ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
Revision: 2.21
Committed: Thu Jan 28 19:03:15 2021 UTC (3 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.20: +10 -2 lines
Log Message:
feat: Jan added -d option for setting dewpoint as requested by Zack Rogers

File Contents

# User Rev Content
1 greg 2.9 /* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
2     * Heidenhofstr. 2, D-79110 Freiburg, Germany
3 greg 2.1 * *Agence de l'Environnement et de la Maitrise de l'Energie
4     * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
5     * *BOUYGUES
6     * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
7 greg 2.17 * print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018
8 greg 2.21 * version 2.6 (2021/01/29): dew point dependency added according to Perez publication 1990 (W -> atm_preci_water=exp(0.07*Td-0.075) ). by J. Wienold, EPFL
9 greg 2.1 */
10    
11 greg 2.15 #define _USE_MATH_DEFINES
12 greg 2.1 #include <stdio.h>
13     #include <string.h>
14     #include <math.h>
15     #include <stdlib.h>
16    
17     #include "color.h"
18 greg 2.12 #include "sun.h"
19 greg 2.1 #include "paths.h"
20    
21 greg 2.9 #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
22 greg 2.1
23     double normsc();
24    
25 greg 2.21 /*static char *rcsid="$Header: /usr/local/cvs/radiance/ray/src/gen/gendaylit.c,v 2.20 2020/11/18 17:18:41 greg Exp $";*/
26 greg 2.9
27     float coeff_perez[] = {
28 greg 2.12 1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
29     0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
30     6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
31     0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
32     -2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
33     33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
34     -0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
35     1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
36     14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
37     0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
38     0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
39     -14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
40    
41    
42     float defangle_theta[] = {
43     84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
44     84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
45     72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
46     60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
47     48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
48     24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
49    
50     float defangle_phi[] = {
51     0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
52     276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
53     192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
54     120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
55     90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
56     80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
57     240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
58 greg 2.17 /* default values for Berlin */
59     float locus[] = {
60     -4.843e9,2.5568e6,0.24282e3,0.23258,-4.843e9,2.5568e6,0.24282e3,0.23258,-1.2848,1.7519,-0.093786};
61 greg 2.1
62    
63    
64 greg 2.14 /* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */
65 greg 2.1 double sky_brightness();
66     double sky_clearness();
67    
68     /* calculation of the direct and diffuse components from the Perez parametrization */
69 greg 2.9 double diffuse_irradiance_from_sky_brightness();
70 greg 2.1 double direct_irradiance_from_sky_clearness();
71    
72 greg 2.12 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */
73     /* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
74 greg 2.1
75     double glob_h_effi_PEREZ();
76     double glob_h_diffuse_effi_PEREZ();
77     double direct_n_effi_PEREZ();
78 greg 2.12
79 greg 2.1 /*likelihood check of the epsilon, delta, direct and diffuse components*/
80     void check_parametrization();
81     void check_irradiances();
82     void check_illuminances();
83     void illu_to_irra_index();
84 greg 2.9 void print_error_sky();
85 greg 2.1
86 greg 2.12 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
87 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
88 greg 2.1 double radians(double degres);
89     double degres(double radians);
90     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
91     double integ_lv(float *lv,float *theta);
92    
93 greg 2.9 void printdefaults();
94 greg 2.12 void check_sun_position();
95 greg 2.9 void computesky();
96     void printhead(int ac, char** av);
97 greg 2.14 void usage_error(char* msg);
98 greg 2.9 void printsky();
99 greg 2.1
100 greg 2.9 FILE * frlibopen(char* fname);
101 greg 2.1
102     /* astronomy and geometry*/
103     double get_eccentricity();
104     double air_mass();
105    
106 greg 2.14 double solar_sunset(int month, int day);
107     double solar_sunrise(int month, int day);
108 greg 2.12
109 greg 2.1 const double AU = 149597890E3;
110     const double solar_constant_e = 1367; /* solar constant W/m^2 */
111 greg 2.14 const double solar_constant_l = 127500; /* solar constant lux */
112 greg 2.1
113     const double half_sun_angle = 0.2665;
114     const double half_direct_angle = 2.85;
115    
116 greg 2.14 const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */
117     const double skyclearsup = 12.01;
118 greg 2.1 const double skybriginf = 0.01;
119     const double skybrigsup = 0.6;
120    
121    
122    
123     /* required values */
124 greg 2.18 int year = 0; /* year (optional) */
125 greg 2.1 int month, day; /* date */
126     double hour; /* time */
127     int tsolar; /* 0=standard, 1=solar */
128     double altitude, azimuth; /* or solar angles */
129    
130    
131    
132     /* definition of the sky conditions through the Perez parametrization */
133 greg 2.9 double skyclearness = 0;
134     double skybrightness = 0;
135 greg 2.12 double solarradiance;
136     double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
137 greg 2.21 double sunzenith, daynumber, atm_preci_water, Td=10.97353115;
138 greg 2.1
139 greg 2.12 /*double sunaltitude_border = 0;*/
140 greg 2.9 double diffnormalization = 0;
141 greg 2.12 double dirnormalization = 0;
142 greg 2.1 double *c_perez;
143    
144 greg 2.12 int output=0; /* define the unit of the output (sky luminance or radiance): */
145     /* visible watt=0, solar watt=1, lumen=2 */
146     int input=0; /* define the input for the calulation */
147 greg 2.17 int color_output=0;
148 greg 2.9 int suppress_warnings=0;
149    
150 greg 2.1 /* default values */
151 greg 2.12 int cloudy = 0; /* 1=standard, 2=uniform */
152     int dosun = 1;
153 greg 2.1 double zenithbr = -1.0;
154     double betaturbidity = 0.1;
155     double gprefl = 0.2;
156     int S_INTER=0;
157    
158 greg 2.17
159 greg 2.1 /* computed values */
160     double sundir[3];
161 greg 2.9 double groundbr = 0;
162 greg 2.1 double F2;
163     double solarbr = 0.0;
164     int u_solar = 0; /* -1=irradiance, 1=radiance */
165 greg 2.12 float timeinterval = 0;
166    
167     char *progname;
168     char errmsg[128];
169    
170 greg 2.14 double st;
171 greg 2.1
172    
173 greg 2.9 int main(int argc, char** argv)
174 greg 2.1 {
175     int i;
176    
177     progname = argv[0];
178     if (argc == 2 && !strcmp(argv[1], "-defaults")) {
179     printdefaults();
180 greg 2.9 return 0;
181 greg 2.1 }
182     if (argc < 4)
183 greg 2.14 usage_error("arg count");
184 greg 2.1 if (!strcmp(argv[1], "-ang")) {
185 greg 2.9 altitude = atof(argv[2]) * (M_PI/180);
186     azimuth = atof(argv[3]) * (M_PI/180);
187 greg 2.1 month = 0;
188     } else {
189     month = atoi(argv[1]);
190     if (month < 1 || month > 12)
191 greg 2.14 usage_error("bad month");
192 greg 2.1 day = atoi(argv[2]);
193     if (day < 1 || day > 31)
194 greg 2.14 usage_error("bad day");
195 greg 2.1 hour = atof(argv[3]);
196     if (hour < 0 || hour >= 24)
197 greg 2.14 usage_error("bad hour");
198 greg 2.1 tsolar = argv[3][0] == '+';
199     }
200     for (i = 4; i < argc; i++)
201     if (argv[i][0] == '-' || argv[i][0] == '+')
202     switch (argv[i][1]) {
203 greg 2.21 case 'd':
204     Td = atof(argv[++i]);
205     if (Td < -40 || Td > 40) {
206     Td=10.97353115; }
207     break;
208 greg 2.1 case 's':
209     cloudy = 0;
210     dosun = argv[i][0] == '+';
211     break;
212 greg 2.18 case 'y':
213     year = atoi(argv[++i]);
214     break;
215 greg 2.1 case 'R':
216     u_solar = argv[i][1] == 'R' ? -1 : 1;
217     solarbr = atof(argv[++i]);
218     break;
219     case 'c':
220     cloudy = argv[i][0] == '+' ? 2 : 1;
221     dosun = 0;
222     break;
223 greg 2.17 case 'C':
224     if (argv[i][2] == 'I' && argv[i][3] == 'E' ) {
225     locus[0] = -4.607e9;
226     locus[1] = 2.9678e6;
227     locus[2] = 0.09911e3;
228     locus[3] = 0.244063;
229     locus[4] = -2.0064e9;
230     locus[5] = 1.9018e6;
231     locus[6] = 0.24748e3;
232     locus[7] = 0.23704;
233     locus[8] = -3.0;
234     locus[9] = 2.87;
235     locus[10] = -0.275;
236     }else{ color_output = 1;
237     }
238     break;
239     case 'l':
240     locus[0] = atof(argv[++i]);
241     locus[1] = atof(argv[++i]);
242     locus[2] = atof(argv[++i]);
243     locus[3] = atof(argv[++i]);
244     locus[4] = locus[0];
245     locus[5] = locus[1];
246     locus[6] = locus[2];
247     locus[7] = locus[3];
248     locus[8] = atof(argv[++i]);
249     locus[9] = atof(argv[++i]);
250     locus[10] = atof(argv[++i]);
251     break;
252    
253 greg 2.1 case 't':
254     betaturbidity = atof(argv[++i]);
255     break;
256 greg 2.9 case 'w':
257     suppress_warnings = 1;
258     break;
259 greg 2.1 case 'b':
260     zenithbr = atof(argv[++i]);
261     break;
262     case 'g':
263     gprefl = atof(argv[++i]);
264     break;
265     case 'a':
266 greg 2.9 s_latitude = atof(argv[++i]) * (M_PI/180);
267 greg 2.1 break;
268     case 'o':
269 greg 2.9 s_longitude = atof(argv[++i]) * (M_PI/180);
270 greg 2.1 break;
271     case 'm':
272 greg 2.9 s_meridian = atof(argv[++i]) * (M_PI/180);
273 greg 2.1 break;
274    
275     case 'O':
276 greg 2.14 output = atof(argv[++i]); /*define the unit of the output of the program:
277     sky and sun luminance/radiance
278     (0==W visible, 1==W solar radiation, 2==lm) */
279 greg 2.1 break;
280    
281     case 'P':
282     input = 0; /* Perez parameters: epsilon, delta */
283     skyclearness = atof(argv[++i]);
284     skybrightness = atof(argv[++i]);
285     break;
286    
287     case 'W': /* direct normal Irradiance [W/m^2] */
288     input = 1; /* diffuse horizontal Irrad. [W/m^2] */
289     directirradiance = atof(argv[++i]);
290 greg 2.9 diffuseirradiance = atof(argv[++i]);
291 greg 2.1 break;
292    
293     case 'L': /* direct normal Illuminance [Lux] */
294     input = 2; /* diffuse horizontal Ill. [Lux] */
295     directilluminance = atof(argv[++i]);
296 greg 2.9 diffuseilluminance = atof(argv[++i]);
297 greg 2.1 break;
298    
299     case 'G': /* direct horizontal Irradiance [W/m^2] */
300     input = 3; /* diffuse horizontal Irrad. [W/m^2] */
301     directirradiance = atof(argv[++i]);
302 greg 2.9 diffuseirradiance = atof(argv[++i]);
303     break;
304    
305 greg 2.12 case 'E': /* Erbs model based on the */
306     input = 4; /* global-horizontal irradiance [W/m^2] */
307     globalirradiance = atof(argv[++i]);
308     break;
309    
310     case 'i':
311     timeinterval = atof(argv[++i]);
312     break;
313 greg 2.9
314 greg 2.1
315     default:
316     sprintf(errmsg, "unknown option: %s", argv[i]);
317 greg 2.14 usage_error(errmsg);
318 greg 2.1 }
319     else
320 greg 2.14 usage_error("bad option");
321 greg 2.1
322 greg 2.14 if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*M_PI/180)
323     fprintf(stderr,"%s: warning: %.1f hours btwn. standard meridian and longitude\n",
324 greg 2.9 progname, (s_longitude-s_meridian)*12/M_PI);
325 greg 2.1
326    
327 greg 2.12 /* dynamic memory allocation for the pointers */
328 greg 2.9 if ( (c_perez = calloc(5, sizeof(double))) == NULL )
329 greg 2.14 { fprintf(stderr,"Out of memory error in function main"); return 1; }
330 greg 2.1
331 greg 2.14
332 greg 2.21 atm_preci_water=exp(0.07*Td-0.075);
333 greg 2.1 printhead(argc, argv);
334     computesky();
335     printsky();
336 greg 2.9 return 0;
337 greg 2.14
338 greg 2.1 }
339    
340    
341 greg 2.12
342    
343    
344     void computesky()
345 greg 2.1 {
346    
347 greg 2.6 int j;
348 greg 2.12
349     float *lv_mod; /* 145 luminance values */
350 greg 2.9 float *theta_o, *phi_o;
351 greg 2.1 double dzeta, gamma;
352     double normfactor;
353 greg 2.12 double erbs_s0, erbs_kt;
354 greg 2.1
355    
356     /* compute solar direction */
357 greg 2.12
358 greg 2.1 if (month) { /* from date and time */
359 greg 2.14 double sd;
360 greg 2.1
361 greg 2.18 st = hour;
362     if (year) { /* Michalsky algorithm? */
363     double mjd = mjdate(year, month, day, hour);
364     if (tsolar)
365     sd = msdec(mjd, NULL);
366     else
367     sd = msdec(mjd, &st);
368     } else {
369     int jd = jdate(month, day); /* Julian date */
370     sd = sdec(jd); /* solar declination */
371     if (!tsolar) /* get solar time? */
372     st = hour + stadj(jd);
373     }
374    
375 greg 2.12 if(timeinterval) {
376    
377     if(timeinterval<0) {
378     fprintf(stderr, "time interval negative\n");
379     exit(1);
380     }
381 greg 2.14
382     if(fabs(solar_sunrise(month,day)-st)<=timeinterval/120) {
383     st= (st+timeinterval/120+solar_sunrise(month,day))/2;
384     if(suppress_warnings==0)
385     { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
386 greg 2.12 }
387    
388 greg 2.14 if(fabs(solar_sunset(month,day)-st)<timeinterval/120) {
389     st= (st-timeinterval/120+solar_sunset(month,day))/2;
390     if(suppress_warnings==0)
391     { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
392 greg 2.12 }
393 greg 2.14
394     if((st<solar_sunrise(month,day)-timeinterval/120) || (st>solar_sunset(month,day)+timeinterval/120)) {
395     if(suppress_warnings==0)
396     { fprintf(stderr, "Warning: sun position too low, printing error sky at %d %d %.3f\n",month,day,hour); }
397     altitude = salt(sd, st);
398     azimuth = sazi(sd, st);
399     print_error_sky();
400     exit(0);
401     }
402 greg 2.12 }
403 greg 2.14 else
404 greg 2.12
405 greg 2.14 if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) {
406     if(suppress_warnings==0)
407     { fprintf(stderr, "Warning: sun altitude below zero at time step %i %i %.2f, printing error sky\n",month,day,hour); }
408     altitude = salt(sd, st);
409     azimuth = sazi(sd, st);
410     print_error_sky();
411     exit(0);
412     }
413 greg 2.12
414 greg 2.1 altitude = salt(sd, st);
415     azimuth = sazi(sd, st);
416    
417     daynumber = (double)jdate(month, day);
418 greg 2.12
419 greg 2.1 }
420 greg 2.9
421    
422 greg 2.12
423    
424 greg 2.9
425     if (!cloudy && altitude > 87.*M_PI/180.) {
426    
427     if (suppress_warnings==0) {
428     fprintf(stderr,
429 greg 2.1 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
430     progname);
431 greg 2.9 }
432     altitude = 87.*M_PI/180.;
433 greg 2.1 }
434 greg 2.9
435 greg 2.14
436    
437 greg 2.1 sundir[0] = -sin(azimuth)*cos(altitude);
438     sundir[1] = -cos(azimuth)*cos(altitude);
439     sundir[2] = sin(altitude);
440    
441    
442     /* calculation for the new functions */
443 greg 2.9 sunzenith = 90 - altitude*180/M_PI;
444 greg 2.14
445 greg 2.1
446 greg 2.9 /* compute the inputs for the calculation of the light distribution over the sky*/
447 greg 2.12 if (input==0) /* P */
448 greg 2.1 {
449     check_parametrization();
450 greg 2.9 diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
451 greg 2.1 directirradiance = direct_irradiance_from_sky_clearness();
452     check_irradiances();
453    
454     if (output==0 || output==2)
455     {
456 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
457 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
458     check_illuminances();
459     }
460     }
461    
462    
463 greg 2.12 else if (input==1) /* W */
464 greg 2.1 {
465     check_irradiances();
466     skybrightness = sky_brightness();
467     skyclearness = sky_clearness();
468 greg 2.14
469 greg 2.1 check_parametrization();
470 greg 2.14
471 greg 2.1 if (output==0 || output==2)
472     {
473 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
474 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
475     check_illuminances();
476     }
477    
478     }
479    
480    
481 greg 2.12 else if (input==2) /* L */
482 greg 2.1 {
483     check_illuminances();
484     illu_to_irra_index();
485     check_parametrization();
486     }
487    
488    
489 greg 2.12 else if (input==3) /* G */
490 greg 2.1 {
491     if (altitude<=0)
492     {
493 greg 2.9 if (suppress_warnings==0)
494 greg 2.14 fprintf(stderr, "Warning: sun altitude < 0, proceed with irradiance values of zero\n");
495 greg 2.9 directirradiance = 0;
496     diffuseirradiance = 0;
497     } else {
498 greg 2.12
499     directirradiance=directirradiance/sin(altitude);
500 greg 2.1 }
501 greg 2.12
502 greg 2.1 check_irradiances();
503     skybrightness = sky_brightness();
504     skyclearness = sky_clearness();
505     check_parametrization();
506    
507     if (output==0 || output==2)
508     {
509 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
510 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
511     check_illuminances();
512     }
513    
514     }
515    
516 greg 2.12
517     else if (input==4) /* E */ /* Implementation of the Erbs model. W.Sprenger (04/13) */
518     {
519    
520     if (altitude<=0)
521     {
522     if (suppress_warnings==0 && globalirradiance > 50)
523     fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n");
524     globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0;
525    
526     } else {
527    
528     erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude);
529    
530     if (globalirradiance>erbs_s0)
531     {
532     if (suppress_warnings==0)
533     fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n");
534     globalirradiance=erbs_s0*0.999;
535     }
536    
537     erbs_kt=globalirradiance/erbs_s0;
538    
539     if (erbs_kt<=0.22) diffuseirradiance=globalirradiance*(1-0.09*erbs_kt);
540     else if (erbs_kt<=0.8) diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4));
541     else if (erbs_kt<1) diffuseirradiance=globalirradiance*(0.165);
542    
543     directirradiance=globalirradiance-diffuseirradiance;
544    
545     printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance);
546 greg 2.14 printf("# WARNING: the -E option is only recommended for a rough estimation!\n");
547 greg 2.12
548     directirradiance=directirradiance/sin(altitude);
549    
550     }
551    
552     check_irradiances();
553     skybrightness = sky_brightness();
554     skyclearness = sky_clearness();
555     check_parametrization();
556    
557     if (output==0 || output==2)
558     {
559     diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
560     directilluminance = directirradiance*direct_n_effi_PEREZ();
561     check_illuminances();
562     }
563    
564     }
565    
566    
567    
568 greg 2.1
569 greg 2.14 else { fprintf(stderr,"error at the input arguments"); exit(1); }
570 greg 2.1
571    
572    
573 greg 2.9 /* normalization factor for the relative sky luminance distribution, diffuse part*/
574 greg 2.12
575 greg 2.1 if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
576     {
577     fprintf(stderr,"Out of memory in function main");
578     exit(1);
579     }
580    
581     /* read the angles */
582 greg 2.9 theta_o = defangle_theta;
583     phi_o = defangle_phi;
584 greg 2.12
585 greg 2.1
586 greg 2.9 /* parameters for the perez model */
587 greg 2.1 coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
588    
589 greg 2.12
590    
591 greg 2.9 /*calculation of the modelled luminance */
592 greg 2.1 for (j=0;j<145;j++)
593     {
594     theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
595 greg 2.12
596 greg 2.1 *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
597 greg 2.12
598     /* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */
599 greg 2.1 }
600 greg 2.12
601 greg 2.1 /* integration of luminance for the normalization factor, diffuse part of the sky*/
602 greg 2.12
603 greg 2.1 diffnormalization = integ_lv(lv_mod, theta_o);
604    
605    
606    
607 greg 2.9 /*normalization coefficient in lumen or in watt*/
608 greg 2.1 if (output==0)
609     {
610 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
611 greg 2.1 }
612     else if (output==1)
613     {
614 greg 2.9 diffnormalization = diffuseirradiance/diffnormalization;
615 greg 2.1 }
616     else if (output==2)
617     {
618 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization;
619 greg 2.1 }
620    
621 greg 2.9 else {fprintf(stderr,"Wrong output specification.\n"); exit(1);}
622 greg 2.1
623    
624    
625    
626 greg 2.9 /* calculation for the solar source */
627 greg 2.1 if (output==0)
628 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
629 greg 2.1
630     else if (output==1)
631 greg 2.9 solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
632 greg 2.1
633     else
634 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
635 greg 2.1
636    
637    
638 greg 2.14 /* Compute the ground radiance */
639     zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
640     zenithbr*=diffnormalization;
641 greg 2.9
642 greg 2.14 if (skyclearness==1)
643 greg 2.1 normfactor = 0.777778;
644    
645 greg 2.14 if (skyclearness>=6)
646 greg 2.1 {
647 greg 2.9 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
648     normfactor = normsc()/F2/M_PI;
649 greg 2.1 }
650    
651 greg 2.14 if ( (skyclearness>1) && (skyclearness<6) )
652 greg 2.1 {
653     S_INTER=1;
654 greg 2.9 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
655     normfactor = normsc()/F2/M_PI;
656 greg 2.1 }
657    
658 greg 2.14 groundbr = zenithbr*normfactor;
659 greg 2.1
660 greg 2.14 if (dosun&&(skyclearness>1))
661 greg 2.9 groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
662 greg 2.1
663 greg 2.14 groundbr *= gprefl;
664 greg 2.1
665    
666 greg 2.14
667     if(*(c_perez+1)>0)
668     {
669     if(suppress_warnings==0)
670     { fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));}
671     print_error_sky();
672     exit(0);
673     }
674    
675 greg 2.1
676     return;
677     }
678    
679    
680    
681    
682 greg 2.12
683     double solar_sunset(int month,int day)
684     {
685     float W;
686     extern double s_latitude;
687     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
688     return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
689     }
690    
691    
692 greg 2.14
693    
694 greg 2.12 double solar_sunrise(int month,int day)
695     {
696     float W;
697     extern double s_latitude;
698     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
699     return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
700     }
701    
702    
703    
704    
705 greg 2.14 void printsky()
706     {
707    
708     printf("# Local solar time: %.2f\n", st);
709     printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
710 greg 2.21 printf("# epsilon, delta, atmospheric precipitable water content : %.4f %.4f %.4f \n", skyclearness, skybrightness,atm_preci_water );
711 greg 2.12
712    
713 greg 2.1 if (dosun&&(skyclearness>1))
714 greg 2.9 {
715 greg 2.1 printf("\nvoid light solar\n");
716     printf("0\n0\n");
717     printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
718     printf("\nsolar source sun\n");
719     printf("0\n0\n");
720     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
721 greg 2.9 } else if (dosun) {
722 greg 2.1 printf("\nvoid light solar\n");
723     printf("0\n0\n");
724     printf("3 0.0 0.0 0.0\n");
725     printf("\nsolar source sun\n");
726     printf("0\n0\n");
727     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
728 greg 2.9 }
729 greg 2.17 /* print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018 */
730     if (color_output==1 && skyclearness < 4.5 && skyclearness >1.065 )
731     {
732     fprintf(stderr, " warning: sky clearness(epsilon)= %f \n",skyclearness);
733     fprintf(stderr, " warning: intermediate sky!! \n");
734     fprintf(stderr, " warning: color model for intermediate sky pending \n");
735     fprintf(stderr, " warning: no color output ! \n");
736     color_output=0;
737     }
738     if (color_output==1)
739     {
740     printf("\nvoid colorfunc skyfunc\n");
741     printf("4 skybright_r skybright_g skybright_b perezlum_c.cal\n");
742 greg 2.1 printf("0\n");
743 greg 2.17 printf("22 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n", diffnormalization, groundbr,
744 greg 2.9 *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
745 greg 2.17 sundir[0], sundir[1], sundir[2],skyclearness,locus[0],locus[1],locus[2],locus[3],locus[4],locus[5],locus[6],locus[7],locus[8],locus[9],locus[10]);
746     }else{
747     printf("\nvoid brightfunc skyfunc\n");
748     printf("2 skybright perezlum.cal\n");
749     printf("0\n");
750     printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
751     *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
752     sundir[0], sundir[1], sundir[2]);
753     }
754 greg 2.12
755 greg 2.1 }
756    
757    
758 greg 2.14
759     void print_error_sky()
760     {
761    
762    
763     sundir[0] = -sin(azimuth)*cos(altitude);
764     sundir[1] = -cos(azimuth)*cos(altitude);
765     sundir[2] = sin(altitude);
766    
767     printf("# Local solar time: %.2f\n", st);
768     printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
769    
770     printf("\nvoid brightfunc skyfunc\n");
771     printf("2 skybright perezlum.cal\n");
772     printf("0\n");
773     printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]);
774     }
775    
776    
777    
778    
779    
780 greg 2.9 void printdefaults() /* print default values */
781 greg 2.1 {
782     printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
783     if (zenithbr > 0.0)
784     printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
785     else
786     printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
787 greg 2.9 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
788     printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
789     printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
790 greg 2.1 }
791    
792    
793 greg 2.14
794    
795     void usage_error(char* msg) /* print usage error and quit */
796 greg 2.1 {
797     if (msg != NULL)
798 greg 2.12 fprintf(stderr, "%s: Use error - %s\n\n", progname, msg);
799 greg 2.19 fprintf(stderr, "Usage: %s month day hour [-y year] [...]\n", progname);
800     fprintf(stderr, " or: %s -ang altitude azimuth [...]\n", progname);
801 greg 2.12 fprintf(stderr, " followed by: -P epsilon delta [options]\n");
802     fprintf(stderr, " or: [-W|-L|-G] direct_value diffuse_value [options]\n");
803 greg 2.19 fprintf(stderr, " or: -E global_irradiance [options]\n\n");
804     fprintf(stderr, " Description:\n");
805 greg 2.1 fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
806     fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
807     fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
808     fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
809 greg 2.12 fprintf(stderr, " -E global-horizontal-irradiance (W/m^2)\n\n");
810     fprintf(stderr, " Output specification with option:\n");
811 greg 2.1 fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
812 greg 2.17 fprintf(stderr, " gendaylit version 2.5 (2018/04/18) \n\n");
813 greg 2.1 exit(1);
814     }
815    
816    
817    
818 greg 2.14
819 greg 2.9 double normsc() /* compute normalization factor (E0*F2/L0) */
820 greg 2.1 {
821     static double nfc[2][5] = {
822     /* clear sky approx. */
823     {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
824     /* intermediate sky approx. */
825     {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
826     };
827     register double *nf;
828     double x, nsc;
829     register int i;
830     /* polynomial approximation */
831     nf = nfc[S_INTER];
832 greg 2.9 x = (altitude - M_PI/4.0)/(M_PI/4.0);
833 greg 2.1 nsc = nf[i=4];
834     while (i--)
835     nsc = nsc*x + nf[i];
836    
837     return(nsc);
838     }
839    
840    
841    
842 greg 2.14
843    
844 greg 2.9 void printhead(int ac, char** av) /* print command header */
845 greg 2.1 {
846     putchar('#');
847     while (ac--) {
848     putchar(' ');
849     fputs(*av++, stdout);
850     }
851     putchar('\n');
852     }
853    
854    
855    
856    
857 greg 2.14
858    
859 greg 2.1 /* Perez models */
860    
861     /* Perez global horizontal luminous efficacy model */
862     double glob_h_effi_PEREZ()
863     {
864    
865     double value;
866     double category_bounds[10], a[10], b[10], c[10], d[10];
867     int category_total_number, category_number, i;
868 greg 2.12
869     check_parametrization();
870    
871    
872     /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
873     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */
874    
875    
876 greg 2.1 /* initialize category bounds (clearness index bounds) */
877    
878     category_total_number = 8;
879    
880     category_bounds[1] = 1;
881     category_bounds[2] = 1.065;
882     category_bounds[3] = 1.230;
883     category_bounds[4] = 1.500;
884     category_bounds[5] = 1.950;
885     category_bounds[6] = 2.800;
886     category_bounds[7] = 4.500;
887     category_bounds[8] = 6.200;
888     category_bounds[9] = 12.01;
889    
890    
891     /* initialize model coefficients */
892     a[1] = 96.63;
893     a[2] = 107.54;
894     a[3] = 98.73;
895     a[4] = 92.72;
896     a[5] = 86.73;
897     a[6] = 88.34;
898     a[7] = 78.63;
899     a[8] = 99.65;
900    
901     b[1] = -0.47;
902     b[2] = 0.79;
903     b[3] = 0.70;
904     b[4] = 0.56;
905     b[5] = 0.98;
906     b[6] = 1.39;
907     b[7] = 1.47;
908     b[8] = 1.86;
909    
910     c[1] = 11.50;
911     c[2] = 1.79;
912     c[3] = 4.40;
913     c[4] = 8.36;
914     c[5] = 7.10;
915     c[6] = 6.06;
916     c[7] = 4.93;
917     c[8] = -4.46;
918    
919     d[1] = -9.16;
920     d[2] = -1.19;
921     d[3] = -6.95;
922     d[4] = -8.31;
923     d[5] = -10.94;
924     d[6] = -7.60;
925     d[7] = -11.37;
926     d[8] = -3.15;
927    
928    
929    
930     for (i=1; i<=category_total_number; i++)
931     {
932     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
933     category_number = i;
934     }
935    
936     value = a[category_number] + b[category_number]*atm_preci_water +
937 greg 2.9 c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
938 greg 2.1
939     return(value);
940     }
941    
942    
943 greg 2.14
944    
945 greg 2.1 /* global horizontal diffuse efficacy model, according to PEREZ */
946     double glob_h_diffuse_effi_PEREZ()
947     {
948     double value;
949     double category_bounds[10], a[10], b[10], c[10], d[10];
950     int category_total_number, category_number, i;
951    
952 greg 2.12 check_parametrization();
953 greg 2.1
954 greg 2.12
955     /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
956 greg 2.14 fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
957 greg 2.12
958 greg 2.1 /* initialize category bounds (clearness index bounds) */
959    
960     category_total_number = 8;
961    
962 greg 2.12 //XXX: category_bounds > 0.1
963 greg 2.1 category_bounds[1] = 1;
964     category_bounds[2] = 1.065;
965     category_bounds[3] = 1.230;
966     category_bounds[4] = 1.500;
967     category_bounds[5] = 1.950;
968     category_bounds[6] = 2.800;
969     category_bounds[7] = 4.500;
970     category_bounds[8] = 6.200;
971     category_bounds[9] = 12.01;
972    
973    
974     /* initialize model coefficients */
975     a[1] = 97.24;
976     a[2] = 107.22;
977     a[3] = 104.97;
978     a[4] = 102.39;
979     a[5] = 100.71;
980     a[6] = 106.42;
981     a[7] = 141.88;
982     a[8] = 152.23;
983    
984     b[1] = -0.46;
985     b[2] = 1.15;
986     b[3] = 2.96;
987     b[4] = 5.59;
988     b[5] = 5.94;
989     b[6] = 3.83;
990     b[7] = 1.90;
991     b[8] = 0.35;
992    
993     c[1] = 12.00;
994     c[2] = 0.59;
995     c[3] = -5.53;
996     c[4] = -13.95;
997     c[5] = -22.75;
998     c[6] = -36.15;
999     c[7] = -53.24;
1000     c[8] = -45.27;
1001    
1002     d[1] = -8.91;
1003     d[2] = -3.95;
1004     d[3] = -8.77;
1005     d[4] = -13.90;
1006     d[5] = -23.74;
1007     d[6] = -28.83;
1008     d[7] = -14.03;
1009     d[8] = -7.98;
1010    
1011    
1012    
1013 greg 2.9 category_number = -1;
1014 greg 2.1 for (i=1; i<=category_total_number; i++)
1015     {
1016     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
1017     category_number = i;
1018     }
1019    
1020 greg 2.9 if (category_number == -1) {
1021     if (suppress_warnings==0)
1022 greg 2.14 fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness);
1023 greg 2.9 print_error_sky();
1024 greg 2.14 exit(0);
1025 greg 2.9 }
1026    
1027    
1028     value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
1029 greg 2.1 d[category_number]*log(skybrightness);
1030    
1031     return(value);
1032 greg 2.12
1033 greg 2.1 }
1034    
1035    
1036 greg 2.12
1037 greg 2.14
1038    
1039    
1040 greg 2.1 /* direct normal efficacy model, according to PEREZ */
1041    
1042     double direct_n_effi_PEREZ()
1043    
1044     {
1045     double value;
1046     double category_bounds[10], a[10], b[10], c[10], d[10];
1047     int category_total_number, category_number, i;
1048    
1049    
1050 greg 2.14 /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
1051     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/
1052 greg 2.1
1053    
1054     /* initialize category bounds (clearness index bounds) */
1055    
1056     category_total_number = 8;
1057    
1058     category_bounds[1] = 1;
1059     category_bounds[2] = 1.065;
1060     category_bounds[3] = 1.230;
1061     category_bounds[4] = 1.500;
1062     category_bounds[5] = 1.950;
1063     category_bounds[6] = 2.800;
1064     category_bounds[7] = 4.500;
1065     category_bounds[8] = 6.200;
1066     category_bounds[9] = 12.1;
1067    
1068    
1069     /* initialize model coefficients */
1070     a[1] = 57.20;
1071     a[2] = 98.99;
1072     a[3] = 109.83;
1073     a[4] = 110.34;
1074     a[5] = 106.36;
1075     a[6] = 107.19;
1076     a[7] = 105.75;
1077     a[8] = 101.18;
1078    
1079     b[1] = -4.55;
1080     b[2] = -3.46;
1081     b[3] = -4.90;
1082     b[4] = -5.84;
1083     b[5] = -3.97;
1084     b[6] = -1.25;
1085     b[7] = 0.77;
1086     b[8] = 1.58;
1087    
1088     c[1] = -2.98;
1089     c[2] = -1.21;
1090     c[3] = -1.71;
1091     c[4] = -1.99;
1092     c[5] = -1.75;
1093     c[6] = -1.51;
1094     c[7] = -1.26;
1095     c[8] = -1.10;
1096    
1097     d[1] = 117.12;
1098     d[2] = 12.38;
1099     d[3] = -8.81;
1100     d[4] = -4.56;
1101     d[5] = -6.16;
1102     d[6] = -26.73;
1103     d[7] = -34.44;
1104     d[8] = -8.29;
1105    
1106    
1107    
1108     for (i=1; i<=category_total_number; i++)
1109     {
1110     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
1111     category_number = i;
1112     }
1113    
1114 greg 2.9 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
1115 greg 2.1
1116     if (value < 0) value = 0;
1117    
1118     return(value);
1119     }
1120    
1121    
1122     /*check the range of epsilon and delta indexes of the perez parametrization*/
1123     void check_parametrization()
1124     {
1125 greg 2.14
1126 greg 2.9 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
1127 greg 2.1 {
1128 greg 2.9
1129     /* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
1130 greg 2.14
1131 greg 2.9 if (skyclearness<skyclearinf){
1132 greg 2.14 /* if (suppress_warnings==0)
1133     fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
1134 greg 2.9 skyclearness=skyclearinf;
1135     }
1136     if (skyclearness>skyclearsup){
1137 greg 2.14 /* if (suppress_warnings==0)
1138     fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
1139     skyclearness=skyclearsup-0.001;
1140 greg 2.9 }
1141     if (skybrightness<skybriginf){
1142 greg 2.14 /* if (suppress_warnings==0)
1143     fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
1144 greg 2.9 skybrightness=skybriginf;
1145     }
1146     if (skybrightness>skybrigsup){
1147 greg 2.14 /* if (suppress_warnings==0)
1148     fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
1149 greg 2.9 skybrightness=skybrigsup;
1150 greg 2.1 }
1151 greg 2.9
1152     return; }
1153 greg 2.1 else return;
1154     }
1155    
1156    
1157 greg 2.14
1158    
1159    
1160 greg 2.9 /* validity of the direct and diffuse components */
1161 greg 2.1 void check_illuminances()
1162     {
1163 greg 2.9 if (directilluminance < 0) {
1164 greg 2.14 if(suppress_warnings==0)
1165     { fprintf(stderr,"Warning: direct illuminance < 0. Using 0.0\n"); }
1166 greg 2.9 directilluminance = 0.0;
1167     }
1168     if (diffuseilluminance < 0) {
1169 greg 2.14 if(suppress_warnings==0)
1170     { fprintf(stderr,"Warning: diffuse illuminance < 0. Using 0.0\n"); }
1171 greg 2.9 diffuseilluminance = 0.0;
1172     }
1173 greg 2.14
1174     if (directilluminance+diffuseilluminance==0 && altitude > 0) {
1175     if(suppress_warnings==0)
1176     { fprintf(stderr,"Warning: zero illuminance at sun altitude > 0, printing error sky\n"); }
1177     print_error_sky();
1178     exit(0);
1179     }
1180    
1181     if (directilluminance > solar_constant_l) {
1182     if(suppress_warnings==0)
1183     { fprintf(stderr,"Warning: direct illuminance exceeds solar constant\n"); }
1184     print_error_sky();
1185     exit(0);
1186 greg 2.1 }
1187     }
1188    
1189    
1190     void check_irradiances()
1191     {
1192 greg 2.9 if (directirradiance < 0) {
1193 greg 2.14 if(suppress_warnings==0)
1194     { fprintf(stderr,"Warning: direct irradiance < 0. Using 0.0\n"); }
1195 greg 2.9 directirradiance = 0.0;
1196     }
1197     if (diffuseirradiance < 0) {
1198 greg 2.14 if(suppress_warnings==0)
1199     { fprintf(stderr,"Warning: diffuse irradiance < 0. Using 0.0\n"); }
1200 greg 2.9 diffuseirradiance = 0.0;
1201     }
1202 greg 2.14
1203     if (directirradiance+diffuseirradiance==0 && altitude > 0) {
1204     if(suppress_warnings==0)
1205     { fprintf(stderr,"Warning: zero irradiance at sun altitude > 0, printing error sky\n"); }
1206     print_error_sky();
1207     exit(0);
1208     }
1209    
1210 greg 2.9 if (directirradiance > solar_constant_e) {
1211 greg 2.14 if(suppress_warnings==0)
1212     { fprintf(stderr,"Warning: direct irradiance exceeds solar constant\n"); }
1213     print_error_sky();
1214     exit(0);
1215 greg 2.9 }
1216 greg 2.1 }
1217    
1218    
1219    
1220     /* Perez sky's brightness */
1221     double sky_brightness()
1222     {
1223     double value;
1224    
1225 greg 2.9 value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
1226 greg 2.1
1227     return(value);
1228     }
1229    
1230    
1231     /* Perez sky's clearness */
1232     double sky_clearness()
1233     {
1234 greg 2.9 double value;
1235 greg 2.1
1236 greg 2.9 value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
1237 greg 2.1
1238 greg 2.9 return(value);
1239 greg 2.1 }
1240    
1241    
1242    
1243     /* diffus horizontal irradiance from Perez sky's brightness */
1244 greg 2.9 double diffuse_irradiance_from_sky_brightness()
1245 greg 2.1 {
1246     double value;
1247    
1248     value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
1249    
1250     return(value);
1251     }
1252    
1253    
1254     /* direct normal irradiance from Perez sky's clearness */
1255     double direct_irradiance_from_sky_clearness()
1256     {
1257     double value;
1258    
1259 greg 2.9 value = diffuse_irradiance_from_sky_brightness();
1260     value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
1261 greg 2.1
1262     return(value);
1263     }
1264    
1265    
1266 greg 2.12
1267    
1268 greg 2.9 void illu_to_irra_index()
1269 greg 2.1 {
1270 greg 2.9 double test1=0.1, test2=0.1, d_eff;
1271 greg 2.1 int counter=0;
1272    
1273 greg 2.14 diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l);
1274     directirradiance = directilluminance*solar_constant_e/(solar_constant_l);
1275 greg 2.1 skyclearness = sky_clearness();
1276     skybrightness = sky_brightness();
1277 greg 2.9 check_parametrization();
1278 greg 2.12
1279    
1280 greg 2.9 while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1281 greg 2.12 || (!(skyclearness<skyclearinf || skyclearness>skyclearsup))
1282     || (!(skybrightness<skybriginf || skybrightness>skybrigsup)) )
1283     && !(counter==9) )
1284 greg 2.1 {
1285 greg 2.12
1286 greg 2.9 test1=diffuseirradiance;
1287 greg 2.1 test2=directirradiance;
1288     counter++;
1289    
1290 greg 2.9 diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1291     d_eff = direct_n_effi_PEREZ();
1292 greg 2.12
1293    
1294 greg 2.9 if (d_eff < 0.1)
1295     directirradiance = 0;
1296 greg 2.12 else
1297 greg 2.9 directirradiance = directilluminance/d_eff;
1298 greg 2.1
1299     skybrightness = sky_brightness();
1300     skyclearness = sky_clearness();
1301 greg 2.9 check_parametrization();
1302 greg 2.12
1303 greg 2.1 }
1304    
1305    
1306     return;
1307     }
1308    
1309 greg 2.9 static int get_numlin(float epsilon)
1310 greg 2.1 {
1311 greg 2.9 if (epsilon < 1.065)
1312     return 0;
1313     else if (epsilon < 1.230)
1314     return 1;
1315     else if (epsilon < 1.500)
1316     return 2;
1317     else if (epsilon < 1.950)
1318     return 3;
1319     else if (epsilon < 2.800)
1320     return 4;
1321     else if (epsilon < 4.500)
1322     return 5;
1323     else if (epsilon < 6.200)
1324     return 6;
1325     return 7;
1326 greg 2.1 }
1327    
1328     /* sky luminance perez model */
1329 greg 2.9 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1330 greg 2.1 {
1331 greg 2.12
1332 greg 2.1 float x[5][4];
1333     int i,j,num_lin;
1334     double c_perez[5];
1335    
1336     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1337     {
1338 greg 2.14 fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n");
1339 greg 2.1 exit(1);
1340     }
1341    
1342     /* correction de modele de Perez solar energy ...*/
1343     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1344     {
1345     if ( Delta < 0.2 ) Delta = 0.2;
1346     }
1347 greg 2.12
1348    
1349 greg 2.9 num_lin = get_numlin(epsilon);
1350 greg 2.12
1351 greg 2.1 for (i=0;i<5;i++)
1352     for (j=0;j<4;j++)
1353     {
1354     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1355 greg 2.12 /* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
1356 greg 2.1 }
1357    
1358    
1359     if (num_lin)
1360     {
1361     for (i=0;i<5;i++)
1362     c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1363     }
1364     else
1365     {
1366     c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1367     c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1368     c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1369     c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1370     c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1371     }
1372    
1373    
1374     return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
1375     (1 + c_perez[2]*exp(c_perez[3]*gamma) +
1376     c_perez[4]*cos(gamma)*cos(gamma) );
1377     }
1378    
1379    
1380    
1381     /* coefficients for the sky luminance perez model */
1382 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[])
1383 greg 2.1 {
1384     float x[5][4];
1385     int i,j,num_lin;
1386    
1387     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1388     {
1389 greg 2.14 fprintf(stderr,"Error: epsilon out of range in function coeff_lum_perez!\n");
1390 greg 2.1 exit(1);
1391     }
1392    
1393     /* correction du modele de Perez solar energy ...*/
1394     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1395     {
1396     if ( Delta < 0.2 ) Delta = 0.2;
1397     }
1398 greg 2.12
1399    
1400 greg 2.9 num_lin = get_numlin(epsilon);
1401    
1402 greg 2.12 /*fprintf(stderr,"numlin %d\n", num_lin);*/
1403 greg 2.1
1404     for (i=0;i<5;i++)
1405     for (j=0;j<4;j++)
1406     {
1407     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1408     /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1409     }
1410    
1411    
1412     if (num_lin)
1413     {
1414     for (i=0;i<5;i++)
1415     *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1416    
1417     }
1418     else
1419     {
1420     *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1421     *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1422     *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1423     *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1424     *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1425    
1426    
1427     }
1428    
1429    
1430     return;
1431     }
1432    
1433    
1434 greg 2.12
1435 greg 2.1 /* degrees into radians */
1436     double radians(double degres)
1437     {
1438 greg 2.20 return degres*(M_PI/180.);
1439 greg 2.1 }
1440    
1441 greg 2.12
1442 greg 2.1 /* radian into degrees */
1443     double degres(double radians)
1444     {
1445 greg 2.20 return radians*(180./M_PI);
1446 greg 2.1 }
1447    
1448 greg 2.12
1449 greg 2.1 /* calculation of the angles dzeta and gamma */
1450     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1451     {
1452     *dzeta = theta; /* dzeta = phi */
1453     if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
1454     *gamma = 0;
1455     else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1456     {
1457     printf("error in calculation of gamma (angle between point and sun");
1458 greg 2.14 exit(1);
1459 greg 2.1 }
1460     else
1461     *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
1462     }
1463    
1464    
1465    
1466     double integ_lv(float *lv,float *theta)
1467     {
1468     int i;
1469     double buffer=0.0;
1470 greg 2.12
1471 greg 2.1 for (i=0;i<145;i++)
1472 greg 2.12 {
1473 greg 2.1 buffer += (*(lv+i))*cos(radians(*(theta+i)));
1474 greg 2.12 }
1475    
1476 greg 2.20 return buffer*(2.*M_PI/145.);
1477 greg 2.1 }
1478    
1479    
1480    
1481     /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
1482    
1483     double get_eccentricity()
1484     {
1485     double day_angle;
1486     double E0;
1487    
1488 greg 2.9 day_angle = 2*M_PI*(daynumber - 1)/365;
1489 greg 2.1 E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
1490     0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1491    
1492     return (E0);
1493     }
1494    
1495    
1496     /* enter sunzenith angle (degrees) return relative air mass (double) */
1497     double air_mass()
1498     {
1499     double m;
1500     if (sunzenith>90)
1501     {
1502 greg 2.14 if(suppress_warnings==0)
1503     { fprintf(stderr, "Warning: air mass has reached the maximal value\n"); }
1504     sunzenith=90;
1505 greg 2.1 }
1506 greg 2.9 m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1507 greg 2.1 return(m);
1508     }
1509    
1510    
1511