| 86 |
|
#include <string.h> |
| 87 |
|
#include <ctype.h> |
| 88 |
|
#include "rtmath.h" |
| 89 |
+ |
#include "rtio.h" |
| 90 |
+ |
#include "resolu.h" |
| 91 |
+ |
#include "platform.h" |
| 92 |
|
#include "color.h" |
| 93 |
+ |
#include "resolu.h" |
| 94 |
|
|
| 95 |
|
char *progname; /* Program name */ |
| 96 |
|
char errmsg[128]; /* Error message buffer */ |
| 112 |
|
double solar_rad; /* Solar radiance */ |
| 113 |
|
double sun_zenith; /* Sun zenith angle (radians) */ |
| 114 |
|
int input = 0; /* Input type */ |
| 115 |
+ |
int output = 0; /* Output type */ |
| 116 |
|
|
| 117 |
|
extern double dmax( double, double ); |
| 118 |
|
extern double CalcAirMass(); |
| 213 |
|
{ 1.950, 2.800 }, |
| 214 |
|
{ 2.800, 4.500 }, |
| 215 |
|
{ 4.500, 6.200 }, |
| 216 |
< |
{ 6.200, 12.00 } /* Clear */ |
| 216 |
> |
{ 6.200, 12.01 } /* Clear */ |
| 217 |
|
}; |
| 218 |
|
|
| 219 |
|
/* Luminous efficacy model coefficients */ |
| 252 |
|
}; |
| 253 |
|
|
| 254 |
|
#ifndef NSUNPATCH |
| 255 |
< |
#define NSUNPATCH 4 /* # patches to spread sun into */ |
| 255 |
> |
#define NSUNPATCH 4 /* max. # patches to spread sun into */ |
| 256 |
|
#endif |
| 257 |
|
|
| 258 |
|
extern int jdate(int month, int day); |
| 265 |
|
extern double s_longitude; |
| 266 |
|
extern double s_meridian; |
| 267 |
|
|
| 268 |
+ |
int nsuns = NSUNPATCH; /* number of sun patches to use */ |
| 269 |
+ |
double fixed_sun_sa = -1; /* fixed solid angle per sun? */ |
| 270 |
+ |
|
| 271 |
|
int verbose = 0; /* progress reports to stderr? */ |
| 272 |
|
|
| 273 |
|
int outfmt = 'a'; /* output format */ |
| 296 |
|
extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch); |
| 297 |
|
extern void AddDirect(float *parr); |
| 298 |
|
|
| 299 |
+ |
|
| 300 |
+ |
static const char * |
| 301 |
+ |
getfmtname(int fmt) |
| 302 |
+ |
{ |
| 303 |
+ |
switch (fmt) { |
| 304 |
+ |
case 'a': |
| 305 |
+ |
return("ascii"); |
| 306 |
+ |
case 'f': |
| 307 |
+ |
return("float"); |
| 308 |
+ |
case 'd': |
| 309 |
+ |
return("double"); |
| 310 |
+ |
} |
| 311 |
+ |
return("unknown"); |
| 312 |
+ |
} |
| 313 |
+ |
|
| 314 |
+ |
|
| 315 |
|
int |
| 316 |
|
main(int argc, char *argv[]) |
| 317 |
|
{ |
| 318 |
|
char buf[256]; |
| 319 |
+ |
int doheader = 1; /* output header? */ |
| 320 |
+ |
double rotation = 0; /* site rotation (degrees) */ |
| 321 |
|
double elevation; /* site elevation (meters) */ |
| 322 |
|
int dir_is_horiz; /* direct is meas. on horizontal? */ |
| 323 |
|
float *mtx_data = NULL; /* our matrix data */ |
| 324 |
< |
int ntsteps = 0; /* number of rows in matrix */ |
| 324 |
> |
int avgSky = 0; /* compute average sky r.t. matrix? */ |
| 325 |
> |
int ntsteps = 0; /* number of time steps */ |
| 326 |
> |
int tstorage = 0; /* number of allocated time steps */ |
| 327 |
> |
int nstored = 0; /* number of time steps in matrix */ |
| 328 |
|
int last_monthly = 0; /* month of last report */ |
| 329 |
+ |
int inconsistent = 0; /* inconsistent options set? */ |
| 330 |
|
int mo, da; /* month (1-12) and day (1-31) */ |
| 331 |
|
double hr; /* hour (local standard time) */ |
| 332 |
|
double dir, dif; /* direct and diffuse values */ |
| 345 |
|
case 'v': /* verbose progress reports */ |
| 346 |
|
verbose++; |
| 347 |
|
break; |
| 348 |
+ |
case 'h': /* turn off header */ |
| 349 |
+ |
doheader = 0; |
| 350 |
+ |
break; |
| 351 |
|
case 'o': /* output format */ |
| 352 |
|
switch (argv[i][2]) { |
| 353 |
|
case 'f': |
| 359 |
|
goto userr; |
| 360 |
|
} |
| 361 |
|
break; |
| 362 |
+ |
case 'O': /* output type */ |
| 363 |
+ |
switch (argv[i][2]) { |
| 364 |
+ |
case '0': |
| 365 |
+ |
output = 0; |
| 366 |
+ |
break; |
| 367 |
+ |
case '1': |
| 368 |
+ |
output = 1; |
| 369 |
+ |
break; |
| 370 |
+ |
default: |
| 371 |
+ |
goto userr; |
| 372 |
+ |
} |
| 373 |
+ |
if (argv[i][3]) |
| 374 |
+ |
goto userr; |
| 375 |
+ |
break; |
| 376 |
|
case 'm': /* Reinhart subdivisions */ |
| 377 |
|
rhsubdiv = atoi(argv[++i]); |
| 378 |
|
break; |
| 379 |
|
case 'c': /* sky color */ |
| 380 |
+ |
inconsistent |= (skycolor[1] <= 1e-4); |
| 381 |
|
skycolor[0] = atof(argv[++i]); |
| 382 |
|
skycolor[1] = atof(argv[++i]); |
| 383 |
|
skycolor[2] = atof(argv[++i]); |
| 384 |
|
break; |
| 385 |
|
case 'd': /* solar (direct) only */ |
| 386 |
|
skycolor[0] = skycolor[1] = skycolor[2] = 0; |
| 387 |
< |
if (suncolor[1] <= 1e-4) |
| 387 |
> |
if (suncolor[1] <= 1e-4) { |
| 388 |
> |
inconsistent = 1; |
| 389 |
|
suncolor[0] = suncolor[1] = suncolor[2] = 1; |
| 390 |
+ |
} |
| 391 |
|
break; |
| 392 |
|
case 's': /* sky only (no direct) */ |
| 393 |
|
suncolor[0] = suncolor[1] = suncolor[2] = 0; |
| 394 |
< |
if (skycolor[1] <= 1e-4) |
| 394 |
> |
if (skycolor[1] <= 1e-4) { |
| 395 |
> |
inconsistent = 1; |
| 396 |
|
skycolor[0] = skycolor[1] = skycolor[2] = 1; |
| 397 |
+ |
} |
| 398 |
|
break; |
| 399 |
+ |
case 'r': /* rotate distribution */ |
| 400 |
+ |
if (argv[i][2] && argv[i][2] != 'z') |
| 401 |
+ |
goto userr; |
| 402 |
+ |
rotation = atof(argv[++i]); |
| 403 |
+ |
break; |
| 404 |
+ |
case '5': /* 5-phase calculation */ |
| 405 |
+ |
nsuns = 1; |
| 406 |
+ |
fixed_sun_sa = PI/360.*atof(argv[++i]); |
| 407 |
+ |
if (fixed_sun_sa <= 0) { |
| 408 |
+ |
fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n", |
| 409 |
+ |
argv[0]); |
| 410 |
+ |
exit(1); |
| 411 |
+ |
} |
| 412 |
+ |
fixed_sun_sa *= fixed_sun_sa*PI; |
| 413 |
+ |
break; |
| 414 |
+ |
case 'A': /* compute average sky */ |
| 415 |
+ |
avgSky = 1; |
| 416 |
+ |
break; |
| 417 |
|
default: |
| 418 |
|
goto userr; |
| 419 |
|
} |
| 420 |
|
if (i < argc-1) |
| 421 |
|
goto userr; |
| 422 |
+ |
if (inconsistent) |
| 423 |
+ |
fprintf(stderr, "%s: WARNING: inconsistent -s, -d, -c options!\n", |
| 424 |
+ |
progname); |
| 425 |
|
if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) { |
| 426 |
|
fprintf(stderr, "%s: cannot open '%s' for input\n", |
| 427 |
|
progname, argv[i]); |
| 471 |
|
progname, s_latitude, s_longitude); |
| 472 |
|
fprintf(stderr, "%s: %d sky patches per time step\n", |
| 473 |
|
progname, nskypatch); |
| 474 |
+ |
if (rotation != 0) |
| 475 |
+ |
fprintf(stderr, "%s: rotating output %.0f degrees\n", |
| 476 |
+ |
progname, rotation); |
| 477 |
|
} |
| 478 |
|
/* convert quantities to radians */ |
| 479 |
|
s_latitude = DegToRad(s_latitude); |
| 480 |
|
s_longitude = DegToRad(s_longitude); |
| 481 |
|
s_meridian = DegToRad(s_meridian); |
| 482 |
+ |
/* initial allocation */ |
| 483 |
+ |
mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch); |
| 484 |
|
/* process each time step in tape */ |
| 485 |
|
while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) { |
| 486 |
|
double sda, sta; |
| 487 |
< |
/* make space for next time step */ |
| 488 |
< |
mtx_offset = 3*nskypatch*ntsteps++; |
| 489 |
< |
mtx_data = resize_dmatrix(mtx_data, ntsteps, nskypatch); |
| 487 |
> |
|
| 488 |
> |
mtx_offset = 3*nskypatch*nstored; |
| 489 |
> |
nstored += !avgSky | !nstored; |
| 490 |
> |
/* make space for next row */ |
| 491 |
> |
if (nstored > tstorage) { |
| 492 |
> |
tstorage += (tstorage>>1) + nstored + 7; |
| 493 |
> |
mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch); |
| 494 |
> |
} |
| 495 |
> |
ntsteps++; /* keep count of time steps */ |
| 496 |
|
if (dif <= 1e-4) { |
| 497 |
< |
memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); |
| 497 |
> |
if (!avgSky | !mtx_offset) |
| 498 |
> |
memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch); |
| 499 |
|
continue; |
| 500 |
|
} |
| 501 |
|
if (verbose && mo != last_monthly) |
| 506 |
|
sda = sdec(julian_date); |
| 507 |
|
sta = stadj(julian_date); |
| 508 |
|
altitude = salt(sda, hr+sta); |
| 509 |
< |
azimuth = sazi(sda, hr+sta) + PI; |
| 509 |
> |
azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation); |
| 510 |
|
/* convert measured values */ |
| 511 |
|
if (dir_is_horiz && altitude > 0.) |
| 512 |
|
dir /= sin(altitude); |
| 520 |
|
/* compute sky patch values */ |
| 521 |
|
ComputeSky(mtx_data+mtx_offset); |
| 522 |
|
AddDirect(mtx_data+mtx_offset); |
| 523 |
+ |
/* update cumulative sky? */ |
| 524 |
+ |
for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; ) |
| 525 |
+ |
mtx_data[i] += mtx_data[mtx_offset+i]; |
| 526 |
|
} |
| 527 |
|
/* check for junk at end */ |
| 528 |
|
while ((i = fgetc(stdin)) != EOF) |
| 534 |
|
fputs(buf, stderr); fputc('\n', stderr); |
| 535 |
|
break; |
| 536 |
|
} |
| 537 |
+ |
if (!ntsteps) { |
| 538 |
+ |
fprintf(stderr, "%s: no valid time steps on input\n", progname); |
| 539 |
+ |
exit(1); |
| 540 |
+ |
} |
| 541 |
+ |
dif = 1./(double)ntsteps; /* average sky? */ |
| 542 |
+ |
for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; ) |
| 543 |
+ |
mtx_data[i] *= dif; |
| 544 |
|
/* write out matrix */ |
| 545 |
+ |
if (outfmt != 'a') |
| 546 |
+ |
SET_FILE_BINARY(stdout); |
| 547 |
|
#ifdef getc_unlocked |
| 548 |
|
flockfile(stdout); |
| 549 |
|
#endif |
| 550 |
|
if (verbose) |
| 551 |
|
fprintf(stderr, "%s: writing %smatrix with %d time steps...\n", |
| 552 |
< |
progname, outfmt=='a' ? "" : "binary ", ntsteps); |
| 552 |
> |
progname, outfmt=='a' ? "" : "binary ", nstored); |
| 553 |
> |
if (doheader) { |
| 554 |
> |
newheader("RADIANCE", stdout); |
| 555 |
> |
printargs(argc, argv, stdout); |
| 556 |
> |
printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude), |
| 557 |
> |
-RadToDeg(s_longitude)); |
| 558 |
> |
printf("NROWS=%d\n", nskypatch); |
| 559 |
> |
printf("NCOLS=%d\n", nstored); |
| 560 |
> |
printf("NCOMP=3\n"); |
| 561 |
> |
fputformat((char *)getfmtname(outfmt), stdout); |
| 562 |
> |
putchar('\n'); |
| 563 |
> |
} |
| 564 |
|
/* patches are rows (outer sort) */ |
| 565 |
|
for (i = 0; i < nskypatch; i++) { |
| 566 |
|
mtx_offset = 3*i; |
| 567 |
|
switch (outfmt) { |
| 568 |
|
case 'a': |
| 569 |
< |
for (j = 0; j < ntsteps; j++) { |
| 569 |
> |
for (j = 0; j < nstored; j++) { |
| 570 |
|
printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset], |
| 571 |
|
mtx_data[mtx_offset+1], |
| 572 |
|
mtx_data[mtx_offset+2]); |
| 573 |
|
mtx_offset += 3*nskypatch; |
| 574 |
|
} |
| 575 |
< |
if (ntsteps > 1) |
| 575 |
> |
if (nstored > 1) |
| 576 |
|
fputc('\n', stdout); |
| 577 |
|
break; |
| 578 |
|
case 'f': |
| 579 |
< |
for (j = 0; j < ntsteps; j++) { |
| 580 |
< |
fwrite(mtx_data+mtx_offset, sizeof(float), 3, |
| 579 |
> |
for (j = 0; j < nstored; j++) { |
| 580 |
> |
putbinary(mtx_data+mtx_offset, sizeof(float), 3, |
| 581 |
|
stdout); |
| 582 |
|
mtx_offset += 3*nskypatch; |
| 583 |
|
} |
| 584 |
|
break; |
| 585 |
|
case 'd': |
| 586 |
< |
for (j = 0; j < ntsteps; j++) { |
| 586 |
> |
for (j = 0; j < nstored; j++) { |
| 587 |
|
double ment[3]; |
| 588 |
|
ment[0] = mtx_data[mtx_offset]; |
| 589 |
|
ment[1] = mtx_data[mtx_offset+1]; |
| 590 |
|
ment[2] = mtx_data[mtx_offset+2]; |
| 591 |
< |
fwrite(ment, sizeof(double), 3, stdout); |
| 591 |
> |
putbinary(ment, sizeof(double), 3, stdout); |
| 592 |
|
mtx_offset += 3*nskypatch; |
| 593 |
|
} |
| 594 |
|
break; |
| 602 |
|
fprintf(stderr, "%s: done.\n", progname); |
| 603 |
|
exit(0); |
| 604 |
|
userr: |
| 605 |
< |
fprintf(stderr, "Usage: %s [-v][-d|-s][-m N][-g r g b][-c r g b][-o{f|d}] [tape.wea]\n", |
| 605 |
> |
fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n", |
| 606 |
|
progname); |
| 607 |
|
exit(1); |
| 608 |
|
fmterr: |
| 623 |
|
{ |
| 624 |
|
int index; /* Category index */ |
| 625 |
|
double norm_diff_illum; /* Normalized diffuse illuimnance */ |
| 518 |
– |
double zlumin; /* Zenith luminance */ |
| 626 |
|
int i; |
| 627 |
|
|
| 628 |
|
/* Calculate atmospheric precipitable water content */ |
| 629 |
|
apwc = CalcPrecipWater(dew_point); |
| 630 |
|
|
| 631 |
< |
/* Limit solar altitude to keep circumsolar off zenith */ |
| 632 |
< |
if (altitude > DegToRad(87.0)) |
| 633 |
< |
altitude = DegToRad(87.0); |
| 631 |
> |
/* Calculate sun zenith angle (don't let it dip below horizon) */ |
| 632 |
> |
/* Also limit minimum angle to keep circumsolar off zenith */ |
| 633 |
> |
if (altitude <= 0.0) |
| 634 |
> |
sun_zenith = DegToRad(90.0); |
| 635 |
> |
else if (altitude >= DegToRad(87.0)) |
| 636 |
> |
sun_zenith = DegToRad(3.0); |
| 637 |
> |
else |
| 638 |
> |
sun_zenith = DegToRad(90.0) - altitude; |
| 639 |
|
|
| 528 |
– |
/* Calculate sun zenith angle */ |
| 529 |
– |
sun_zenith = DegToRad(90.0) - altitude; |
| 530 |
– |
|
| 640 |
|
/* Compute the inputs for the calculation of the sky distribution */ |
| 641 |
|
|
| 642 |
|
if (input == 0) /* XXX never used */ |
| 655 |
|
sky_brightness = CalcSkyBrightness(); |
| 656 |
|
sky_clearness = CalcSkyClearness(); |
| 657 |
|
|
| 658 |
+ |
/* Limit sky clearness */ |
| 659 |
+ |
if (sky_clearness > 11.9) |
| 660 |
+ |
sky_clearness = 11.9; |
| 661 |
+ |
|
| 662 |
+ |
/* Limit sky brightness */ |
| 663 |
+ |
if (sky_brightness < 0.01) |
| 664 |
+ |
sky_brightness = 0.01; |
| 665 |
+ |
|
| 666 |
|
/* Calculate illuminance */ |
| 667 |
|
index = GetCategoryIndex(); |
| 668 |
|
diff_illum = diff_irrad * CalcDiffuseIllumRatio(index); |
| 674 |
|
index = CalcSkyParamFromIllum(); |
| 675 |
|
} |
| 676 |
|
|
| 677 |
+ |
if (output == 1) { /* hack for solar radiance */ |
| 678 |
+ |
diff_illum = diff_irrad * WHTEFFICACY; |
| 679 |
+ |
dir_illum = dir_irrad * WHTEFFICACY; |
| 680 |
+ |
} |
| 681 |
+ |
|
| 682 |
|
if (bright(skycolor) <= 1e-4) { /* 0 sky component? */ |
| 683 |
|
memset(parr, 0, sizeof(float)*3*nskypatch); |
| 684 |
|
return; |
| 699 |
|
/* Calculate relative horizontal illuminance */ |
| 700 |
|
norm_diff_illum = CalcRelHorzIllum(parr); |
| 701 |
|
|
| 702 |
+ |
/* Check for zero sky -- make uniform in that case */ |
| 703 |
+ |
if (norm_diff_illum <= FTINY) { |
| 704 |
+ |
for (i = 1; i < nskypatch; i++) |
| 705 |
+ |
setcolor(parr+3*i, 1., 1., 1.); |
| 706 |
+ |
norm_diff_illum = PI; |
| 707 |
+ |
} |
| 708 |
|
/* Normalization coefficient */ |
| 709 |
|
norm_diff_illum = diff_illum / norm_diff_illum; |
| 710 |
|
|
| 583 |
– |
/* Calculate relative zenith luminance */ |
| 584 |
– |
zlumin = CalcRelLuminance(sun_zenith, 0.0); |
| 585 |
– |
|
| 586 |
– |
/* Calculate absolute zenith illuminance */ |
| 587 |
– |
zlumin *= norm_diff_illum; |
| 588 |
– |
|
| 711 |
|
/* Apply to sky patches to get absolute radiance values */ |
| 712 |
|
for (i = 1; i < nskypatch; i++) { |
| 713 |
< |
scalecolor(parr+3*i, zlumin*(1./WHTEFFICACY)); |
| 713 |
> |
scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY)); |
| 714 |
|
multcolor(parr+3*i, skycolor); |
| 715 |
|
} |
| 716 |
|
} |
| 727 |
|
|
| 728 |
|
if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4) |
| 729 |
|
return; |
| 730 |
< |
/* identify NSUNPATCH closest patches */ |
| 731 |
< |
for (i = NSUNPATCH; i--; ) |
| 730 |
> |
/* identify nsuns closest patches */ |
| 731 |
> |
if (nsuns > NSUNPATCH) |
| 732 |
> |
nsuns = NSUNPATCH; |
| 733 |
> |
else if (nsuns <= 0) |
| 734 |
> |
nsuns = 1; |
| 735 |
> |
for (i = nsuns; i--; ) |
| 736 |
|
near_dprod[i] = -1.; |
| 737 |
|
vector(svec, altitude, azimuth); |
| 738 |
|
for (p = 1; p < nskypatch; p++) { |
| 740 |
|
double dprod; |
| 741 |
|
rh_vector(pvec, p); |
| 742 |
|
dprod = DOT(pvec, svec); |
| 743 |
< |
for (i = 0; i < NSUNPATCH; i++) |
| 743 |
> |
for (i = 0; i < nsuns; i++) |
| 744 |
|
if (dprod > near_dprod[i]) { |
| 745 |
< |
for (j = NSUNPATCH; --j > i; ) { |
| 745 |
> |
for (j = nsuns; --j > i; ) { |
| 746 |
|
near_dprod[j] = near_dprod[j-1]; |
| 747 |
|
near_patch[j] = near_patch[j-1]; |
| 748 |
|
} |
| 752 |
|
} |
| 753 |
|
} |
| 754 |
|
wtot = 0; /* weight by proximity */ |
| 755 |
< |
for (i = NSUNPATCH; i--; ) |
| 755 |
> |
for (i = nsuns; i--; ) |
| 756 |
|
wtot += wta[i] = 1./(1.002 - near_dprod[i]); |
| 757 |
|
/* add to nearest patch radiances */ |
| 758 |
< |
for (i = NSUNPATCH; i--; ) { |
| 758 |
> |
for (i = nsuns; i--; ) { |
| 759 |
|
float *pdest = parr + 3*near_patch[i]; |
| 760 |
< |
float val_add = wta[i] * dir_illum / |
| 761 |
< |
(WHTEFFICACY * wtot * rh_dom[near_patch[i]]); |
| 760 |
> |
float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot); |
| 761 |
> |
|
| 762 |
> |
val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa |
| 763 |
> |
: rh_dom[near_patch[i]] ; |
| 764 |
|
*pdest++ += val_add*suncolor[0]; |
| 765 |
|
*pdest++ += val_add*suncolor[1]; |
| 766 |
|
*pdest++ += val_add*suncolor[2]; |
| 904 |
|
double sz_cubed; /* Sun zenith angle cubed */ |
| 905 |
|
|
| 906 |
|
/* Calculate sun zenith angle cubed */ |
| 907 |
< |
sz_cubed = pow(sun_zenith, 3.0); |
| 907 |
> |
sz_cubed = sun_zenith*sun_zenith*sun_zenith; |
| 908 |
|
|
| 909 |
|
return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 * |
| 910 |
|
sz_cubed) / (1.0 + 1.041 * sz_cubed); |
| 935 |
|
double CalcDirectIrradiance() |
| 936 |
|
{ |
| 937 |
|
return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041 |
| 938 |
< |
* pow(sun_zenith, 3.0))); |
| 938 |
> |
* sun_zenith*sun_zenith*sun_zenith)); |
| 939 |
|
} |
| 940 |
|
|
| 941 |
|
/* Calculate sky brightness and clearness from illuminance values */ |
| 961 |
|
sky_clearness = 12.0; |
| 962 |
|
|
| 963 |
|
/* Limit sky brightness */ |
| 964 |
< |
if (sky_brightness < 0.05) |
| 964 |
> |
if (sky_brightness < 0.01) |
| 965 |
|
sky_brightness = 0.01; |
| 966 |
|
|
| 967 |
|
while (((fabs(diff_irrad - test1) > 10.0) || |
| 974 |
|
/* Convert illuminance to irradiance */ |
| 975 |
|
index = GetCategoryIndex(); |
| 976 |
|
diff_irrad = diff_illum / CalcDiffuseIllumRatio(index); |
| 977 |
< |
dir_irrad = dir_illum / CalcDirectIllumRatio(index); |
| 977 |
> |
dir_irrad = CalcDirectIllumRatio(index); |
| 978 |
> |
if (dir_irrad > 0.1) |
| 979 |
> |
dir_irrad = dir_illum / dir_irrad; |
| 980 |
|
|
| 981 |
|
/* Calculate sky brightness and clearness */ |
| 982 |
|
sky_brightness = CalcSkyBrightness(); |
| 987 |
|
sky_clearness = 12.0; |
| 988 |
|
|
| 989 |
|
/* Limit sky brightness */ |
| 990 |
< |
if (sky_brightness < 0.05) |
| 990 |
> |
if (sky_brightness < 0.01) |
| 991 |
|
sky_brightness = 0.01; |
| 992 |
|
} |
| 993 |
|
|
| 1073 |
|
double rh_illum = 0.0; /* Relative horizontal illuminance */ |
| 1074 |
|
|
| 1075 |
|
for (i = 1; i < nskypatch; i++) |
| 1076 |
< |
rh_illum += parr[3*i+1] * rh_cos(i); |
| 1076 |
> |
rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i]; |
| 1077 |
|
|
| 1078 |
< |
return rh_illum * (2.0 * PI / (nskypatch-1)); |
| 1078 |
> |
return rh_illum; |
| 1079 |
|
} |
| 1080 |
|
|
| 1081 |
|
/* Calculate earth orbit eccentricity correction factor */ |