ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.30
Committed: Thu Nov 7 23:15:07 2019 UTC (4 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.29: +3 -14 lines
Log Message:
Added more accurate Michalsky solar position calculation and made correction to old IES handbook formula (thanks to Axel Jacobs)

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.30 static const char RCSid[] = "$Id: gendaymtx.c,v 2.29 2019/08/14 21:00:14 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdio.h>
85     #include <stdlib.h>
86     #include <string.h>
87     #include <ctype.h>
88 greg 2.30 #include "platform.h"
89 greg 2.1 #include "rtmath.h"
90 greg 2.23 #include "rtio.h"
91 greg 2.1 #include "color.h"
92 greg 2.30 #include "sun.h"
93 greg 2.1
94     char *progname; /* Program name */
95     char errmsg[128]; /* Error message buffer */
96     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
97     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
98    
99     double altitude; /* Solar altitude (radians) */
100     double azimuth; /* Solar azimuth (radians) */
101     double apwc; /* Atmospheric precipitable water content */
102     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
103     double diff_illum; /* Diffuse illuminance */
104     double diff_irrad; /* Diffuse irradiance */
105     double dir_illum; /* Direct illuminance */
106     double dir_irrad; /* Direct irradiance */
107     int julian_date; /* Julian date */
108     double perez_param[5]; /* Perez sky model parameters */
109     double sky_brightness; /* Sky brightness */
110     double sky_clearness; /* Sky clearness */
111     double solar_rad; /* Solar radiance */
112     double sun_zenith; /* Sun zenith angle (radians) */
113     int input = 0; /* Input type */
114 greg 2.11 int output = 0; /* Output type */
115 greg 2.1
116     extern double dmax( double, double );
117     extern double CalcAirMass();
118     extern double CalcDiffuseIllumRatio( int );
119     extern double CalcDiffuseIrradiance();
120     extern double CalcDirectIllumRatio( int );
121     extern double CalcDirectIrradiance();
122     extern double CalcEccentricity();
123     extern double CalcPrecipWater( double );
124     extern double CalcRelHorzIllum( float *parr );
125     extern double CalcRelLuminance( double, double );
126     extern double CalcSkyBrightness();
127     extern double CalcSkyClearness();
128     extern int CalcSkyParamFromIllum();
129     extern int GetCategoryIndex();
130     extern void CalcPerezParam( double, double, double, int );
131     extern void CalcSkyPatchLumin( float *parr );
132     extern void ComputeSky( float *parr );
133    
134     /* Degrees into radians */
135     #define DegToRad(deg) ((deg)*(PI/180.))
136    
137     /* Radiuans into degrees */
138     #define RadToDeg(rad) ((rad)*(180./PI))
139    
140    
141     /* Perez sky model coefficients */
142    
143     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
144     /* Weather Model for Sky Luminance Distribution - */
145     /* Preliminary Configuration and Validation," Solar */
146     /* Energy 50(3):235-245, Table 1. */
147    
148     static const double PerezCoeff[8][20] =
149     {
150     /* Sky clearness (epsilon): 1.000 to 1.065 */
151     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
152     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
153     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
154     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
155     /* Sky clearness (epsilon): 1.065 to 1.230 */
156     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
157     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
158     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
159     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
160     /* Sky clearness (epsilon): 1.230 to 1.500 */
161     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
162     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
163     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
164     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
165     /* Sky clearness (epsilon): 1.500 to 1.950 */
166     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
167     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
168     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
169     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
170     /* Sky clearness (epsilon): 1.950 to 2.800 */
171     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
172     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
173     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
174     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
175     /* Sky clearness (epsilon): 2.800 to 4.500 */
176     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
177     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
178     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
179     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
180     /* Sky clearness (epsilon): 4.500 to 6.200 */
181     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
182     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
183     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
184     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
185     /* Sky clearness (epsilon): 6.200 to ... */
186     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
187     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
188     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
189     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
190     };
191    
192     /* Perez irradiance component model coefficients */
193    
194     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
195     /* Stewart. 1990. ìModeling Daylight Availability and */
196     /* Irradiance Components from Direct and Global */
197     /* Irradiance,î Solar Energy 44(5):271-289. */
198    
199     typedef struct
200     {
201     double lower; /* Lower bound */
202     double upper; /* Upper bound */
203     } CategoryBounds;
204    
205     /* Perez sky clearness (epsilon) categories (Table 1) */
206     static const CategoryBounds SkyClearCat[8] =
207     {
208     { 1.000, 1.065 }, /* Overcast */
209     { 1.065, 1.230 },
210     { 1.230, 1.500 },
211     { 1.500, 1.950 },
212     { 1.950, 2.800 },
213     { 2.800, 4.500 },
214     { 4.500, 6.200 },
215 greg 2.12 { 6.200, 12.01 } /* Clear */
216 greg 2.1 };
217    
218     /* Luminous efficacy model coefficients */
219     typedef struct
220     {
221     double a;
222     double b;
223     double c;
224     double d;
225     } ModelCoeff;
226    
227     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
228     static const ModelCoeff DiffuseLumEff[8] =
229     {
230     { 97.24, -0.46, 12.00, -8.91 },
231     { 107.22, 1.15, 0.59, -3.95 },
232     { 104.97, 2.96, -5.53, -8.77 },
233     { 102.39, 5.59, -13.95, -13.90 },
234     { 100.71, 5.94, -22.75, -23.74 },
235     { 106.42, 3.83, -36.15, -28.83 },
236     { 141.88, 1.90, -53.24, -14.03 },
237     { 152.23, 0.35, -45.27, -7.98 }
238     };
239    
240     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
241     static const ModelCoeff DirectLumEff[8] =
242     {
243     { 57.20, -4.55, -2.98, 117.12 },
244     { 98.99, -3.46, -1.21, 12.38 },
245     { 109.83, -4.90, -1.71, -8.81 },
246     { 110.34, -5.84, -1.99, -4.56 },
247     { 106.36, -3.97, -1.75, -6.16 },
248     { 107.19, -1.25, -1.51, -26.73 },
249     { 105.75, 0.77, -1.26, -34.44 },
250     { 101.18, 1.58, -1.10, -8.29 }
251     };
252    
253 greg 2.3 #ifndef NSUNPATCH
254 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
255 greg 2.3 #endif
256    
257 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
258     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
259    
260 greg 2.1 int verbose = 0; /* progress reports to stderr? */
261    
262     int outfmt = 'a'; /* output format */
263    
264     int rhsubdiv = 1; /* Reinhart sky subdivisions */
265    
266 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
267     COLOR suncolor = {1., 1., 1.}; /* sun color */
268     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
269 greg 2.1
270     int nskypatch; /* number of Reinhart patches */
271     float *rh_palt; /* sky patch altitudes (radians) */
272     float *rh_pazi; /* sky patch azimuths (radians) */
273     float *rh_dom; /* sky patch solid angle (sr) */
274    
275     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
276     (v)[0] = (v)[1]*tsin(azi), \
277     (v)[1] *= tcos(azi), \
278     (v)[2] = tsin(alt) )
279    
280     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
281    
282     #define rh_cos(i) tsin(rh_palt[i])
283    
284     extern int rh_init(void);
285     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
286     extern void AddDirect(float *parr);
287    
288 greg 2.14
289     static const char *
290     getfmtname(int fmt)
291     {
292     switch (fmt) {
293     case 'a':
294     return("ascii");
295     case 'f':
296     return("float");
297     case 'd':
298     return("double");
299     }
300     return("unknown");
301     }
302    
303    
304 greg 2.1 int
305     main(int argc, char *argv[])
306     {
307     char buf[256];
308 greg 2.14 int doheader = 1; /* output header? */
309 greg 2.8 double rotation = 0; /* site rotation (degrees) */
310 greg 2.1 double elevation; /* site elevation (meters) */
311     int dir_is_horiz; /* direct is meas. on horizontal? */
312     float *mtx_data = NULL; /* our matrix data */
313 greg 2.28 int avgSky = 0; /* compute average sky r.t. matrix? */
314 greg 2.27 int ntsteps = 0; /* number of time steps */
315 greg 2.28 int tstorage = 0; /* number of allocated time steps */
316     int nstored = 0; /* number of time steps in matrix */
317 greg 2.1 int last_monthly = 0; /* month of last report */
318 greg 2.22 int inconsistent = 0; /* inconsistent options set? */
319 greg 2.1 int mo, da; /* month (1-12) and day (1-31) */
320     double hr; /* hour (local standard time) */
321     double dir, dif; /* direct and diffuse values */
322     int mtx_offset;
323     int i, j;
324    
325     progname = argv[0];
326     /* get options */
327     for (i = 1; i < argc && argv[i][0] == '-'; i++)
328     switch (argv[i][1]) {
329 greg 2.4 case 'g': /* ground reflectance */
330     grefl[0] = atof(argv[++i]);
331     grefl[1] = atof(argv[++i]);
332     grefl[2] = atof(argv[++i]);
333 greg 2.1 break;
334 greg 2.4 case 'v': /* verbose progress reports */
335 greg 2.1 verbose++;
336     break;
337 greg 2.14 case 'h': /* turn off header */
338     doheader = 0;
339     break;
340 greg 2.4 case 'o': /* output format */
341 greg 2.1 switch (argv[i][2]) {
342     case 'f':
343     case 'd':
344     case 'a':
345     outfmt = argv[i][2];
346     break;
347     default:
348     goto userr;
349     }
350     break;
351 greg 2.11 case 'O': /* output type */
352     switch (argv[i][2]) {
353     case '0':
354     output = 0;
355     break;
356     case '1':
357     output = 1;
358     break;
359     default:
360     goto userr;
361     }
362     if (argv[i][3])
363     goto userr;
364     break;
365 greg 2.4 case 'm': /* Reinhart subdivisions */
366 greg 2.1 rhsubdiv = atoi(argv[++i]);
367     break;
368 greg 2.4 case 'c': /* sky color */
369 greg 2.22 inconsistent |= (skycolor[1] <= 1e-4);
370 greg 2.1 skycolor[0] = atof(argv[++i]);
371     skycolor[1] = atof(argv[++i]);
372     skycolor[2] = atof(argv[++i]);
373     break;
374 greg 2.4 case 'd': /* solar (direct) only */
375 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
376 greg 2.22 if (suncolor[1] <= 1e-4) {
377     inconsistent = 1;
378 greg 2.4 suncolor[0] = suncolor[1] = suncolor[2] = 1;
379 greg 2.22 }
380 greg 2.1 break;
381 greg 2.4 case 's': /* sky only (no direct) */
382     suncolor[0] = suncolor[1] = suncolor[2] = 0;
383 greg 2.22 if (skycolor[1] <= 1e-4) {
384     inconsistent = 1;
385 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 1;
386 greg 2.22 }
387 greg 2.1 break;
388 greg 2.8 case 'r': /* rotate distribution */
389     if (argv[i][2] && argv[i][2] != 'z')
390     goto userr;
391     rotation = atof(argv[++i]);
392     break;
393 greg 2.10 case '5': /* 5-phase calculation */
394     nsuns = 1;
395 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
396 greg 2.21 if (fixed_sun_sa <= 0) {
397     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
398     argv[0]);
399     exit(1);
400     }
401 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
402 greg 2.10 break;
403 greg 2.27 case 'A': /* compute average sky */
404     avgSky = 1;
405     break;
406 greg 2.1 default:
407     goto userr;
408     }
409     if (i < argc-1)
410     goto userr;
411 greg 2.22 if (inconsistent)
412     fprintf(stderr, "%s: WARNING: inconsistent -s, -d, -c options!\n",
413     progname);
414 greg 2.1 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
415     fprintf(stderr, "%s: cannot open '%s' for input\n",
416     progname, argv[i]);
417     exit(1);
418     }
419     if (verbose) {
420     if (i == argc-1)
421     fprintf(stderr, "%s: reading weather tape '%s'\n",
422     progname, argv[i]);
423     else
424     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
425     progname);
426     }
427     /* read weather tape header */
428 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
429 greg 2.1 goto fmterr;
430     if (scanf("latitude %lf\n", &s_latitude) != 1)
431     goto fmterr;
432     if (scanf("longitude %lf\n", &s_longitude) != 1)
433     goto fmterr;
434     if (scanf("time_zone %lf\n", &s_meridian) != 1)
435     goto fmterr;
436     if (scanf("site_elevation %lf\n", &elevation) != 1)
437     goto fmterr;
438     if (scanf("weather_data_file_units %d\n", &input) != 1)
439     goto fmterr;
440     switch (input) { /* translate units */
441     case 1:
442     input = 1; /* radiometric quantities */
443     dir_is_horiz = 0; /* direct is perpendicular meas. */
444     break;
445     case 2:
446     input = 1; /* radiometric quantities */
447     dir_is_horiz = 1; /* solar measured horizontally */
448     break;
449     case 3:
450     input = 2; /* photometric quantities */
451     dir_is_horiz = 0; /* direct is perpendicular meas. */
452     break;
453     default:
454     goto fmterr;
455     }
456     rh_init(); /* initialize sky patches */
457     if (verbose) {
458     fprintf(stderr, "%s: location '%s'\n", progname, buf);
459     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
460     progname, s_latitude, s_longitude);
461     fprintf(stderr, "%s: %d sky patches per time step\n",
462     progname, nskypatch);
463 greg 2.8 if (rotation != 0)
464     fprintf(stderr, "%s: rotating output %.0f degrees\n",
465     progname, rotation);
466 greg 2.1 }
467 greg 2.2 /* convert quantities to radians */
468     s_latitude = DegToRad(s_latitude);
469     s_longitude = DegToRad(s_longitude);
470     s_meridian = DegToRad(s_meridian);
471 greg 2.27 /* initial allocation */
472 greg 2.28 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
473 greg 2.1 /* process each time step in tape */
474     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
475     double sda, sta;
476 greg 2.27
477 greg 2.28 mtx_offset = 3*nskypatch*nstored;
478     nstored += !avgSky | !nstored;
479 greg 2.27 /* make space for next row */
480 greg 2.28 if (nstored > tstorage) {
481     tstorage += (tstorage>>1) + nstored + 7;
482     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
483 greg 2.15 }
484 greg 2.27 ntsteps++; /* keep count of time steps */
485 greg 2.1 if (dif <= 1e-4) {
486 greg 2.28 if (!avgSky | !mtx_offset)
487 greg 2.27 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
488 greg 2.1 continue;
489     }
490     if (verbose && mo != last_monthly)
491     fprintf(stderr, "%s: stepping through month %d...\n",
492     progname, last_monthly=mo);
493     /* compute solar position */
494     julian_date = jdate(mo, da);
495     sda = sdec(julian_date);
496     sta = stadj(julian_date);
497     altitude = salt(sda, hr+sta);
498 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
499 greg 2.1 /* convert measured values */
500     if (dir_is_horiz && altitude > 0.)
501     dir /= sin(altitude);
502     if (input == 1) {
503     dir_irrad = dir;
504     diff_irrad = dif;
505     } else /* input == 2 */ {
506     dir_illum = dir;
507     diff_illum = dif;
508     }
509     /* compute sky patch values */
510     ComputeSky(mtx_data+mtx_offset);
511 greg 2.4 AddDirect(mtx_data+mtx_offset);
512 greg 2.27 /* update cumulative sky? */
513     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
514     mtx_data[i] += mtx_data[mtx_offset+i];
515 greg 2.1 }
516     /* check for junk at end */
517     while ((i = fgetc(stdin)) != EOF)
518     if (!isspace(i)) {
519     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
520     progname);
521     buf[0] = i; buf[1] = '\0';
522     fgets(buf+1, sizeof(buf)-1, stdin);
523     fputs(buf, stderr); fputc('\n', stderr);
524     break;
525     }
526 greg 2.27 if (!ntsteps) {
527     fprintf(stderr, "%s: no valid time steps on input\n", progname);
528     exit(1);
529     }
530     dif = 1./(double)ntsteps; /* average sky? */
531     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
532     mtx_data[i] *= dif;
533 greg 2.1 /* write out matrix */
534 greg 2.14 if (outfmt != 'a')
535     SET_FILE_BINARY(stdout);
536 greg 2.1 #ifdef getc_unlocked
537     flockfile(stdout);
538     #endif
539     if (verbose)
540     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
541 greg 2.28 progname, outfmt=='a' ? "" : "binary ", nstored);
542 greg 2.14 if (doheader) {
543     newheader("RADIANCE", stdout);
544     printargs(argc, argv, stdout);
545     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
546     -RadToDeg(s_longitude));
547     printf("NROWS=%d\n", nskypatch);
548 greg 2.28 printf("NCOLS=%d\n", nstored);
549 greg 2.14 printf("NCOMP=3\n");
550 greg 2.29 if ((outfmt == 'f') | (outfmt == 'd'))
551     fputendian(stdout);
552 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
553 greg 2.14 putchar('\n');
554     }
555 greg 2.1 /* patches are rows (outer sort) */
556     for (i = 0; i < nskypatch; i++) {
557     mtx_offset = 3*i;
558     switch (outfmt) {
559     case 'a':
560 greg 2.28 for (j = 0; j < nstored; j++) {
561 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
562 greg 2.1 mtx_data[mtx_offset+1],
563     mtx_data[mtx_offset+2]);
564     mtx_offset += 3*nskypatch;
565     }
566 greg 2.28 if (nstored > 1)
567 greg 2.2 fputc('\n', stdout);
568 greg 2.1 break;
569     case 'f':
570 greg 2.28 for (j = 0; j < nstored; j++) {
571 greg 2.23 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
572 greg 2.1 stdout);
573     mtx_offset += 3*nskypatch;
574     }
575     break;
576     case 'd':
577 greg 2.28 for (j = 0; j < nstored; j++) {
578 greg 2.1 double ment[3];
579     ment[0] = mtx_data[mtx_offset];
580     ment[1] = mtx_data[mtx_offset+1];
581     ment[2] = mtx_data[mtx_offset+2];
582 greg 2.23 putbinary(ment, sizeof(double), 3, stdout);
583 greg 2.1 mtx_offset += 3*nskypatch;
584     }
585     break;
586     }
587     if (ferror(stdout))
588     goto writerr;
589     }
590     if (fflush(stdout) == EOF)
591     goto writerr;
592     if (verbose)
593     fprintf(stderr, "%s: done.\n", progname);
594     exit(0);
595     userr:
596 greg 2.27 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
597 greg 2.1 progname);
598     exit(1);
599     fmterr:
600     fprintf(stderr, "%s: input weather tape format error\n", progname);
601     exit(1);
602     writerr:
603     fprintf(stderr, "%s: write error on output\n", progname);
604     exit(1);
605     }
606    
607     /* Return maximum of two doubles */
608     double dmax( double a, double b )
609     { return (a > b) ? a : b; }
610    
611     /* Compute sky patch radiance values (modified by GW) */
612     void
613     ComputeSky(float *parr)
614     {
615     int index; /* Category index */
616     double norm_diff_illum; /* Normalized diffuse illuimnance */
617     int i;
618    
619     /* Calculate atmospheric precipitable water content */
620     apwc = CalcPrecipWater(dew_point);
621    
622 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
623     /* Also limit minimum angle to keep circumsolar off zenith */
624     if (altitude <= 0.0)
625     sun_zenith = DegToRad(90.0);
626     else if (altitude >= DegToRad(87.0))
627     sun_zenith = DegToRad(3.0);
628     else
629     sun_zenith = DegToRad(90.0) - altitude;
630 greg 2.1
631     /* Compute the inputs for the calculation of the sky distribution */
632    
633     if (input == 0) /* XXX never used */
634     {
635     /* Calculate irradiance */
636     diff_irrad = CalcDiffuseIrradiance();
637     dir_irrad = CalcDirectIrradiance();
638    
639     /* Calculate illuminance */
640     index = GetCategoryIndex();
641     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
642     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
643     }
644     else if (input == 1)
645     {
646     sky_brightness = CalcSkyBrightness();
647     sky_clearness = CalcSkyClearness();
648    
649 greg 2.9 /* Limit sky clearness */
650     if (sky_clearness > 11.9)
651     sky_clearness = 11.9;
652    
653     /* Limit sky brightness */
654     if (sky_brightness < 0.01)
655 greg 2.11 sky_brightness = 0.01;
656 greg 2.9
657 greg 2.1 /* Calculate illuminance */
658     index = GetCategoryIndex();
659     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
660     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
661     }
662     else if (input == 2)
663     {
664     /* Calculate sky brightness and clearness from illuminance values */
665     index = CalcSkyParamFromIllum();
666     }
667    
668 greg 2.11 if (output == 1) { /* hack for solar radiance */
669     diff_illum = diff_irrad * WHTEFFICACY;
670     dir_illum = dir_irrad * WHTEFFICACY;
671     }
672    
673 greg 2.2 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
674     memset(parr, 0, sizeof(float)*3*nskypatch);
675     return;
676     }
677 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
678 greg 2.3 parr[0] = diff_illum;
679 greg 2.1 if (altitude > 0)
680 greg 2.3 parr[0] += dir_illum * sin(altitude);
681 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
682     multcolor(parr, grefl);
683 greg 2.1
684     /* Calculate Perez sky model parameters */
685     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
686    
687     /* Calculate sky patch luminance values */
688     CalcSkyPatchLumin(parr);
689    
690     /* Calculate relative horizontal illuminance */
691     norm_diff_illum = CalcRelHorzIllum(parr);
692    
693 greg 2.13 /* Check for zero sky -- make uniform in that case */
694     if (norm_diff_illum <= FTINY) {
695     for (i = 1; i < nskypatch; i++)
696     setcolor(parr+3*i, 1., 1., 1.);
697     norm_diff_illum = PI;
698     }
699 greg 2.1 /* Normalization coefficient */
700     norm_diff_illum = diff_illum / norm_diff_illum;
701    
702     /* Apply to sky patches to get absolute radiance values */
703     for (i = 1; i < nskypatch; i++) {
704 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
705 greg 2.1 multcolor(parr+3*i, skycolor);
706     }
707     }
708    
709     /* Add in solar direct to nearest sky patches (GW) */
710     void
711     AddDirect(float *parr)
712     {
713     FVECT svec;
714 greg 2.3 double near_dprod[NSUNPATCH];
715     int near_patch[NSUNPATCH];
716     double wta[NSUNPATCH], wtot;
717 greg 2.1 int i, j, p;
718    
719 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
720 greg 2.1 return;
721 greg 2.10 /* identify nsuns closest patches */
722     if (nsuns > NSUNPATCH)
723     nsuns = NSUNPATCH;
724     else if (nsuns <= 0)
725     nsuns = 1;
726     for (i = nsuns; i--; )
727 greg 2.1 near_dprod[i] = -1.;
728     vector(svec, altitude, azimuth);
729     for (p = 1; p < nskypatch; p++) {
730     FVECT pvec;
731     double dprod;
732     rh_vector(pvec, p);
733     dprod = DOT(pvec, svec);
734 greg 2.10 for (i = 0; i < nsuns; i++)
735 greg 2.1 if (dprod > near_dprod[i]) {
736 greg 2.10 for (j = nsuns; --j > i; ) {
737 greg 2.1 near_dprod[j] = near_dprod[j-1];
738     near_patch[j] = near_patch[j-1];
739     }
740     near_dprod[i] = dprod;
741     near_patch[i] = p;
742     break;
743     }
744     }
745     wtot = 0; /* weight by proximity */
746 greg 2.10 for (i = nsuns; i--; )
747 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
748     /* add to nearest patch radiances */
749 greg 2.10 for (i = nsuns; i--; ) {
750 greg 2.2 float *pdest = parr + 3*near_patch[i];
751 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
752    
753     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
754     : rh_dom[near_patch[i]] ;
755 greg 2.4 *pdest++ += val_add*suncolor[0];
756     *pdest++ += val_add*suncolor[1];
757     *pdest++ += val_add*suncolor[2];
758 greg 2.2 }
759 greg 2.1 }
760    
761     /* Initialize Reinhart sky patch positions (GW) */
762     int
763     rh_init(void)
764     {
765     #define NROW 7
766     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
767     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
768     int p, i, j;
769     /* allocate patch angle arrays */
770     nskypatch = 0;
771     for (p = 0; p < NROW; p++)
772     nskypatch += tnaz[p];
773     nskypatch *= rhsubdiv*rhsubdiv;
774     nskypatch += 2;
775     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
776     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
777     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
778     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
779     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
780     exit(1);
781     }
782     rh_palt[0] = -PI/2.; /* ground & zenith patches */
783     rh_pazi[0] = 0.;
784     rh_dom[0] = 2.*PI;
785     rh_palt[nskypatch-1] = PI/2.;
786     rh_pazi[nskypatch-1] = 0.;
787     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
788     p = 1; /* "normal" patches */
789     for (i = 0; i < NROW*rhsubdiv; i++) {
790     const float ralt = alpha*(i + .5);
791     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
792 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
793     (double)ninrow;
794 greg 2.1 for (j = 0; j < ninrow; j++) {
795     rh_palt[p] = ralt;
796     rh_pazi[p] = 2.*PI * j / (double)ninrow;
797     rh_dom[p++] = dom;
798     }
799     }
800     return nskypatch;
801     #undef NROW
802     }
803    
804     /* Resize daylight matrix (GW) */
805     float *
806     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
807     {
808     if (mtx_data == NULL)
809     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
810     else
811     mtx_data = (float *)realloc(mtx_data,
812     sizeof(float)*3*nsteps*npatch);
813     if (mtx_data == NULL) {
814     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
815     progname, nsteps, npatch);
816     exit(1);
817     }
818     return(mtx_data);
819     }
820    
821     /* Determine category index */
822     int GetCategoryIndex()
823     {
824     int index; /* Loop index */
825    
826     for (index = 0; index < 8; index++)
827     if ((sky_clearness >= SkyClearCat[index].lower) &&
828     (sky_clearness < SkyClearCat[index].upper))
829     break;
830    
831     return index;
832     }
833    
834     /* Calculate diffuse illuminance to diffuse irradiance ratio */
835    
836     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
837     /* Stewart. 1990. ìModeling Daylight Availability and */
838     /* Irradiance Components from Direct and Global */
839     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
840    
841     double CalcDiffuseIllumRatio( int index )
842     {
843     ModelCoeff const *pnle; /* Category coefficient pointer */
844    
845     /* Get category coefficient pointer */
846     pnle = &(DiffuseLumEff[index]);
847    
848     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
849     pnle->d * log(sky_brightness);
850     }
851    
852     /* Calculate direct illuminance to direct irradiance ratio */
853    
854     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
855     /* Stewart. 1990. ìModeling Daylight Availability and */
856     /* Irradiance Components from Direct and Global */
857     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
858    
859     double CalcDirectIllumRatio( int index )
860     {
861     ModelCoeff const *pnle; /* Category coefficient pointer */
862    
863     /* Get category coefficient pointer */
864     pnle = &(DirectLumEff[index]);
865    
866     /* Calculate direct illuminance from direct irradiance */
867    
868     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
869     sun_zenith - 5.0) + pnle->d * sky_brightness),
870     0.0);
871     }
872    
873     /* Calculate sky brightness */
874    
875     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
876     /* Stewart. 1990. ìModeling Daylight Availability and */
877     /* Irradiance Components from Direct and Global */
878     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
879    
880     double CalcSkyBrightness()
881     {
882     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
883     CalcEccentricity());
884     }
885    
886     /* Calculate sky clearness */
887    
888     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
889     /* Stewart. 1990. ìModeling Daylight Availability and */
890     /* Irradiance Components from Direct and Global */
891     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
892    
893     double CalcSkyClearness()
894     {
895     double sz_cubed; /* Sun zenith angle cubed */
896    
897     /* Calculate sun zenith angle cubed */
898 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
899 greg 2.1
900     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
901     sz_cubed) / (1.0 + 1.041 * sz_cubed);
902     }
903    
904     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
905    
906     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
907     /* Stewart. 1990. ìModeling Daylight Availability and */
908     /* Irradiance Components from Direct and Global */
909     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
910     /* (inverse). */
911    
912     double CalcDiffuseIrradiance()
913     {
914     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
915     CalcAirMass();
916     }
917    
918     /* Calculate direct normal irradiance from Perez sky clearness */
919    
920     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
921     /* Stewart. 1990. ìModeling Daylight Availability and */
922     /* Irradiance Components from Direct and Global */
923     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
924     /* (inverse). */
925    
926     double CalcDirectIrradiance()
927     {
928     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
929 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
930 greg 2.1 }
931    
932     /* Calculate sky brightness and clearness from illuminance values */
933     int CalcSkyParamFromIllum()
934     {
935     double test1 = 0.1;
936     double test2 = 0.1;
937     int counter = 0;
938     int index = 0; /* Category index */
939    
940     /* Convert illuminance to irradiance */
941     diff_irrad = diff_illum * DC_SolarConstantE /
942     (DC_SolarConstantL * 1000.0);
943     dir_irrad = dir_illum * DC_SolarConstantE /
944     (DC_SolarConstantL * 1000.0);
945    
946     /* Calculate sky brightness and clearness */
947     sky_brightness = CalcSkyBrightness();
948     sky_clearness = CalcSkyClearness();
949    
950     /* Limit sky clearness */
951     if (sky_clearness > 12.0)
952     sky_clearness = 12.0;
953    
954     /* Limit sky brightness */
955 greg 2.9 if (sky_brightness < 0.01)
956 greg 2.1 sky_brightness = 0.01;
957    
958     while (((fabs(diff_irrad - test1) > 10.0) ||
959     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
960     {
961     test1 = diff_irrad;
962     test2 = dir_irrad;
963     counter++;
964    
965     /* Convert illuminance to irradiance */
966     index = GetCategoryIndex();
967     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
968 greg 2.26 dir_irrad = CalcDirectIllumRatio(index);
969     if (dir_irrad > 0.1)
970     dir_irrad = dir_illum / dir_irrad;
971 greg 2.1
972     /* Calculate sky brightness and clearness */
973     sky_brightness = CalcSkyBrightness();
974     sky_clearness = CalcSkyClearness();
975    
976     /* Limit sky clearness */
977     if (sky_clearness > 12.0)
978     sky_clearness = 12.0;
979    
980     /* Limit sky brightness */
981 greg 2.9 if (sky_brightness < 0.01)
982 greg 2.1 sky_brightness = 0.01;
983     }
984    
985     return GetCategoryIndex();
986     }
987    
988     /* Calculate relative luminance */
989    
990     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
991     /* ìAll-Weather Model for Sky Luminance Distribution - */
992     /* Preliminary Configuration and Validation,î Solar Energy */
993     /* 50(3):235-245, Eqn. 1. */
994    
995     double CalcRelLuminance( double gamma, double zeta )
996     {
997     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
998     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
999     perez_param[4] * cos(gamma) * cos(gamma));
1000     }
1001    
1002     /* Calculate Perez sky model parameters */
1003    
1004     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1005     /* ìAll-Weather Model for Sky Luminance Distribution - */
1006     /* Preliminary Configuration and Validation,î Solar Energy */
1007     /* 50(3):235-245, Eqns. 6 - 8. */
1008    
1009     void CalcPerezParam( double sz, double epsilon, double delta,
1010     int index )
1011     {
1012     double x[5][4]; /* Coefficents a, b, c, d, e */
1013     int i, j; /* Loop indices */
1014    
1015     /* Limit sky brightness */
1016     if (epsilon > 1.065 && epsilon < 2.8)
1017     {
1018     if (delta < 0.2)
1019     delta = 0.2;
1020     }
1021    
1022     /* Get Perez coefficients */
1023     for (i = 0; i < 5; i++)
1024     for (j = 0; j < 4; j++)
1025     x[i][j] = PerezCoeff[index][4 * i + j];
1026    
1027     if (index != 0)
1028     {
1029     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1030     for (i = 0; i < 5; i++)
1031     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1032     x[i][3] * sz);
1033     }
1034     else
1035     {
1036     /* Parameters a, b and e (Eqn. 6) */
1037     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1038     x[0][3] * sz);
1039     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1040     x[1][3] * sz);
1041     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1042     x[4][3] * sz);
1043    
1044     /* Parameter c (Eqn. 7) */
1045     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1046     x[2][2])) - x[2][3];
1047    
1048     /* Parameter d (Eqn. 8) */
1049     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1050     x[3][2] + delta * x[3][3];
1051     }
1052     }
1053    
1054     /* Calculate relative horizontal illuminance (modified by GW) */
1055    
1056     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1057     /* ìAll-Weather Model for Sky Luminance Distribution - */
1058     /* Preliminary Configuration and Validation,î Solar Energy */
1059     /* 50(3):235-245, Eqn. 3. */
1060    
1061     double CalcRelHorzIllum( float *parr )
1062     {
1063     int i;
1064     double rh_illum = 0.0; /* Relative horizontal illuminance */
1065    
1066     for (i = 1; i < nskypatch; i++)
1067 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1068 greg 2.1
1069 greg 2.7 return rh_illum;
1070 greg 2.1 }
1071    
1072     /* Calculate earth orbit eccentricity correction factor */
1073    
1074     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1075     /* Techniques. Springer, p. 72. */
1076    
1077     double CalcEccentricity()
1078     {
1079     double day_angle; /* Day angle (radians) */
1080     double E0; /* Eccentricity */
1081    
1082     /* Calculate day angle */
1083     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1084    
1085     /* Calculate eccentricity */
1086     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1087     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1088     day_angle);
1089    
1090     return E0;
1091     }
1092    
1093     /* Calculate atmospheric precipitable water content */
1094    
1095     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1096     /* Stewart. 1990. ìModeling Daylight Availability and */
1097     /* Irradiance Components from Direct and Global */
1098     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1099    
1100     /* Note: The default surface dew point temperature is 11 deg. C */
1101     /* (52 deg. F). Typical values are: */
1102    
1103     /* Celsius Fahrenheit Human Perception */
1104     /* > 24 > 75 Extremely uncomfortable */
1105     /* 21 - 24 70 - 74 Very humid */
1106     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1107     /* 16 - 18 60 - 64 OK for most people */
1108     /* 13 - 16 55 - 59 Comfortable */
1109     /* 10 - 12 50 - 54 Very comfortable */
1110     /* < 10 < 49 A bit dry for some */
1111    
1112     double CalcPrecipWater( double dpt )
1113     { return exp(0.07 * dpt - 0.075); }
1114    
1115     /* Calculate relative air mass */
1116    
1117     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1118     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1119     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1120    
1121     /* Note: More sophisticated relative air mass models are */
1122     /* available, but they differ significantly only for */
1123     /* sun zenith angles greater than 80 degrees. */
1124    
1125     double CalcAirMass()
1126     {
1127     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1128     RadToDeg(sun_zenith), -1.253)));
1129     }
1130    
1131     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1132    
1133     /* NOTE: The sky patches centers are determined in accordance with the */
1134     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1135     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1136     /* for the Validation of Illuminance Prediction Techniques," */
1137     /* Lighting Research & Technology 33(2):117-136.) */
1138    
1139     void CalcSkyPatchLumin( float *parr )
1140     {
1141     int i;
1142     double aas; /* Sun-sky point azimuthal angle */
1143     double sspa; /* Sun-sky point angle */
1144     double zsa; /* Zenithal sun angle */
1145    
1146     for (i = 1; i < nskypatch; i++)
1147     {
1148     /* Calculate sun-sky point azimuthal angle */
1149     aas = fabs(rh_pazi[i] - azimuth);
1150    
1151     /* Calculate zenithal sun angle */
1152     zsa = PI * 0.5 - rh_palt[i];
1153    
1154     /* Calculate sun-sky point angle (Equation 8-20) */
1155     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1156     sin(zsa) * cos(aas));
1157    
1158     /* Calculate patch luminance */
1159     parr[3*i] = CalcRelLuminance(sspa, zsa);
1160     if (parr[3*i] < 0) parr[3*i] = 0;
1161     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1162     }
1163     }