model parameters */ |
107 |
double sky_brightness; /* Sky brightness */ |
108 |
double sky_clearness; /* Sky clearness */ |
109 |
double solar_rad; /* Solar radiance */ |
110 |
double sun_zenith; /* Sun zenith angle (radians) */ |
111 |
int input = 0; /* Input type */ |
112 |
int output = 0; /* Output type */ |
113 |
|
114 |
extern double dmax( double, double ); |
115 |
extern double CalcAirMass(); |
116 |
extern double CalcDiffuseIllumRatio( int ); |
117 |
extern double CalcDiffuseIrradiance(); |
118 |
extern double CalcDirectIllumRatio( int ); |
119 |
extern double CalcDirectIrradiance(); |
120 |
extern double CalcEccentricity(); |
121 |
extern double CalcPrecipWater( double ); |
122 |
extern double CalcRelHorzIllum( float *parr ); |
123 |
extern double CalcRelLuminance( double, double ); |
124 |
extern double CalcSkyBrightness(); |
125 |
extern double CalcSkyClearness(); |
126 |
extern int CalcSkyParamFromIllum(); |
127 |
extern int GetCategoryIndex(); |
128 |
extern void CalcPerezParam( double, double, double, int ); |
129 |
extern void CalcSkyPatchLumin( float *parr ); |
130 |
extern void ComputeSky( float *parr ); |
131 |
|
132 |
/* Degrees into radians */ |
133 |
#define DegToRad(deg) ((deg)*(PI/180.)) |
134 |
|
135 |
/* Radiuans into degrees */ |
136 |
#define RadToDeg(rad) ((rad)*(180./PI)) |
137 |
|
138 |
|
139 |
/* Perez sky model coefficients */ |
140 |
|
141 |
/* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */ |
142 |
/* Weather Model for Sky Luminance Distribution - */ |
143 |
/* Preliminary Configuration and Validation," Solar */ |
144 |
/* Energy 50(3):235-245, Table 1. */ |
145 |
|
146 |
static const double PerezCoeff[8][20] = |
147 |
{ |
148 |
/* Sky clearness (epsilon): 1.000 to 1.065 */ |
149 |
{ 1.3525, -0.2576, -0.2690, -1.4366, -0.7670, |
150 |
0.0007, 1.2734, -0.1233, 2.8000, 0.6004, |
151 |
1.2375, 1.0000, 1.8734, 0.6297, 0.9738, |
152 |
0.2809, 0.0356, -0.1246, -0.5718, 0.9938 }, |
153 |
/* Sky clearness (epsilon): 1.065 to 1.230 */ |
154 |
{ -1.2219, -0.7730, 1.4148, 1.1016, -0.2054, |
155 |
0.0367, -3.9128, 0.9156, 6.9750, 0.1774, |
156 |
6.4477, -0.1239, -1.5798, -0.5081, -1.7812, |
157 |
0.1080, 0.2624, 0.0672, -0.2190, -0.4285 }, |
158 |
/* Sky clearness (epsilon): 1.230 to 1.500 */ |
159 |
{ -1.1000, -0.2515, 0.8952, 0.0156, 0.2782, |
160 |
-0.1812, - 4.5000, 1.1766, 24.7219, -13.0812, |
161 |
-37.7000, 34.8438, -5.0000, 1.5218, 3.9229, |
162 |
-2.6204, -0.0156, 0.1597, 0.4199, -0.5562 }, |
163 |
/* Sky clearness (epsilon): 1.500 to 1.950 */ |
164 |
{ -0.5484, -0.6654, -0.2672, 0.7117, 0.7234, |
165 |
-0.6219, -5.6812, 2.6297, 33.3389, -18.3000, |
166 |
-62.2500, 52.0781, -3.5000, 0.0016, 1.1477, |
167 |
0.1062, 0.4659, -0.3296, -0.0876, -0.0329 }, |
168 |
/* Sky clearness (epsilon): 1.950 to 2.800 */ |
169 |
{ -0.6000, -0.3566, -2.5000, 2.3250, 0.2937, |
170 |
0.0496, -5.6812, 1.8415, 21.0000, -4.7656 , |
171 |
-21.5906, 7.2492, -3.5000, -0.1554, 1.4062, |
172 |
0.3988, 0.0032, 0.0766, -0.0656, -0.1294 }, |
173 |
/* Sky clearness (epsilon): 2.800 to 4.500 */ |
174 |
{ -1.0156, -0.3670, 1.0078, 1.4051, 0.2875, |
175 |
-0.5328, -3.8500, 3.3750, 14.0000, -0.9999, |
176 |
-7.1406, 7.5469, -3.4000, -0.1078, -1.0750, |
177 |
1.5702, -0.0672, 0.4016, 0.3017, -0.4844 }, |
178 |
/* Sky clearness (epsilon): 4.500 to 6.200 */ |
179 |
{ -1.0000, 0.0211, 0.5025, -0.5119, -0.3000, |
180 |
0.1922, 0.7023, -1.6317, 19.0000, -5.0000, |
181 |
1.2438, -1.9094, -4.0000, 0.0250, 0.3844, |
182 |
0.2656, 1.0468, -0.3788, -2.4517, 1.4656 }, |
183 |
/* Sky clearness (epsilon): 6.200 to ... */ |
184 |
{ -1.0500, 0.0289, 0.4260, 0.3590, -0.3250, |
185 |
0.1156, 0.7781, 0.0025, 31.0625, -14.5000, |
186 |
-46.1148, 55.3750, -7.2312, 0.4050, 13.3500, |
187 |
0.6234, 1.5000, -0.6426, 1.8564, 0.5636 } |
188 |
}; |
189 |
|
190 |
/* Perez irradiance component model coefficients */ |
191 |
|
192 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
193 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
194 |
/* Irradiance Components from Direct and Global */ |
195 |
/* Irradiance,î Solar Energy 44(5):271-289. */ |
196 |
|
197 |
typedef struct |
198 |
{ |
199 |
double lower; /* Lower bound */ |
200 |
double upper; /* Upper bound */ |
201 |
} CategoryBounds; |
202 |
|
203 |
/* Perez sky clearness (epsilon) categories (Table 1) */ |
204 |
static const CategoryBounds SkyClearCat[8] = |
205 |
{ |
206 |
{ 1.000, 1.065 }, /* Overcast */ |
207 |
{ 1.065, 1.230 }, |
208 |
{ 1.230, 1.500 }, |
209 |
{ 1.500, 1.950 }, |
210 |
{ 1.950, 2.800 }, |
211 |
{ 2.800, 4.500 }, |
212 |
{ 4.500, 6.200 }, |
213 |
{ 6.200, 12.01 } /* Clear */ |
214 |
}; |
215 |
|
216 |
/* Luminous efficacy model coefficients */ |
217 |
typedef struct |
218 |
{ |
219 |
double a; |
220 |
double b; |
221 |
double c; |
222 |
double d; |
223 |
} ModelCoeff; |
224 |
|
225 |
/* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */ |
226 |
static const ModelCoeff DiffuseLumEff[8] = |
227 |
{ |
228 |
{ 97.24, -0.46, 12.00, -8.91 }, |
229 |
{ 107.22, 1.15, 0.59, -3.95 }, |
230 |
{ 104.97, 2.96, -5.53, -8.77 }, |
231 |
{ 102.39, 5.59, -13.95, -13.90 }, |
232 |
{ 100.71, 5.94, -22.75, -23.74 }, |
233 |
{ 106.42, 3.83, -36.15, -28.83 }, |
234 |
{ 141.88, 1.90, -53.24, -14.03 }, |
235 |
{ 152.23, 0.35, -45.27, -7.98 } |
236 |
}; |
237 |
|
238 |
/* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */ |
239 |
static const ModelCoeff DirectLumEff[8] = |
240 |
{ |
241 |
{ 57.20, -4.55, -2.98, 117.12 }, |
242 |
{ 98.99, -3.46, -1.21, 12.38 }, |
243 |
{ 109.83, -4.90, -1.71, -8.81 }, |
244 |
{ 110.34, -5.84, -1.99, -4.56 }, |
245 |
{ 106.36, -3.97, -1.75, -6.16 }, |
246 |
{ 107.19, -1.25, -1.51, -26.73 }, |
247 |
{ 105.75, 0.77, -1.26, -34.44 }, |
248 |
{ 101.18, 1.58, -1.10, -8.29 } |
249 |
}; |
250 |
|
251 |
#ifndef NSUNPATCH |
252 |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
253 |
#endif |
254 |
|
255 |
extern int jdate(int month, int day); |
256 |
extern double stadj(int jd); |
257 |
extern double sdec(int jd); |
258 |
extern double salt(double sd, double st); |
259 |
extern double sazi(double sd, double st); |
260 |
/* sun calculation constants */ |
261 |
extern double s_latitude; |
262 |
extern double s_longitude; |
263 |
extern double s_meridian; |
264 |
|
265 |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
266 |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
267 |
|
268 |
int verbose = 0; /* progress reports to stderr? */ |
269 |
|
270 |
int outfmt = 'a'; /* output format */ |
271 |
|
272 |
int rhsubdiv = 1; /* Reinhart sky subdivisions */ |
273 |
|
274 |
COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */ |
275 |
COLOR suncolor = {1., 1., 1.}; /* sun color */ |
276 |
COLOR grefl = {.2, .2, .2}; /* ground reflectance */ |
277 |
|
278 |
int nskypatch; /* number of Reinhart patches */ |
279 |
float *rh_palt; /* sky patch altitudes (radians) */ |
280 |
float *rh_pazi; /* sky patch azimuths (radians) */ |
281 |
float *rh_dom; /* sky patch solid angle (sr) */ |
282 |
|
283 |
#define vector(v,alt,azi) ( (v)[1] = tcos(alt), \ |
284 |
(v)[0] = (v)[1]*tsin(azi), \ |
285 |
(v)[1] *= tcos(azi), \ |
286 |
(v)[2] = tsin(alt) ) |
287 |
|
288 |
#define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i]) |
289 |
|
290 |
#define rh_cos(i) tsin(rh_palt[i]) |
291 |
|
292 |
extern int rh_init(void); |
293 |
extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch); |
294 |
extern void AddDirect(float *parr); |
295 |
|
296 |
|
297 |
static const char * |
298 |
getfmtname(int fmt) |
299 |
{ |
300 |
switch (fmt) { |
301 |
case 'a': |
302 |
return("ascii"); |
303 |
case 'f': |
304 |
return("float"); |
305 |
case 'd': |
306 |
return("double"); |
307 |
} |
308 |
return("unknown"); |
309 |
} |
310 |
|
311 |
|
312 |
int |
313 |
main(int argc, char *argv[]) |
314 |
{ |
315 |
char buf[256]; |
316 |
int doheader = 1; /* output header? */ |
317 |
double rotation = 0; /* site rotation (degrees) */ |
318 |
double elevation; /* site elevation (meters) */ |
319 |
int dir_is_horiz; /* direct is meas. on horizontal? */ |
320 |
float *mtx_data = NULL; /* our matrix data */ |
321 |
int ntsteps = 0; /* number of rows in matrix */ |
322 |
int step_alloc = 0; |
323 |
int last_monthly = 0; /* month of last report */ |
324 |
int mo, da; /* month (1-12) and day (1-31) */ |
325 |
double hr; /* hour (local standard time) */ |
326 |
double dir, dif; /* direct and diffuse values */ |
327 |
int mtx_offset; |
328 |
int i, j; |
329 |
|
330 |
progname = argv[0]; |
331 |
/* get options */ |
332 |
for (i = 1; i < argc && argv[i][0] == '-'; i++) |
333 |
switch (argv[i][1]) { |
334 |
case 'g': /* ground reflectance */ |
335 |
grefl[0] = atof(argv[++i]); |
336 |
grefl[1] = atof(argv[++i]); |
337 |
grefl[2] = atof(argv[++i]); |
338 |
break; |
339 |
case 'v': /* verbose progress reports */ |
340 |
verbose++; |
341 |
break; |
342 |
case 'h': /* turn off header */ |
343 |
doheader = 0; |
344 |
break; |
345 |
case 'o': /* output format */ |
346 |
switch (argv[i][2]) { |
347 |
case 'f': |
348 |
case 'd': |
349 |
case 'a': |
350 |
outfmt = argv[i][2]; |
351 |
break; |
352 |
default: |
353 |
goto userr; |
354 |
} |
355 |
break; |
356 |
case 'O': /* output type */ |
357 |
switch (argv[i][2]) { |
358 |
case '0': |
359 |
output = 0; |
360 |
break; |
361 |
case '1': |
362 |
output = 1; |
363 |
break; |
364 |
default: |
365 |
goto userr; |
366 |
} |
367 |
if (argv[i][3]) |
368 |
goto userr; |
369 |
break; |
370 |
case 'm': /* Reinhart subdivisions */ |
371 |
rhsubdiv = atoi(argv[++i]); |
372 |
break; |
373 |
case 'c': /* sky color */ |
374 |
skycolor[0] = atof(argv[++i]); |
375 |
skycolor[1] = atof(argv[++i]); |
376 |
skycolor[2] = atof(argv[++i]); |
377 |
break; |
378 |
case 'd': /* solar (direct) only */ |
379 |
skycolor[0] = skycolor[1] = skycolor[2] = 0; |
380 |
if (suncolor[1] <= 1e-4) |
381 |
suncolor[0] = suncolor[1] = suncolor[2] = 1; |
382 |
break; |
383 |
case 's': /* sky only (no direct) */ |
384 |
suncolor[0] = suncolor[1] = suncolor[2] = 0; |
385 |
if (skycolor[1] <= 1e-4) |
386 |
skycolor[0] = skycolor[1] = skycolor[2] = 1; |
387 |
break; |
388 |
case 'r': /* rotate distribution */ |
389 |
if (argv[i][2] && argv[i][2] != 'z') |
390 |
goto userr; |
391 |
rotation = atof(argv[++i]); |
392 |
break; |
393 |
case '5': /* 5-phase calculation */ |
394 |
nsuns = 1; |
395 |
fixed_sun_sa = 6.797e-05; |
396 |
break; |
397 |
default: |
398 |
goto userr; |
399 |
} |
400 |
if (i < argc-1) |
401 |
goto userr; |
402 |
if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) { |
403 |
fprintf(stderr, "%s: cannot open '%s' for input\n", |
404 |
progname, argv[i]); |
405 |
exit(1); |
406 |
} |
407 |
if (verbose) { |
408 |
if (i == argc-1) |
409 |
fprintf(stderr, "%s: reading weather tape '%s'\n", |
410 |
progname, argv[i]); |
411 |
else |
412 |
fprintf(stderr, "%s: reading weather tape from <stdin>\n", |
413 |
progname); |
414 |
} |
415 |
/* read weather tape header */ |
416 |
if (scanf("place %[^\r\n] ", buf) != 1) |
417 |
goto fmterr; |
418 |
if (scanf("latitude %lf\n", &s_latitude) != 1) |
419 |
goto fmterr; |
420 |
if (scanf("longitude %lf\n", &s_longitude) != 1) |
421 |
goto fmterr; |
422 |
if (scanf("time_zone %lf\n", &s_meridian) != 1) |
423 |
goto fmterr; |
424 |
if (scanf("site_elevation %lf\n", &elevation) != 1) |
425 |
goto fmterr; |
426 |
if (scanf("weather_data_file_units %d\n", &input) != 1) |
427 |
goto fmterr; |
428 |
switch (input) { /* translate units */ |
429 |
case 1: |
430 |
input = 1; /* radiometric quantities */ |
431 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
432 |
break; |
433 |
case 2: |
434 |
input = 1; /* radiometric quantities */ |
435 |
dir_is_horiz = 1; /* solar measured horizontally */ |
436 |
break; |
437 |
case 3: |
438 |
input = 2; /* photometric quantities */ |
439 |
dir_is_horiz = 0; /* direct is perpendicular meas. */ |
440 |
break; |
441 |
default: |
442 |
goto fmterr; |
443 |
} |
444 |
rh_init(); /* initialize sky patches */ |
445 |
if (verbose) { |
446 |
fprintf(stderr, "%s: location '%s'\n", progname, buf); |
447 |
fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n", |
448 |
progname, s_latitude, s_longitude); |
449 |
fprintf(stderr, "%s: %d sky patches per time step\n", |
450 |
progname, nskypatch); |
451 |
if (rotation != 0) |
452 |
fprintf(stderr, "%s: rotating output %.0f degrees\n", |
453 |
progname, rotation); |
454 |
} |
455 |
/* convert quantities to radians */ |
456 |
s_latitude = DegToRad(s_latitude); |
457 |
s_longitude = DegToRad(s_longitude); |
458 |
s_meridian = DegToRad(s_meridian); |
459 |
/* process each time step in tape */ |
460 |
while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) { |
461 |
double sda, sta; |
462 |
/* make space for next time step */ |
463 |
mtx_offset = 3*nskypatch*ntsteps++; |
464 |
if (ntsteps > step_alloc) { |
465 |
step_alloc += (step_alloc>>1) + ntsteps + 7; |
466 |
mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch); |
467 |
} |
468 |
if (dif <= 1e-4) { |
469 |
memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); |
470 |
continue; |
471 |
} |
472 |
if (verbose && mo != last_monthly) |
473 |
fprintf(stderr, "%s: stepping through month %d...\n", |
474 |
progname, last_monthly=mo); |
475 |
/* compute solar position */ |
476 |
julian_date = jdate(mo, da); |
477 |
sda = sdec(julian_date); |
478 |
sta = stadj(julian_date); |
479 |
altitude = salt(sda, hr+sta); |
480 |
azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation); |
481 |
/* convert measured values */ |
482 |
if (dir_is_horiz && altitude > 0.) |
483 |
dir /= sin(altitude); |
484 |
if (input == 1) { |
485 |
dir_irrad = dir; |
486 |
diff_irrad = dif; |
487 |
} else /* input == 2 */ { |
488 |
dir_illum = dir; |
489 |
diff_illum = dif; |
490 |
} |
491 |
/* compute sky patch values */ |
492 |
ComputeSky(mtx_data+mtx_offset); |
493 |
AddDirect(mtx_data+mtx_offset); |
494 |
} |
495 |
/* check for junk at end */ |
496 |
while ((i = fgetc(stdin)) != EOF) |
497 |
if (!isspace(i)) { |
498 |
fprintf(stderr, "%s: warning - unexpected data past EOT: ", |
499 |
progname); |
500 |
buf[0] = i; buf[1] = '\0'; |
501 |
fgets(buf+1, sizeof(buf)-1, stdin); |
502 |
fputs(buf, stderr); fputc('\n', stderr); |
503 |
break; |
504 |
} |
505 |
/* write out matrix */ |
506 |
if (outfmt != 'a') |
507 |
SET_FILE_BINARY(stdout); |
508 |
#ifdef getc_unlocked |
509 |
flockfile(stdout); |
510 |
#endif |
511 |
if (verbose) |
512 |
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", |
513 |
progname, outfmt=='a' ? "" : "binary ", ntsteps); |
514 |
if (doheader) { |
515 |
newheader("RADIANCE", stdout); |
516 |
printargs(argc, argv, stdout); |
517 |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
518 |
-RadToDeg(s_longitude)); |
519 |
printf("NROWS=%d\n", nskypatch); |
520 |
printf("NCOLS=%d\n", ntsteps); |
521 |
printf("NCOMP=3\n"); |
522 |
fputformat(getfmtname(outfmt), stdout); |
523 |
putchar('\n'); |
524 |
} |
525 |
/* patches are rows (outer sort) */ |
526 |
for (i = 0; i < nskypatch; i++) { |
527 |
mtx_offset = 3*i; |
528 |
switch (outfmt) { |
529 |
case 'a': |
530 |
for (j = 0; j < ntsteps; j++) { |
531 |
printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset], |
532 |
mtx_data[mtx_offset+1], |
533 |
mtx_data[mtx_offset+2]); |
534 |
mtx_offset += 3*nskypatch; |
535 |
} |
536 |
if (ntsteps > 1) |
537 |
fputc('\n', stdout); |
538 |
break; |
539 |
case 'f': |
540 |
for (j = 0; j < ntsteps; j++) { |
541 |
fwrite(mtx_data+mtx_offset, sizeof(float), 3, |
542 |
stdout); |
543 |
mtx_offset += 3*nskypatch; |
544 |
} |
545 |
break; |
546 |
case 'd': |
547 |
for (j = 0; j < ntsteps; j++) { |
548 |
double ment[3]; |
549 |
ment[0] = mtx_data[mtx_offset]; |
550 |
ment[1] = mtx_data[mtx_offset+1]; |
551 |
ment[2] = mtx_data[mtx_offset+2]; |
552 |
fwrite(ment, sizeof(double), 3, stdout); |
553 |
mtx_offset += 3*nskypatch; |
554 |
} |
555 |
break; |
556 |
} |
557 |
if (ferror(stdout)) |
558 |
goto writerr; |
559 |
} |
560 |
if (fflush(stdout) == EOF) |
561 |
goto writerr; |
562 |
if (verbose) |
563 |
fprintf(stderr, "%s: done.\n", progname); |
564 |
exit(0); |
565 |
userr: |
566 |
fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
567 |
progname); |
568 |
exit(1); |
569 |
fmterr: |
570 |
fprintf(stderr, "%s: input weather tape format error\n", progname); |
571 |
exit(1); |
572 |
writerr: |
573 |
fprintf(stderr, "%s: write error on output\n", progname); |
574 |
exit(1); |
575 |
} |
576 |
|
577 |
/* Return maximum of two doubles */ |
578 |
double dmax( double a, double b ) |
579 |
{ return (a > b) ? a : b; } |
580 |
|
581 |
/* Compute sky patch radiance values (modified by GW) */ |
582 |
void |
583 |
ComputeSky(float *parr) |
584 |
{ |
585 |
int index; /* Category index */ |
586 |
double norm_diff_illum; /* Normalized diffuse illuimnance */ |
587 |
int i; |
588 |
|
589 |
/* Calculate atmospheric precipitable water content */ |
590 |
apwc = CalcPrecipWater(dew_point); |
591 |
|
592 |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
593 |
/* Also limit minimum angle to keep circumsolar off zenith */ |
594 |
if (altitude <= 0.0) |
595 |
sun_zenith = DegToRad(90.0); |
596 |
else if (altitude >= DegToRad(87.0)) |
597 |
sun_zenith = DegToRad(3.0); |
598 |
else |
599 |
sun_zenith = DegToRad(90.0) - altitude; |
600 |
|
601 |
/* Compute the inputs for the calculation of the sky distribution */ |
602 |
|
603 |
if (input == 0) /* XXX never used */ |
604 |
{ |
605 |
/* Calculate irradiance */ |
606 |
diff_irrad = CalcDiffuseIrradiance(); |
607 |
dir_irrad = CalcDirectIrradiance(); |
608 |
|
609 |
/* Calculate illuminance */ |
610 |
index = GetCategoryIndex(); |
611 |
diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); |
612 |
dir_illum = dir_irrad * CalcDirectIllumRatio(index); |
613 |
} |
614 |
else if (input == 1) |
615 |
{ |
616 |
sky_brightness = CalcSkyBrightness(); |
617 |
sky_clearness = CalcSkyClearness(); |
618 |
|
619 |
/* Limit sky clearness */ |
620 |
if (sky_clearness > 11.9) |
621 |
sky_clearness = 11.9; |
622 |
|
623 |
/* Limit sky brightness */ |
624 |
if (sky_brightness < 0.01) |
625 |
sky_brightness = 0.01; |
626 |
|
627 |
/* Calculate illuminance */ |
628 |
index = GetCategoryIndex(); |
629 |
diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); |
630 |
dir_illum = dir_irrad * CalcDirectIllumRatio(index); |
631 |
} |
632 |
else if (input == 2) |
633 |
{ |
634 |
/* Calculate sky brightness and clearness from illuminance values */ |
635 |
index = CalcSkyParamFromIllum(); |
636 |
} |
637 |
|
638 |
if (output == 1) { /* hack for solar radiance */ |
639 |
diff_illum = diff_irrad * WHTEFFICACY; |
640 |
dir_illum = dir_irrad * WHTEFFICACY; |
641 |
} |
642 |
|
643 |
if (bright(skycolor) <= 1e-4) { /* 0 sky component? */ |
644 |
memset(parr, 0, sizeof(float)*3*nskypatch); |
645 |
return; |
646 |
} |
647 |
/* Compute ground radiance (include solar contribution if any) */ |
648 |
parr[0] = diff_illum; |
649 |
if (altitude > 0) |
650 |
parr[0] += dir_illum * sin(altitude); |
651 |
parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY); |
652 |
multcolor(parr, grefl); |
653 |
|
654 |
/* Calculate Perez sky model parameters */ |
655 |
CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index); |
656 |
|
657 |
/* Calculate sky patch luminance values */ |
658 |
CalcSkyPatchLumin(parr); |
659 |
|
660 |
/* Calculate relative horizontal illuminance */ |
661 |
norm_diff_illum = CalcRelHorzIllum(parr); |
662 |
|
663 |
/* Check for zero sky -- make uniform in that case */ |
664 |
if (norm_diff_illum <= FTINY) { |
665 |
for (i = 1; i < nskypatch; i++) |
666 |
setcolor(parr+3*i, 1., 1., 1.); |
667 |
norm_diff_illum = PI; |
668 |
} |
669 |
/* Normalization coefficient */ |
670 |
norm_diff_illum = diff_illum / norm_diff_illum; |
671 |
|
672 |
/* Apply to sky patches to get absolute radiance values */ |
673 |
for (i = 1; i < nskypatch; i++) { |
674 |
scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY)); |
675 |
multcolor(parr+3*i, skycolor); |
676 |
} |
677 |
} |
678 |
|
679 |
/* Add in solar direct to nearest sky patches (GW) */ |
680 |
void |
681 |
AddDirect(float *parr) |
682 |
{ |
683 |
FVECT svec; |
684 |
double near_dprod[NSUNPATCH]; |
685 |
int near_patch[NSUNPATCH]; |
686 |
double wta[NSUNPATCH], wtot; |
687 |
int i, j, p; |
688 |
|
689 |
if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4) |
690 |
return; |
691 |
/* identify nsuns closest patches */ |
692 |
if (nsuns > NSUNPATCH) |
693 |
nsuns = NSUNPATCH; |
694 |
else if (nsuns <= 0) |
695 |
nsuns = 1; |
696 |
for (i = nsuns; i--; ) |
697 |
near_dprod[i] = -1.; |
698 |
vector(svec, altitude, azimuth); |
699 |
for (p = 1; p < nskypatch; p++) { |
700 |
FVECT pvec; |
701 |
double dprod; |
702 |
rh_vector(pvec, p); |
703 |
dprod = DOT(pvec, svec); |
704 |
for (i = 0; i < nsuns; i++) |
705 |
if (dprod > near_dprod[i]) { |
706 |
for (j = nsuns; --j > i; ) { |
707 |
near_dprod[j] = near_dprod[j-1]; |
708 |
near_patch[j] = near_patch[j-1]; |
709 |
} |
710 |
near_dprod[i] = dprod; |
711 |
near_patch[i] = p; |
712 |
break; |
713 |
} |
714 |
} |
715 |
wtot = 0; /* weight by proximity */ |
716 |
for (i = nsuns; i--; ) |
717 |
wtot += wta[i] = 1./(1.002 - near_dprod[i]); |
718 |
/* add to nearest patch radiances */ |
719 |
for (i = nsuns; i--; ) { |
720 |
float *pdest = parr + 3*near_patch[i]; |
721 |
float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot); |
722 |
|
723 |
val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa |
724 |
: rh_dom[near_patch[i]] ; |
725 |
*pdest++ += val_add*suncolor[0]; |
726 |
*pdest++ += val_add*suncolor[1]; |
727 |
*pdest++ += val_add*suncolor[2]; |
728 |
} |
729 |
} |
730 |
|
731 |
/* Initialize Reinhart sky patch positions (GW) */ |
732 |
int |
733 |
rh_init(void) |
734 |
{ |
735 |
#define NROW 7 |
736 |
static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6}; |
737 |
const double alpha = (PI/2.)/(NROW*rhsubdiv + .5); |
738 |
int p, i, j; |
739 |
/* allocate patch angle arrays */ |
740 |
nskypatch = 0; |
741 |
for (p = 0; p < NROW; p++) |
742 |
nskypatch += tnaz[p]; |
743 |
nskypatch *= rhsubdiv*rhsubdiv; |
744 |
nskypatch += 2; |
745 |
rh_palt = (float *)malloc(sizeof(float)*nskypatch); |
746 |
rh_pazi = (float *)malloc(sizeof(float)*nskypatch); |
747 |
rh_dom = (float *)malloc(sizeof(float)*nskypatch); |
748 |
if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) { |
749 |
fprintf(stderr, "%s: out of memory in rh_init()\n", progname); |
750 |
exit(1); |
751 |
} |
752 |
rh_palt[0] = -PI/2.; /* ground & zenith patches */ |
753 |
rh_pazi[0] = 0.; |
754 |
rh_dom[0] = 2.*PI; |
755 |
rh_palt[nskypatch-1] = PI/2.; |
756 |
rh_pazi[nskypatch-1] = 0.; |
757 |
rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5)); |
758 |
p = 1; /* "normal" patches */ |
759 |
for (i = 0; i < NROW*rhsubdiv; i++) { |
760 |
const float ralt = alpha*(i + .5); |
761 |
const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv; |
762 |
const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) / |
763 |
(double)ninrow; |
764 |
for (j = 0; j < ninrow; j++) { |
765 |
rh_palt[p] = ralt; |
766 |
rh_pazi[p] = 2.*PI * j / (double)ninrow; |
767 |
rh_dom[p++] = dom; |
768 |
} |
769 |
} |
770 |
return nskypatch; |
771 |
#undef NROW |
772 |
} |
773 |
|
774 |
/* Resize daylight matrix (GW) */ |
775 |
float * |
776 |
resize_dmatrix(float *mtx_data, int nsteps, int npatch) |
777 |
{ |
778 |
if (mtx_data == NULL) |
779 |
mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch); |
780 |
else |
781 |
mtx_data = (float *)realloc(mtx_data, |
782 |
sizeof(float)*3*nsteps*npatch); |
783 |
if (mtx_data == NULL) { |
784 |
fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n", |
785 |
progname, nsteps, npatch); |
786 |
exit(1); |
787 |
} |
788 |
return(mtx_data); |
789 |
} |
790 |
|
791 |
/* Determine category index */ |
792 |
int GetCategoryIndex() |
793 |
{ |
794 |
int index; /* Loop index */ |
795 |
|
796 |
for (index = 0; index < 8; index++) |
797 |
if ((sky_clearness >= SkyClearCat[index].lower) && |
798 |
(sky_clearness < SkyClearCat[index].upper)) |
799 |
break; |
800 |
|
801 |
return index; |
802 |
} |
803 |
|
804 |
/* Calculate diffuse illuminance to diffuse irradiance ratio */ |
805 |
|
806 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
807 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
808 |
/* Irradiance Components from Direct and Global */ |
809 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */ |
810 |
|
811 |
double CalcDiffuseIllumRatio( int index ) |
812 |
{ |
813 |
ModelCoeff const *pnle; /* Category coefficient pointer */ |
814 |
|
815 |
/* Get category coefficient pointer */ |
816 |
pnle = &(DiffuseLumEff[index]); |
817 |
|
818 |
return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) + |
819 |
pnle->d * log(sky_brightness); |
820 |
} |
821 |
|
822 |
/* Calculate direct illuminance to direct irradiance ratio */ |
823 |
|
824 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
825 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
826 |
/* Irradiance Components from Direct and Global */ |
827 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */ |
828 |
|
829 |
double CalcDirectIllumRatio( int index ) |
830 |
{ |
831 |
ModelCoeff const *pnle; /* Category coefficient pointer */ |
832 |
|
833 |
/* Get category coefficient pointer */ |
834 |
pnle = &(DirectLumEff[index]); |
835 |
|
836 |
/* Calculate direct illuminance from direct irradiance */ |
837 |
|
838 |
return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 * |
839 |
sun_zenith - 5.0) + pnle->d * sky_brightness), |
840 |
0.0); |
841 |
} |
842 |
|
843 |
/* Calculate sky brightness */ |
844 |
|
845 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
846 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
847 |
/* Irradiance Components from Direct and Global */ |
848 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */ |
849 |
|
850 |
double CalcSkyBrightness() |
851 |
{ |
852 |
return diff_irrad * CalcAirMass() / (DC_SolarConstantE * |
853 |
CalcEccentricity()); |
854 |
} |
855 |
|
856 |
/* Calculate sky clearness */ |
857 |
|
858 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
859 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
860 |
/* Irradiance Components from Direct and Global */ |
861 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */ |
862 |
|
863 |
double CalcSkyClearness() |
864 |
{ |
865 |
double sz_cubed; /* Sun zenith angle cubed */ |
866 |
|
867 |
/* Calculate sun zenith angle cubed */ |
868 |
sz_cubed = sun_zenith*sun_zenith*sun_zenith; |
869 |
|
870 |
return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 * |
871 |
sz_cubed) / (1.0 + 1.041 * sz_cubed); |
872 |
} |
873 |
|
874 |
/* Calculate diffuse horizontal irradiance from Perez sky brightness */ |
875 |
|
876 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
877 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
878 |
/* Irradiance Components from Direct and Global */ |
879 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */ |
880 |
/* (inverse). */ |
881 |
|
882 |
double CalcDiffuseIrradiance() |
883 |
{ |
884 |
return sky_brightness * DC_SolarConstantE * CalcEccentricity() / |
885 |
CalcAirMass(); |
886 |
} |
887 |
|
888 |
/* Calculate direct normal irradiance from Perez sky clearness */ |
889 |
|
890 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
891 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
892 |
/* Irradiance Components from Direct and Global */ |
893 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */ |
894 |
/* (inverse). */ |
895 |
|
896 |
double CalcDirectIrradiance() |
897 |
{ |
898 |
return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041 |
899 |
* sun_zenith*sun_zenith*sun_zenith)); |
900 |
} |
901 |
|
902 |
/* Calculate sky brightness and clearness from illuminance values */ |
903 |
int CalcSkyParamFromIllum() |
904 |
{ |
905 |
double test1 = 0.1; |
906 |
double test2 = 0.1; |
907 |
int counter = 0; |
908 |
int index = 0; /* Category index */ |
909 |
|
910 |
/* Convert illuminance to irradiance */ |
911 |
diff_irrad = diff_illum * DC_SolarConstantE / |
912 |
(DC_SolarConstantL * 1000.0); |
913 |
dir_irrad = dir_illum * DC_SolarConstantE / |
914 |
(DC_SolarConstantL * 1000.0); |
915 |
|
916 |
/* Calculate sky brightness and clearness */ |
917 |
sky_brightness = CalcSkyBrightness(); |
918 |
sky_clearness = CalcSkyClearness(); |
919 |
|
920 |
/* Limit sky clearness */ |
921 |
if (sky_clearness > 12.0) |
922 |
sky_clearness = 12.0; |
923 |
|
924 |
/* Limit sky brightness */ |
925 |
if (sky_brightness < 0.01) |
926 |
sky_brightness = 0.01; |
927 |
|
928 |
while (((fabs(diff_irrad - test1) > 10.0) || |
929 |
(fabs(dir_irrad - test2) > 10.0)) && !(counter == 5)) |
930 |
{ |
931 |
test1 = diff_irrad; |
932 |
test2 = dir_irrad; |
933 |
counter++; |
934 |
|
935 |
/* Convert illuminance to irradiance */ |
936 |
index = GetCategoryIndex(); |
937 |
diff_irrad = diff_illum / CalcDiffuseIllumRatio(index); |
938 |
dir_irrad = dir_illum / CalcDirectIllumRatio(index); |
939 |
|
940 |
/* Calculate sky brightness and clearness */ |
941 |
sky_brightness = CalcSkyBrightness(); |
942 |
sky_clearness = CalcSkyClearness(); |
943 |
|
944 |
/* Limit sky clearness */ |
945 |
if (sky_clearness > 12.0) |
946 |
sky_clearness = 12.0; |
947 |
|
948 |
/* Limit sky brightness */ |
949 |
if (sky_brightness < 0.01) |
950 |
sky_brightness = 0.01; |
951 |
} |
952 |
|
953 |
return GetCategoryIndex(); |
954 |
} |
955 |
|
956 |
/* Calculate relative luminance */ |
957 |
|
958 |
/* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ |
959 |
/* ìAll-Weather Model for Sky Luminance Distribution - */ |
960 |
/* Preliminary Configuration and Validation,î Solar Energy */ |
961 |
/* 50(3):235-245, Eqn. 1. */ |
962 |
|
963 |
double CalcRelLuminance( double gamma, double zeta ) |
964 |
{ |
965 |
return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) * |
966 |
(1.0 + perez_param[2] * exp(perez_param[3] * gamma) + |
967 |
perez_param[4] * cos(gamma) * cos(gamma)); |
968 |
} |
969 |
|
970 |
/* Calculate Perez sky model parameters */ |
971 |
|
972 |
/* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ |
973 |
/* ìAll-Weather Model for Sky Luminance Distribution - */ |
974 |
/* Preliminary Configuration and Validation,î Solar Energy */ |
975 |
/* 50(3):235-245, Eqns. 6 - 8. */ |
976 |
|
977 |
void CalcPerezParam( double sz, double epsilon, double delta, |
978 |
int index ) |
979 |
{ |
980 |
double x[5][4]; /* Coefficents a, b, c, d, e */ |
981 |
int i, j; /* Loop indices */ |
982 |
|
983 |
/* Limit sky brightness */ |
984 |
if (epsilon > 1.065 && epsilon < 2.8) |
985 |
{ |
986 |
if (delta < 0.2) |
987 |
delta = 0.2; |
988 |
} |
989 |
|
990 |
/* Get Perez coefficients */ |
991 |
for (i = 0; i < 5; i++) |
992 |
for (j = 0; j < 4; j++) |
993 |
x[i][j] = PerezCoeff[index][4 * i + j]; |
994 |
|
995 |
if (index != 0) |
996 |
{ |
997 |
/* Calculate parameter a, b, c, d and e (Eqn. 6) */ |
998 |
for (i = 0; i < 5; i++) |
999 |
perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] + |
1000 |
x[i][3] * sz); |
1001 |
} |
1002 |
else |
1003 |
{ |
1004 |
/* Parameters a, b and e (Eqn. 6) */ |
1005 |
perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] + |
1006 |
x[0][3] * sz); |
1007 |
perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] + |
1008 |
x[1][3] * sz); |
1009 |
perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] + |
1010 |
x[4][3] * sz); |
1011 |
|
1012 |
/* Parameter c (Eqn. 7) */ |
1013 |
perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz), |
1014 |
x[2][2])) - x[2][3]; |
1015 |
|
1016 |
/* Parameter d (Eqn. 8) */ |
1017 |
perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) + |
1018 |
x[3][2] + delta * x[3][3]; |
1019 |
} |
1020 |
} |
1021 |
|
1022 |
/* Calculate relative horizontal illuminance (modified by GW) */ |
1023 |
|
1024 |
/* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */ |
1025 |
/* ìAll-Weather Model for Sky Luminance Distribution - */ |
1026 |
/* Preliminary Configuration and Validation,î Solar Energy */ |
1027 |
/* 50(3):235-245, Eqn. 3. */ |
1028 |
|
1029 |
double CalcRelHorzIllum( float *parr ) |
1030 |
{ |
1031 |
int i; |
1032 |
double rh_illum = 0.0; /* Relative horizontal illuminance */ |
1033 |
|
1034 |
for (i = 1; i < nskypatch; i++) |
1035 |
rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i]; |
1036 |
|
1037 |
return rh_illum; |
1038 |
} |
1039 |
|
1040 |
/* Calculate earth orbit eccentricity correction factor */ |
1041 |
|
1042 |
/* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */ |
1043 |
/* Techniques. Springer, p. 72. */ |
1044 |
|
1045 |
double CalcEccentricity() |
1046 |
{ |
1047 |
double day_angle; /* Day angle (radians) */ |
1048 |
double E0; /* Eccentricity */ |
1049 |
|
1050 |
/* Calculate day angle */ |
1051 |
day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0); |
1052 |
|
1053 |
/* Calculate eccentricity */ |
1054 |
E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle) |
1055 |
+ 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 * |
1056 |
day_angle); |
1057 |
|
1058 |
return E0; |
1059 |
} |
1060 |
|
1061 |
/* Calculate atmospheric precipitable water content */ |
1062 |
|
1063 |
/* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */ |
1064 |
/* Stewart. 1990. ìModeling Daylight Availability and */ |
1065 |
/* Irradiance Components from Direct and Global */ |
1066 |
/* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */ |
1067 |
|
1068 |
/* Note: The default surface dew point temperature is 11 deg. C */ |
1069 |
/* (52 deg. F). Typical values are: */ |
1070 |
|
1071 |
/* Celsius Fahrenheit Human Perception */ |
1072 |
/* > 24 > 75 Extremely uncomfortable */ |
1073 |
/* 21 - 24 70 - 74 Very humid */ |
1074 |
/* 18 - 21 65 - 69 Somewhat uncomfortable */ |
1075 |
/* 16 - 18 60 - 64 OK for most people */ |
1076 |
/* 13 - 16 55 - 59 Comfortable */ |
1077 |
/* 10 - 12 50 - 54 Very comfortable */ |
1078 |
/* < 10 < 49 A bit dry for some */ |
1079 |
|
1080 |
double CalcPrecipWater( double dpt ) |
1081 |
{ return exp(0.07 * dpt - 0.075); } |
1082 |
|
1083 |
/* Calculate relative air mass */ |
1084 |
|
1085 |
/* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */ |
1086 |
/* for the Relative Optical Air Mass," Arch. Meteorol. */ |
1087 |
/* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */ |
1088 |
|
1089 |
/* Note: More sophisticated relative air mass models are */ |
1090 |
/* available, but they differ significantly only for */ |
1091 |
/* sun zenith angles greater than 80 degrees. */ |
1092 |
|
1093 |
double CalcAirMass() |
1094 |
{ |
1095 |
return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 - |
1096 |
RadToDeg(sun_zenith), -1.253))); |
1097 |
} |
1098 |
|
1099 |
/* Calculate Perez All-Weather sky patch luminances (modified by GW) */ |
1100 |
|
1101 |
/* NOTE: The sky patches centers are determined in accordance with the */ |
1102 |
/* BRE-IDMP sky luminance measurement procedures. (See for example */ |
1103 |
/* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */ |
1104 |
/* for the Validation of Illuminance Prediction Techniques," */ |
1105 |
/* Lighting Research & Technology 33(2):117-136.) */ |
1106 |
|
1107 |
void CalcSkyPatchLumin( float *parr ) |
1108 |
{ |
1109 |
int i; |
1110 |
double aas; /* Sun-sky point azimuthal angle */ |
1111 |
double sspa; /* Sun-sky point angle */ |
1112 |
double zsa; /* Zenithal sun angle */ |
1113 |
|
1114 |
for (i = 1; i < nskypatch; i++) |
1115 |
{ |
1116 |
/* Calculate sun-sky point azimuthal angle */ |
1117 |
aas = fabs(rh_pazi[i] - azimuth); |
1118 |
|
1119 |
/* Calculate zenithal sun angle */ |
1120 |
zsa = PI * 0.5 - rh_palt[i]; |
1121 |
|
1122 |
/* Calculate sun-sky point angle (Equation 8-20) */ |
1123 |
sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) * |
1124 |
sin(zsa) * cos(aas)); |
1125 |
|
1126 |
/* Calculate patch luminance */ |
1127 |
parr[3*i] = CalcRelLuminance(sspa, zsa); |
1128 |
if (parr[3*i] < 0) parr[3*i] = 0; |
1129 |
parr[3*i+2] = parr[3*i+1] = parr[3*i]; |
1130 |
} |
1131 |
} |