ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.20
Committed: Sat Aug 1 23:27:04 2015 UTC (8 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +2 -1 lines
Log Message:
Fixed various compiler warnings (mostly harmless)

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.20 static const char RCSid[] = "$Id: gendaymtx.c,v 2.19 2014/12/30 20:35:34 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdio.h>
85     #include <stdlib.h>
86     #include <string.h>
87     #include <ctype.h>
88     #include "rtmath.h"
89 greg 2.20 #include "resolu.h"
90 greg 2.14 #include "platform.h"
91 greg 2.1 #include "color.h"
92 greg 2.17 #include "resolu.h"
93 greg 2.1
94     char *progname; /* Program name */
95     char errmsg[128]; /* Error message buffer */
96     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
97     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
98    
99     double altitude; /* Solar altitude (radians) */
100     double azimuth; /* Solar azimuth (radians) */
101     double apwc; /* Atmospheric precipitable water content */
102     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
103     double diff_illum; /* Diffuse illuminance */
104     double diff_irrad; /* Diffuse irradiance */
105     double dir_illum; /* Direct illuminance */
106     double dir_irrad; /* Direct irradiance */
107     int julian_date; /* Julian date */
108     double perez_param[5]; /* Perez sky model parameters */
109     double sky_brightness; /* Sky brightness */
110     double sky_clearness; /* Sky clearness */
111     double solar_rad; /* Solar radiance */
112     double sun_zenith; /* Sun zenith angle (radians) */
113     int input = 0; /* Input type */
114 greg 2.11 int output = 0; /* Output type */
115 greg 2.1
116     extern double dmax( double, double );
117     extern double CalcAirMass();
118     extern double CalcDiffuseIllumRatio( int );
119     extern double CalcDiffuseIrradiance();
120     extern double CalcDirectIllumRatio( int );
121     extern double CalcDirectIrradiance();
122     extern double CalcEccentricity();
123     extern double CalcPrecipWater( double );
124     extern double CalcRelHorzIllum( float *parr );
125     extern double CalcRelLuminance( double, double );
126     extern double CalcSkyBrightness();
127     extern double CalcSkyClearness();
128     extern int CalcSkyParamFromIllum();
129     extern int GetCategoryIndex();
130     extern void CalcPerezParam( double, double, double, int );
131     extern void CalcSkyPatchLumin( float *parr );
132     extern void ComputeSky( float *parr );
133    
134     /* Degrees into radians */
135     #define DegToRad(deg) ((deg)*(PI/180.))
136    
137     /* Radiuans into degrees */
138     #define RadToDeg(rad) ((rad)*(180./PI))
139    
140    
141     /* Perez sky model coefficients */
142    
143     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
144     /* Weather Model for Sky Luminance Distribution - */
145     /* Preliminary Configuration and Validation," Solar */
146     /* Energy 50(3):235-245, Table 1. */
147    
148     static const double PerezCoeff[8][20] =
149     {
150     /* Sky clearness (epsilon): 1.000 to 1.065 */
151     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
152     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
153     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
154     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
155     /* Sky clearness (epsilon): 1.065 to 1.230 */
156     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
157     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
158     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
159     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
160     /* Sky clearness (epsilon): 1.230 to 1.500 */
161     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
162     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
163     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
164     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
165     /* Sky clearness (epsilon): 1.500 to 1.950 */
166     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
167     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
168     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
169     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
170     /* Sky clearness (epsilon): 1.950 to 2.800 */
171     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
172     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
173     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
174     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
175     /* Sky clearness (epsilon): 2.800 to 4.500 */
176     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
177     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
178     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
179     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
180     /* Sky clearness (epsilon): 4.500 to 6.200 */
181     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
182     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
183     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
184     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
185     /* Sky clearness (epsilon): 6.200 to ... */
186     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
187     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
188     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
189     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
190     };
191    
192     /* Perez irradiance component model coefficients */
193    
194     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
195     /* Stewart. 1990. ìModeling Daylight Availability and */
196     /* Irradiance Components from Direct and Global */
197     /* Irradiance,î Solar Energy 44(5):271-289. */
198    
199     typedef struct
200     {
201     double lower; /* Lower bound */
202     double upper; /* Upper bound */
203     } CategoryBounds;
204    
205     /* Perez sky clearness (epsilon) categories (Table 1) */
206     static const CategoryBounds SkyClearCat[8] =
207     {
208     { 1.000, 1.065 }, /* Overcast */
209     { 1.065, 1.230 },
210     { 1.230, 1.500 },
211     { 1.500, 1.950 },
212     { 1.950, 2.800 },
213     { 2.800, 4.500 },
214     { 4.500, 6.200 },
215 greg 2.12 { 6.200, 12.01 } /* Clear */
216 greg 2.1 };
217    
218     /* Luminous efficacy model coefficients */
219     typedef struct
220     {
221     double a;
222     double b;
223     double c;
224     double d;
225     } ModelCoeff;
226    
227     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
228     static const ModelCoeff DiffuseLumEff[8] =
229     {
230     { 97.24, -0.46, 12.00, -8.91 },
231     { 107.22, 1.15, 0.59, -3.95 },
232     { 104.97, 2.96, -5.53, -8.77 },
233     { 102.39, 5.59, -13.95, -13.90 },
234     { 100.71, 5.94, -22.75, -23.74 },
235     { 106.42, 3.83, -36.15, -28.83 },
236     { 141.88, 1.90, -53.24, -14.03 },
237     { 152.23, 0.35, -45.27, -7.98 }
238     };
239    
240     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
241     static const ModelCoeff DirectLumEff[8] =
242     {
243     { 57.20, -4.55, -2.98, 117.12 },
244     { 98.99, -3.46, -1.21, 12.38 },
245     { 109.83, -4.90, -1.71, -8.81 },
246     { 110.34, -5.84, -1.99, -4.56 },
247     { 106.36, -3.97, -1.75, -6.16 },
248     { 107.19, -1.25, -1.51, -26.73 },
249     { 105.75, 0.77, -1.26, -34.44 },
250     { 101.18, 1.58, -1.10, -8.29 }
251     };
252    
253 greg 2.3 #ifndef NSUNPATCH
254 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
255 greg 2.3 #endif
256    
257 greg 2.1 extern int jdate(int month, int day);
258     extern double stadj(int jd);
259     extern double sdec(int jd);
260     extern double salt(double sd, double st);
261     extern double sazi(double sd, double st);
262     /* sun calculation constants */
263     extern double s_latitude;
264     extern double s_longitude;
265     extern double s_meridian;
266    
267 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
268     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
269    
270 greg 2.1 int verbose = 0; /* progress reports to stderr? */
271    
272     int outfmt = 'a'; /* output format */
273    
274     int rhsubdiv = 1; /* Reinhart sky subdivisions */
275    
276 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
277     COLOR suncolor = {1., 1., 1.}; /* sun color */
278     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
279 greg 2.1
280     int nskypatch; /* number of Reinhart patches */
281     float *rh_palt; /* sky patch altitudes (radians) */
282     float *rh_pazi; /* sky patch azimuths (radians) */
283     float *rh_dom; /* sky patch solid angle (sr) */
284    
285     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
286     (v)[0] = (v)[1]*tsin(azi), \
287     (v)[1] *= tcos(azi), \
288     (v)[2] = tsin(alt) )
289    
290     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
291    
292     #define rh_cos(i) tsin(rh_palt[i])
293    
294     extern int rh_init(void);
295     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
296     extern void AddDirect(float *parr);
297    
298 greg 2.14
299     static const char *
300     getfmtname(int fmt)
301     {
302     switch (fmt) {
303     case 'a':
304     return("ascii");
305     case 'f':
306     return("float");
307     case 'd':
308     return("double");
309     }
310     return("unknown");
311     }
312    
313    
314 greg 2.1 int
315     main(int argc, char *argv[])
316     {
317     char buf[256];
318 greg 2.14 int doheader = 1; /* output header? */
319 greg 2.8 double rotation = 0; /* site rotation (degrees) */
320 greg 2.1 double elevation; /* site elevation (meters) */
321     int dir_is_horiz; /* direct is meas. on horizontal? */
322     float *mtx_data = NULL; /* our matrix data */
323     int ntsteps = 0; /* number of rows in matrix */
324 greg 2.16 int step_alloc = 0;
325 greg 2.1 int last_monthly = 0; /* month of last report */
326     int mo, da; /* month (1-12) and day (1-31) */
327     double hr; /* hour (local standard time) */
328     double dir, dif; /* direct and diffuse values */
329     int mtx_offset;
330     int i, j;
331    
332     progname = argv[0];
333     /* get options */
334     for (i = 1; i < argc && argv[i][0] == '-'; i++)
335     switch (argv[i][1]) {
336 greg 2.4 case 'g': /* ground reflectance */
337     grefl[0] = atof(argv[++i]);
338     grefl[1] = atof(argv[++i]);
339     grefl[2] = atof(argv[++i]);
340 greg 2.1 break;
341 greg 2.4 case 'v': /* verbose progress reports */
342 greg 2.1 verbose++;
343     break;
344 greg 2.14 case 'h': /* turn off header */
345     doheader = 0;
346     break;
347 greg 2.4 case 'o': /* output format */
348 greg 2.1 switch (argv[i][2]) {
349     case 'f':
350     case 'd':
351     case 'a':
352     outfmt = argv[i][2];
353     break;
354     default:
355     goto userr;
356     }
357     break;
358 greg 2.11 case 'O': /* output type */
359     switch (argv[i][2]) {
360     case '0':
361     output = 0;
362     break;
363     case '1':
364     output = 1;
365     break;
366     default:
367     goto userr;
368     }
369     if (argv[i][3])
370     goto userr;
371     break;
372 greg 2.4 case 'm': /* Reinhart subdivisions */
373 greg 2.1 rhsubdiv = atoi(argv[++i]);
374     break;
375 greg 2.4 case 'c': /* sky color */
376 greg 2.1 skycolor[0] = atof(argv[++i]);
377     skycolor[1] = atof(argv[++i]);
378     skycolor[2] = atof(argv[++i]);
379     break;
380 greg 2.4 case 'd': /* solar (direct) only */
381 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
382 greg 2.4 if (suncolor[1] <= 1e-4)
383     suncolor[0] = suncolor[1] = suncolor[2] = 1;
384 greg 2.1 break;
385 greg 2.4 case 's': /* sky only (no direct) */
386     suncolor[0] = suncolor[1] = suncolor[2] = 0;
387 greg 2.1 if (skycolor[1] <= 1e-4)
388     skycolor[0] = skycolor[1] = skycolor[2] = 1;
389     break;
390 greg 2.8 case 'r': /* rotate distribution */
391     if (argv[i][2] && argv[i][2] != 'z')
392     goto userr;
393     rotation = atof(argv[++i]);
394     break;
395 greg 2.10 case '5': /* 5-phase calculation */
396     nsuns = 1;
397 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
398     fixed_sun_sa *= fixed_sun_sa*PI;
399 greg 2.10 break;
400 greg 2.1 default:
401     goto userr;
402     }
403     if (i < argc-1)
404     goto userr;
405     if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
406     fprintf(stderr, "%s: cannot open '%s' for input\n",
407     progname, argv[i]);
408     exit(1);
409     }
410     if (verbose) {
411     if (i == argc-1)
412     fprintf(stderr, "%s: reading weather tape '%s'\n",
413     progname, argv[i]);
414     else
415     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
416     progname);
417     }
418     /* read weather tape header */
419 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
420 greg 2.1 goto fmterr;
421     if (scanf("latitude %lf\n", &s_latitude) != 1)
422     goto fmterr;
423     if (scanf("longitude %lf\n", &s_longitude) != 1)
424     goto fmterr;
425     if (scanf("time_zone %lf\n", &s_meridian) != 1)
426     goto fmterr;
427     if (scanf("site_elevation %lf\n", &elevation) != 1)
428     goto fmterr;
429     if (scanf("weather_data_file_units %d\n", &input) != 1)
430     goto fmterr;
431     switch (input) { /* translate units */
432     case 1:
433     input = 1; /* radiometric quantities */
434     dir_is_horiz = 0; /* direct is perpendicular meas. */
435     break;
436     case 2:
437     input = 1; /* radiometric quantities */
438     dir_is_horiz = 1; /* solar measured horizontally */
439     break;
440     case 3:
441     input = 2; /* photometric quantities */
442     dir_is_horiz = 0; /* direct is perpendicular meas. */
443     break;
444     default:
445     goto fmterr;
446     }
447     rh_init(); /* initialize sky patches */
448     if (verbose) {
449     fprintf(stderr, "%s: location '%s'\n", progname, buf);
450     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
451     progname, s_latitude, s_longitude);
452     fprintf(stderr, "%s: %d sky patches per time step\n",
453     progname, nskypatch);
454 greg 2.8 if (rotation != 0)
455     fprintf(stderr, "%s: rotating output %.0f degrees\n",
456     progname, rotation);
457 greg 2.1 }
458 greg 2.2 /* convert quantities to radians */
459     s_latitude = DegToRad(s_latitude);
460     s_longitude = DegToRad(s_longitude);
461     s_meridian = DegToRad(s_meridian);
462 greg 2.1 /* process each time step in tape */
463     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
464     double sda, sta;
465     /* make space for next time step */
466     mtx_offset = 3*nskypatch*ntsteps++;
467 greg 2.15 if (ntsteps > step_alloc) {
468 greg 2.16 step_alloc += (step_alloc>>1) + ntsteps + 7;
469 greg 2.15 mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch);
470     }
471 greg 2.1 if (dif <= 1e-4) {
472     memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
473     continue;
474     }
475     if (verbose && mo != last_monthly)
476     fprintf(stderr, "%s: stepping through month %d...\n",
477     progname, last_monthly=mo);
478     /* compute solar position */
479     julian_date = jdate(mo, da);
480     sda = sdec(julian_date);
481     sta = stadj(julian_date);
482     altitude = salt(sda, hr+sta);
483 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
484 greg 2.1 /* convert measured values */
485     if (dir_is_horiz && altitude > 0.)
486     dir /= sin(altitude);
487     if (input == 1) {
488     dir_irrad = dir;
489     diff_irrad = dif;
490     } else /* input == 2 */ {
491     dir_illum = dir;
492     diff_illum = dif;
493     }
494     /* compute sky patch values */
495     ComputeSky(mtx_data+mtx_offset);
496 greg 2.4 AddDirect(mtx_data+mtx_offset);
497 greg 2.1 }
498     /* check for junk at end */
499     while ((i = fgetc(stdin)) != EOF)
500     if (!isspace(i)) {
501     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
502     progname);
503     buf[0] = i; buf[1] = '\0';
504     fgets(buf+1, sizeof(buf)-1, stdin);
505     fputs(buf, stderr); fputc('\n', stderr);
506     break;
507     }
508     /* write out matrix */
509 greg 2.14 if (outfmt != 'a')
510     SET_FILE_BINARY(stdout);
511 greg 2.1 #ifdef getc_unlocked
512     flockfile(stdout);
513     #endif
514     if (verbose)
515     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
516     progname, outfmt=='a' ? "" : "binary ", ntsteps);
517 greg 2.14 if (doheader) {
518     newheader("RADIANCE", stdout);
519     printargs(argc, argv, stdout);
520     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
521     -RadToDeg(s_longitude));
522     printf("NROWS=%d\n", nskypatch);
523     printf("NCOLS=%d\n", ntsteps);
524     printf("NCOMP=3\n");
525 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
526 greg 2.14 putchar('\n');
527     }
528 greg 2.1 /* patches are rows (outer sort) */
529     for (i = 0; i < nskypatch; i++) {
530     mtx_offset = 3*i;
531     switch (outfmt) {
532     case 'a':
533     for (j = 0; j < ntsteps; j++) {
534 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
535 greg 2.1 mtx_data[mtx_offset+1],
536     mtx_data[mtx_offset+2]);
537     mtx_offset += 3*nskypatch;
538     }
539 greg 2.2 if (ntsteps > 1)
540     fputc('\n', stdout);
541 greg 2.1 break;
542     case 'f':
543     for (j = 0; j < ntsteps; j++) {
544     fwrite(mtx_data+mtx_offset, sizeof(float), 3,
545     stdout);
546     mtx_offset += 3*nskypatch;
547     }
548     break;
549     case 'd':
550     for (j = 0; j < ntsteps; j++) {
551     double ment[3];
552     ment[0] = mtx_data[mtx_offset];
553     ment[1] = mtx_data[mtx_offset+1];
554     ment[2] = mtx_data[mtx_offset+2];
555     fwrite(ment, sizeof(double), 3, stdout);
556     mtx_offset += 3*nskypatch;
557     }
558     break;
559     }
560     if (ferror(stdout))
561     goto writerr;
562     }
563     if (fflush(stdout) == EOF)
564     goto writerr;
565     if (verbose)
566     fprintf(stderr, "%s: done.\n", progname);
567     exit(0);
568     userr:
569 greg 2.14 fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
570 greg 2.1 progname);
571     exit(1);
572     fmterr:
573     fprintf(stderr, "%s: input weather tape format error\n", progname);
574     exit(1);
575     writerr:
576     fprintf(stderr, "%s: write error on output\n", progname);
577     exit(1);
578     }
579    
580     /* Return maximum of two doubles */
581     double dmax( double a, double b )
582     { return (a > b) ? a : b; }
583    
584     /* Compute sky patch radiance values (modified by GW) */
585     void
586     ComputeSky(float *parr)
587     {
588     int index; /* Category index */
589     double norm_diff_illum; /* Normalized diffuse illuimnance */
590     int i;
591    
592     /* Calculate atmospheric precipitable water content */
593     apwc = CalcPrecipWater(dew_point);
594    
595 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
596     /* Also limit minimum angle to keep circumsolar off zenith */
597     if (altitude <= 0.0)
598     sun_zenith = DegToRad(90.0);
599     else if (altitude >= DegToRad(87.0))
600     sun_zenith = DegToRad(3.0);
601     else
602     sun_zenith = DegToRad(90.0) - altitude;
603 greg 2.1
604     /* Compute the inputs for the calculation of the sky distribution */
605    
606     if (input == 0) /* XXX never used */
607     {
608     /* Calculate irradiance */
609     diff_irrad = CalcDiffuseIrradiance();
610     dir_irrad = CalcDirectIrradiance();
611    
612     /* Calculate illuminance */
613     index = GetCategoryIndex();
614     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
615     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
616     }
617     else if (input == 1)
618     {
619     sky_brightness = CalcSkyBrightness();
620     sky_clearness = CalcSkyClearness();
621    
622 greg 2.9 /* Limit sky clearness */
623     if (sky_clearness > 11.9)
624     sky_clearness = 11.9;
625    
626     /* Limit sky brightness */
627     if (sky_brightness < 0.01)
628 greg 2.11 sky_brightness = 0.01;
629 greg 2.9
630 greg 2.1 /* Calculate illuminance */
631     index = GetCategoryIndex();
632     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
633     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
634     }
635     else if (input == 2)
636     {
637     /* Calculate sky brightness and clearness from illuminance values */
638     index = CalcSkyParamFromIllum();
639     }
640    
641 greg 2.11 if (output == 1) { /* hack for solar radiance */
642     diff_illum = diff_irrad * WHTEFFICACY;
643     dir_illum = dir_irrad * WHTEFFICACY;
644     }
645    
646 greg 2.2 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
647     memset(parr, 0, sizeof(float)*3*nskypatch);
648     return;
649     }
650 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
651 greg 2.3 parr[0] = diff_illum;
652 greg 2.1 if (altitude > 0)
653 greg 2.3 parr[0] += dir_illum * sin(altitude);
654 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
655     multcolor(parr, grefl);
656 greg 2.1
657     /* Calculate Perez sky model parameters */
658     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
659    
660     /* Calculate sky patch luminance values */
661     CalcSkyPatchLumin(parr);
662    
663     /* Calculate relative horizontal illuminance */
664     norm_diff_illum = CalcRelHorzIllum(parr);
665    
666 greg 2.13 /* Check for zero sky -- make uniform in that case */
667     if (norm_diff_illum <= FTINY) {
668     for (i = 1; i < nskypatch; i++)
669     setcolor(parr+3*i, 1., 1., 1.);
670     norm_diff_illum = PI;
671     }
672 greg 2.1 /* Normalization coefficient */
673     norm_diff_illum = diff_illum / norm_diff_illum;
674    
675     /* Apply to sky patches to get absolute radiance values */
676     for (i = 1; i < nskypatch; i++) {
677 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
678 greg 2.1 multcolor(parr+3*i, skycolor);
679     }
680     }
681    
682     /* Add in solar direct to nearest sky patches (GW) */
683     void
684     AddDirect(float *parr)
685     {
686     FVECT svec;
687 greg 2.3 double near_dprod[NSUNPATCH];
688     int near_patch[NSUNPATCH];
689     double wta[NSUNPATCH], wtot;
690 greg 2.1 int i, j, p;
691    
692 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
693 greg 2.1 return;
694 greg 2.10 /* identify nsuns closest patches */
695     if (nsuns > NSUNPATCH)
696     nsuns = NSUNPATCH;
697     else if (nsuns <= 0)
698     nsuns = 1;
699     for (i = nsuns; i--; )
700 greg 2.1 near_dprod[i] = -1.;
701     vector(svec, altitude, azimuth);
702     for (p = 1; p < nskypatch; p++) {
703     FVECT pvec;
704     double dprod;
705     rh_vector(pvec, p);
706     dprod = DOT(pvec, svec);
707 greg 2.10 for (i = 0; i < nsuns; i++)
708 greg 2.1 if (dprod > near_dprod[i]) {
709 greg 2.10 for (j = nsuns; --j > i; ) {
710 greg 2.1 near_dprod[j] = near_dprod[j-1];
711     near_patch[j] = near_patch[j-1];
712     }
713     near_dprod[i] = dprod;
714     near_patch[i] = p;
715     break;
716     }
717     }
718     wtot = 0; /* weight by proximity */
719 greg 2.10 for (i = nsuns; i--; )
720 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
721     /* add to nearest patch radiances */
722 greg 2.10 for (i = nsuns; i--; ) {
723 greg 2.2 float *pdest = parr + 3*near_patch[i];
724 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
725    
726     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
727     : rh_dom[near_patch[i]] ;
728 greg 2.4 *pdest++ += val_add*suncolor[0];
729     *pdest++ += val_add*suncolor[1];
730     *pdest++ += val_add*suncolor[2];
731 greg 2.2 }
732 greg 2.1 }
733    
734     /* Initialize Reinhart sky patch positions (GW) */
735     int
736     rh_init(void)
737     {
738     #define NROW 7
739     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
740     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
741     int p, i, j;
742     /* allocate patch angle arrays */
743     nskypatch = 0;
744     for (p = 0; p < NROW; p++)
745     nskypatch += tnaz[p];
746     nskypatch *= rhsubdiv*rhsubdiv;
747     nskypatch += 2;
748     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
749     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
750     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
751     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
752     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
753     exit(1);
754     }
755     rh_palt[0] = -PI/2.; /* ground & zenith patches */
756     rh_pazi[0] = 0.;
757     rh_dom[0] = 2.*PI;
758     rh_palt[nskypatch-1] = PI/2.;
759     rh_pazi[nskypatch-1] = 0.;
760     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
761     p = 1; /* "normal" patches */
762     for (i = 0; i < NROW*rhsubdiv; i++) {
763     const float ralt = alpha*(i + .5);
764     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
765 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
766     (double)ninrow;
767 greg 2.1 for (j = 0; j < ninrow; j++) {
768     rh_palt[p] = ralt;
769     rh_pazi[p] = 2.*PI * j / (double)ninrow;
770     rh_dom[p++] = dom;
771     }
772     }
773     return nskypatch;
774     #undef NROW
775     }
776    
777     /* Resize daylight matrix (GW) */
778     float *
779     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
780     {
781     if (mtx_data == NULL)
782     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
783     else
784     mtx_data = (float *)realloc(mtx_data,
785     sizeof(float)*3*nsteps*npatch);
786     if (mtx_data == NULL) {
787     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
788     progname, nsteps, npatch);
789     exit(1);
790     }
791     return(mtx_data);
792     }
793    
794     /* Determine category index */
795     int GetCategoryIndex()
796     {
797     int index; /* Loop index */
798    
799     for (index = 0; index < 8; index++)
800     if ((sky_clearness >= SkyClearCat[index].lower) &&
801     (sky_clearness < SkyClearCat[index].upper))
802     break;
803    
804     return index;
805     }
806    
807     /* Calculate diffuse illuminance to diffuse irradiance ratio */
808    
809     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
810     /* Stewart. 1990. ìModeling Daylight Availability and */
811     /* Irradiance Components from Direct and Global */
812     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
813    
814     double CalcDiffuseIllumRatio( int index )
815     {
816     ModelCoeff const *pnle; /* Category coefficient pointer */
817    
818     /* Get category coefficient pointer */
819     pnle = &(DiffuseLumEff[index]);
820    
821     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
822     pnle->d * log(sky_brightness);
823     }
824    
825     /* Calculate direct illuminance to direct irradiance ratio */
826    
827     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
828     /* Stewart. 1990. ìModeling Daylight Availability and */
829     /* Irradiance Components from Direct and Global */
830     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
831    
832     double CalcDirectIllumRatio( int index )
833     {
834     ModelCoeff const *pnle; /* Category coefficient pointer */
835    
836     /* Get category coefficient pointer */
837     pnle = &(DirectLumEff[index]);
838    
839     /* Calculate direct illuminance from direct irradiance */
840    
841     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
842     sun_zenith - 5.0) + pnle->d * sky_brightness),
843     0.0);
844     }
845    
846     /* Calculate sky brightness */
847    
848     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
849     /* Stewart. 1990. ìModeling Daylight Availability and */
850     /* Irradiance Components from Direct and Global */
851     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
852    
853     double CalcSkyBrightness()
854     {
855     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
856     CalcEccentricity());
857     }
858    
859     /* Calculate sky clearness */
860    
861     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
862     /* Stewart. 1990. ìModeling Daylight Availability and */
863     /* Irradiance Components from Direct and Global */
864     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
865    
866     double CalcSkyClearness()
867     {
868     double sz_cubed; /* Sun zenith angle cubed */
869    
870     /* Calculate sun zenith angle cubed */
871 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
872 greg 2.1
873     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
874     sz_cubed) / (1.0 + 1.041 * sz_cubed);
875     }
876    
877     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
878    
879     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
880     /* Stewart. 1990. ìModeling Daylight Availability and */
881     /* Irradiance Components from Direct and Global */
882     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
883     /* (inverse). */
884    
885     double CalcDiffuseIrradiance()
886     {
887     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
888     CalcAirMass();
889     }
890    
891     /* Calculate direct normal irradiance from Perez sky clearness */
892    
893     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
894     /* Stewart. 1990. ìModeling Daylight Availability and */
895     /* Irradiance Components from Direct and Global */
896     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
897     /* (inverse). */
898    
899     double CalcDirectIrradiance()
900     {
901     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
902 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
903 greg 2.1 }
904    
905     /* Calculate sky brightness and clearness from illuminance values */
906     int CalcSkyParamFromIllum()
907     {
908     double test1 = 0.1;
909     double test2 = 0.1;
910     int counter = 0;
911     int index = 0; /* Category index */
912    
913     /* Convert illuminance to irradiance */
914     diff_irrad = diff_illum * DC_SolarConstantE /
915     (DC_SolarConstantL * 1000.0);
916     dir_irrad = dir_illum * DC_SolarConstantE /
917     (DC_SolarConstantL * 1000.0);
918    
919     /* Calculate sky brightness and clearness */
920     sky_brightness = CalcSkyBrightness();
921     sky_clearness = CalcSkyClearness();
922    
923     /* Limit sky clearness */
924     if (sky_clearness > 12.0)
925     sky_clearness = 12.0;
926    
927     /* Limit sky brightness */
928 greg 2.9 if (sky_brightness < 0.01)
929 greg 2.1 sky_brightness = 0.01;
930    
931     while (((fabs(diff_irrad - test1) > 10.0) ||
932     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
933     {
934     test1 = diff_irrad;
935     test2 = dir_irrad;
936     counter++;
937    
938     /* Convert illuminance to irradiance */
939     index = GetCategoryIndex();
940     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
941     dir_irrad = dir_illum / CalcDirectIllumRatio(index);
942    
943     /* Calculate sky brightness and clearness */
944     sky_brightness = CalcSkyBrightness();
945     sky_clearness = CalcSkyClearness();
946    
947     /* Limit sky clearness */
948     if (sky_clearness > 12.0)
949     sky_clearness = 12.0;
950    
951     /* Limit sky brightness */
952 greg 2.9 if (sky_brightness < 0.01)
953 greg 2.1 sky_brightness = 0.01;
954     }
955    
956     return GetCategoryIndex();
957     }
958    
959     /* Calculate relative luminance */
960    
961     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
962     /* ìAll-Weather Model for Sky Luminance Distribution - */
963     /* Preliminary Configuration and Validation,î Solar Energy */
964     /* 50(3):235-245, Eqn. 1. */
965    
966     double CalcRelLuminance( double gamma, double zeta )
967     {
968     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
969     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
970     perez_param[4] * cos(gamma) * cos(gamma));
971     }
972    
973     /* Calculate Perez sky model parameters */
974    
975     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
976     /* ìAll-Weather Model for Sky Luminance Distribution - */
977     /* Preliminary Configuration and Validation,î Solar Energy */
978     /* 50(3):235-245, Eqns. 6 - 8. */
979    
980     void CalcPerezParam( double sz, double epsilon, double delta,
981     int index )
982     {
983     double x[5][4]; /* Coefficents a, b, c, d, e */
984     int i, j; /* Loop indices */
985    
986     /* Limit sky brightness */
987     if (epsilon > 1.065 && epsilon < 2.8)
988     {
989     if (delta < 0.2)
990     delta = 0.2;
991     }
992    
993     /* Get Perez coefficients */
994     for (i = 0; i < 5; i++)
995     for (j = 0; j < 4; j++)
996     x[i][j] = PerezCoeff[index][4 * i + j];
997    
998     if (index != 0)
999     {
1000     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1001     for (i = 0; i < 5; i++)
1002     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1003     x[i][3] * sz);
1004     }
1005     else
1006     {
1007     /* Parameters a, b and e (Eqn. 6) */
1008     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1009     x[0][3] * sz);
1010     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1011     x[1][3] * sz);
1012     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1013     x[4][3] * sz);
1014    
1015     /* Parameter c (Eqn. 7) */
1016     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1017     x[2][2])) - x[2][3];
1018    
1019     /* Parameter d (Eqn. 8) */
1020     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1021     x[3][2] + delta * x[3][3];
1022     }
1023     }
1024    
1025     /* Calculate relative horizontal illuminance (modified by GW) */
1026    
1027     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1028     /* ìAll-Weather Model for Sky Luminance Distribution - */
1029     /* Preliminary Configuration and Validation,î Solar Energy */
1030     /* 50(3):235-245, Eqn. 3. */
1031    
1032     double CalcRelHorzIllum( float *parr )
1033     {
1034     int i;
1035     double rh_illum = 0.0; /* Relative horizontal illuminance */
1036    
1037     for (i = 1; i < nskypatch; i++)
1038 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1039 greg 2.1
1040 greg 2.7 return rh_illum;
1041 greg 2.1 }
1042    
1043     /* Calculate earth orbit eccentricity correction factor */
1044    
1045     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1046     /* Techniques. Springer, p. 72. */
1047    
1048     double CalcEccentricity()
1049     {
1050     double day_angle; /* Day angle (radians) */
1051     double E0; /* Eccentricity */
1052    
1053     /* Calculate day angle */
1054     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1055    
1056     /* Calculate eccentricity */
1057     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1058     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1059     day_angle);
1060    
1061     return E0;
1062     }
1063    
1064     /* Calculate atmospheric precipitable water content */
1065    
1066     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1067     /* Stewart. 1990. ìModeling Daylight Availability and */
1068     /* Irradiance Components from Direct and Global */
1069     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1070    
1071     /* Note: The default surface dew point temperature is 11 deg. C */
1072     /* (52 deg. F). Typical values are: */
1073    
1074     /* Celsius Fahrenheit Human Perception */
1075     /* > 24 > 75 Extremely uncomfortable */
1076     /* 21 - 24 70 - 74 Very humid */
1077     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1078     /* 16 - 18 60 - 64 OK for most people */
1079     /* 13 - 16 55 - 59 Comfortable */
1080     /* 10 - 12 50 - 54 Very comfortable */
1081     /* < 10 < 49 A bit dry for some */
1082    
1083     double CalcPrecipWater( double dpt )
1084     { return exp(0.07 * dpt - 0.075); }
1085    
1086     /* Calculate relative air mass */
1087    
1088     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1089     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1090     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1091    
1092     /* Note: More sophisticated relative air mass models are */
1093     /* available, but they differ significantly only for */
1094     /* sun zenith angles greater than 80 degrees. */
1095    
1096     double CalcAirMass()
1097     {
1098     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1099     RadToDeg(sun_zenith), -1.253)));
1100     }
1101    
1102     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1103    
1104     /* NOTE: The sky patches centers are determined in accordance with the */
1105     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1106     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1107     /* for the Validation of Illuminance Prediction Techniques," */
1108     /* Lighting Research & Technology 33(2):117-136.) */
1109    
1110     void CalcSkyPatchLumin( float *parr )
1111     {
1112     int i;
1113     double aas; /* Sun-sky point azimuthal angle */
1114     double sspa; /* Sun-sky point angle */
1115     double zsa; /* Zenithal sun angle */
1116    
1117     for (i = 1; i < nskypatch; i++)
1118     {
1119     /* Calculate sun-sky point azimuthal angle */
1120     aas = fabs(rh_pazi[i] - azimuth);
1121    
1122     /* Calculate zenithal sun angle */
1123     zsa = PI * 0.5 - rh_palt[i];
1124    
1125     /* Calculate sun-sky point angle (Equation 8-20) */
1126     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1127     sin(zsa) * cos(aas));
1128    
1129     /* Calculate patch luminance */
1130     parr[3*i] = CalcRelLuminance(sspa, zsa);
1131     if (parr[3*i] < 0) parr[3*i] = 0;
1132     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1133     }
1134     }