ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
Revision: 2.5
Committed: Wed Aug 10 22:30:31 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +2 -1 lines
Log Message:
Minor bug fix

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaylit.c,v 2.4 2011/08/10 22:28:45 greg Exp $";
3 #endif
4 /* Copyright (c) 1994 *Fraunhofer Institut for Solar Energy Systems
5 * Oltmannstr 5, D-79100 Freiburg, Germany
6 * *Agence de l'Environnement et de la Maitrise de l'Energie
7 * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
8 * *BOUYGUES
9 * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
10 */
11
12
13
14 /*
15 * gendaylit.c program to generate the angular distribution of the daylight.
16 * Our zenith is along the Z-axis, the X-axis
17 * points east, and the Y-axis points north.
18 */
19
20 #include <stdio.h>
21 #include <string.h>
22 #include <math.h>
23 #include <stdlib.h>
24 #include <ctype.h>
25
26 #include "rtio.h"
27 #include "fvect.h"
28 #include "color.h"
29 #include "paths.h"
30
31 extern int jdate(int month, int day);
32 extern double stadj(int jd);
33 extern double sdec(int jd);
34 extern double salt(double sd, double st);
35 extern double sazi(double sd, double st);
36
37 double normsc();
38
39 #define DATFILE "coeff_perez.dat"
40
41
42
43 /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
44 double sky_brightness();
45 double sky_clearness();
46 void computesky();
47
48 /* calculation of the direct and diffuse components from the Perez parametrization */
49 double diffus_irradiance_from_sky_brightness();
50 double direct_irradiance_from_sky_clearness();
51
52
53 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
54 double glob_h_effi_PEREZ();
55 double glob_h_diffuse_effi_PEREZ();
56 double direct_n_effi_PEREZ();
57 /*likelihood check of the epsilon, delta, direct and diffuse components*/
58 void check_parametrization();
59 void check_irradiances();
60 void check_illuminances();
61 void illu_to_irra_index();
62
63
64 /* Perez sky luminance model */
65 int lect_coeff_perez(char *filename,float **coeff_perez);
66 double calc_rel_lum_perez(double dzeta,double gamma,double Z,
67 double epsilon,double Delta,float *coeff_perez);
68 /* coefficients for the sky luminance perez model */
69 void coeff_lum_perez(double Z, double epsilon, double Delta, float *coeff_perez);
70 double radians(double degres);
71 double degres(double radians);
72 void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
73 double integ_lv(float *lv,float *theta);
74 float *theta_ordered(char *filename);
75 float *phi_ordered(char *filename);
76 void skip_comments(FILE *fp);
77
78
79
80 /* astronomy and geometry*/
81 double get_eccentricity();
82 double air_mass();
83 double get_angle_sun_direction(double sun_zenith, double sun_azimut, double direction_zenith, double direction_azimut);
84
85
86 /* date*/
87 int jdate(int month, int day);
88
89
90
91
92
93 /* sun calculation constants */
94 extern double s_latitude;
95 extern double s_longitude;
96 extern double s_meridian;
97
98 const double AU = 149597890E3;
99 const double solar_constant_e = 1367; /* solar constant W/m^2 */
100 const double solar_constant_l = 127.5; /* solar constant klux */
101
102 const double half_sun_angle = 0.2665;
103 const double half_direct_angle = 2.85;
104
105 const double skyclearinf = 1.000; /* limitations for the variation of the Perez parameters */
106 const double skyclearsup = 12.1;
107 const double skybriginf = 0.01;
108 const double skybrigsup = 0.6;
109
110
111
112 /* required values */
113 int month, day; /* date */
114 double hour; /* time */
115 int tsolar; /* 0=standard, 1=solar */
116 double altitude, azimuth; /* or solar angles */
117
118
119
120 /* definition of the sky conditions through the Perez parametrization */
121 double skyclearness, skybrightness;
122 double solarradiance; /*radiance of the sun disk and of the circumsolar area*/
123 double diffusilluminance, directilluminance, diffusirradiance, directirradiance;
124 double sunzenith, daynumber=150, atm_preci_water=2;
125
126 double diffnormalization, dirnormalization;
127 double *c_perez;
128
129 int output=0; /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/
130 int input=0; /*define the input for the calulation*/
131
132 /* default values */
133 int cloudy = 0; /* 1=standard, 2=uniform */
134 int dosun = 1;
135 double zenithbr = -1.0;
136 double betaturbidity = 0.1;
137 double gprefl = 0.2;
138 int S_INTER=0;
139
140 /* computed values */
141 double sundir[3];
142 double groundbr;
143 double F2;
144 double solarbr = 0.0;
145 int u_solar = 0; /* -1=irradiance, 1=radiance */
146
147 char *progname;
148 char errmsg[128];
149
150
151 main(argc, argv)
152 int argc;
153 char *argv[];
154 {
155 int i;
156
157 progname = argv[0];
158 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
159 printdefaults();
160 exit(0);
161 }
162 if (argc < 4)
163 userror("arg count");
164 if (!strcmp(argv[1], "-ang")) {
165 altitude = atof(argv[2]) * (M_PI/180);
166 azimuth = atof(argv[3]) * (M_PI/180);
167 month = 0;
168 } else {
169 month = atoi(argv[1]);
170 if (month < 1 || month > 12)
171 userror("bad month");
172 day = atoi(argv[2]);
173 if (day < 1 || day > 31)
174 userror("bad day");
175 hour = atof(argv[3]);
176 if (hour < 0 || hour >= 24)
177 userror("bad hour");
178 tsolar = argv[3][0] == '+';
179 }
180 for (i = 4; i < argc; i++)
181 if (argv[i][0] == '-' || argv[i][0] == '+')
182 switch (argv[i][1]) {
183 case 's':
184 cloudy = 0;
185 dosun = argv[i][0] == '+';
186 break;
187 case 'r':
188 case 'R':
189 u_solar = argv[i][1] == 'R' ? -1 : 1;
190 solarbr = atof(argv[++i]);
191 break;
192 case 'c':
193 cloudy = argv[i][0] == '+' ? 2 : 1;
194 dosun = 0;
195 break;
196 case 't':
197 betaturbidity = atof(argv[++i]);
198 break;
199 case 'b':
200 zenithbr = atof(argv[++i]);
201 break;
202 case 'g':
203 gprefl = atof(argv[++i]);
204 break;
205 case 'a':
206 s_latitude = atof(argv[++i]) * (M_PI/180);
207 break;
208 case 'o':
209 s_longitude = atof(argv[++i]) * (M_PI/180);
210 break;
211 case 'm':
212 s_meridian = atof(argv[++i]) * (M_PI/180);
213 break;
214
215
216 case 'O':
217 output = atof(argv[++i]); /*define the unit of the output of the program :
218 sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm)
219 default is set to 0*/
220 break;
221
222 case 'P':
223 input = 0; /* Perez parameters: epsilon, delta */
224 skyclearness = atof(argv[++i]);
225 skybrightness = atof(argv[++i]);
226 break;
227
228 case 'W': /* direct normal Irradiance [W/m^2] */
229 input = 1; /* diffuse horizontal Irrad. [W/m^2] */
230 directirradiance = atof(argv[++i]);
231 diffusirradiance = atof(argv[++i]);
232 break;
233
234 case 'L': /* direct normal Illuminance [Lux] */
235 input = 2; /* diffuse horizontal Ill. [Lux] */
236 directilluminance = atof(argv[++i]);
237 diffusilluminance = atof(argv[++i]);
238 break;
239
240 case 'G': /* direct horizontal Irradiance [W/m^2] */
241 input = 3; /* diffuse horizontal Irrad. [W/m^2] */
242 directirradiance = atof(argv[++i]);
243 diffusirradiance = atof(argv[++i]);
244 break;
245
246
247 default:
248 sprintf(errmsg, "unknown option: %s", argv[i]);
249 userror(errmsg);
250 }
251 else
252 userror("bad option");
253
254 if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
255 fprintf(stderr,
256 "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
257 progname, (s_longitude-s_meridian)*12/M_PI);
258
259
260 /* allocation dynamique de memoire pour les pointeurs */
261 if ( (c_perez = malloc(5*sizeof(double))) == NULL )
262 {
263 fprintf(stderr,"Out of memory error in function main !");
264 exit(1);
265 }
266
267
268 printhead(argc, argv);
269
270 computesky();
271 printsky();
272
273 exit(0);
274 }
275
276
277 void
278 computesky() /* compute sky parameters */
279 {
280
281 /* new variables */
282 int j, i;
283 float *lv_mod; /* 145 luminance values*/
284 /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */
285 float *theta_o, *phi_o, *coeff_perez;
286 double dzeta, gamma;
287 double diffusion;
288 double normfactor;
289
290
291
292 /* compute solar direction */
293
294 if (month) { /* from date and time */
295 int jd;
296 double sd, st;
297
298 jd = jdate(month, day); /* Julian date */
299 sd = sdec(jd); /* solar declination */
300 if (tsolar) /* solar time */
301 st = hour;
302 else
303 st = hour + stadj(jd);
304 altitude = salt(sd, st);
305 azimuth = sazi(sd, st);
306
307 daynumber = (double)jdate(month, day);
308
309 }
310 if (!cloudy && altitude > 87.*M_PI/180.) {
311 fprintf(stderr,
312 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
313 progname);
314 printf(
315 "# warning - sun too close to zenith, reducing altitude to 87 degrees\n");
316 altitude = 87.*M_PI/180.;
317 }
318 sundir[0] = -sin(azimuth)*cos(altitude);
319 sundir[1] = -cos(azimuth)*cos(altitude);
320 sundir[2] = sin(altitude);
321
322
323 /* calculation for the new functions */
324 sunzenith = 90 - altitude*180/M_PI;
325
326
327
328 /* compute the inputs for the calculation of the light distribution over the sky*/
329 if (input==0)
330 {
331 check_parametrization();
332 diffusirradiance = diffus_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
333 directirradiance = direct_irradiance_from_sky_clearness();
334 check_irradiances();
335
336 if (output==0 || output==2)
337 {
338 diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
339 directilluminance = directirradiance*direct_n_effi_PEREZ();
340 check_illuminances();
341 }
342 }
343
344
345 else if (input==1)
346 {
347 check_irradiances();
348 skybrightness = sky_brightness();
349 skyclearness = sky_clearness();
350 check_parametrization();
351
352 if (output==0 || output==2)
353 {
354 diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
355 directilluminance = directirradiance*direct_n_effi_PEREZ();
356 check_illuminances();
357 }
358
359 }
360
361
362 else if (input==2)
363 {
364 check_illuminances();
365 illu_to_irra_index();
366 check_parametrization();
367 }
368
369
370 else if (input==3)
371 {
372 if (altitude<=0)
373 {
374 fprintf(stderr, "solar zenith angle larger than 90� \n the models used are not more valid\n");
375 exit(1);
376 }
377
378 directirradiance=directirradiance/sin(altitude);
379 check_irradiances();
380 skybrightness = sky_brightness();
381 skyclearness = sky_clearness();
382 check_parametrization();
383
384 if (output==0 || output==2)
385 {
386 diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
387 directilluminance = directirradiance*direct_n_effi_PEREZ();
388 check_illuminances();
389 }
390
391 }
392
393
394 else {fprintf(stderr,"error in giving the input arguments"); exit(1);}
395
396
397
398 /* normalization factor for the relative sky luminance distribution, diffuse part*/
399
400 /* allocation dynamique de memoire pour les pointeurs */
401 if ( (coeff_perez = malloc(8*20*sizeof(float))) == NULL )
402 {
403 fprintf(stderr,"Out of memory error in function main !");
404 exit(1);
405 }
406
407 /* read the coefficients for the Perez sky luminance model */
408 if (lect_coeff_perez(DATFILE, &coeff_perez) > 0)
409 {
410 fprintf(stderr,"lect_coeff_perez does not work\n");
411 exit(2);
412 }
413
414 if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
415 {
416 fprintf(stderr,"Out of memory in function main");
417 exit(1);
418 }
419
420 /* read the angles */
421 theta_o = theta_ordered("defangle.dat");
422 phi_o = phi_ordered("defangle.dat");
423
424 /* parameters for the perez model */
425 coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
426
427 /*calculation of the modelled luminance */
428 for (j=0;j<145;j++)
429 {
430 theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
431 *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
432 /*printf("theta, phi, lv_mod %lf\t %lf\t %lf\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));*/
433 }
434
435 /* integration of luminance for the normalization factor, diffuse part of the sky*/
436 diffnormalization = integ_lv(lv_mod, theta_o);
437 /*printf("perez integration %lf\n", diffnormalization);*/
438
439
440
441
442 /*normalization coefficient in lumen or in watt*/
443 if (output==0)
444 {
445 diffnormalization = diffusilluminance/diffnormalization/WHTEFFICACY;
446 }
447 else if (output==1)
448 {
449 diffnormalization = diffusirradiance/diffnormalization;
450 }
451 else if (output==2)
452 {
453 diffnormalization = diffusilluminance/diffnormalization;
454 }
455
456 else {fprintf(stderr,"output argument : wrong number"); exit(1);}
457
458
459
460
461 /* calculation for the solar source */
462 if (output==0)
463 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
464
465 else if (output==1)
466 solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
467
468 else
469 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
470
471
472
473
474 /* Compute the ground radiance */
475 zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
476 zenithbr*=diffnormalization;
477 /*
478 fprintf(stderr, "gendaylit : the actual zenith radiance(W/m^2/sr) or luminance(cd/m^2) is : %.0lf\n", zenithbr);
479 */
480
481 if (skyclearness==1)
482 normfactor = 0.777778;
483
484 if (skyclearness>=6)
485 {
486 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
487 normfactor = normsc()/F2/M_PI;
488 }
489
490 if ( (skyclearness>1) && (skyclearness<6) )
491 {
492 S_INTER=1;
493 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
494 normfactor = normsc()/F2/M_PI;
495 }
496
497 groundbr = zenithbr*normfactor;
498 printf("# Ground ambient level: %.1f\n", groundbr);
499
500 if (dosun&&(skyclearness>1))
501 groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
502
503 groundbr *= gprefl;
504
505
506
507 return;
508 }
509
510
511
512
513
514
515
516 printsky() /* print out sky */
517 {
518 if (dosun&&(skyclearness>1))
519 {
520 printf("\nvoid light solar\n");
521 printf("0\n0\n");
522 printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
523 printf("\nsolar source sun\n");
524 printf("0\n0\n");
525 printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
526 }
527
528 if (dosun&&(skyclearness==1))
529 {
530 printf("\nvoid light solar\n");
531 printf("0\n0\n");
532 printf("3 0.0 0.0 0.0\n");
533 printf("\nsolar source sun\n");
534 printf("0\n0\n");
535 printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
536 }
537
538
539 printf("\nvoid brightfunc skyfunc\n");
540 printf("2 skybright perezlum.cal\n");
541 printf("0\n");
542 printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
543 *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
544 sundir[0], sundir[1], sundir[2]);
545 }
546
547
548 printdefaults() /* print default values */
549 {
550 printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
551 if (zenithbr > 0.0)
552 printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
553 else
554 printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
555 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
556 printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
557 printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
558 }
559
560
561 userror(msg) /* print usage error and quit */
562 char *msg;
563 {
564 if (msg != NULL)
565 fprintf(stderr, "%s: Use error - %s\n", progname, msg);
566 fprintf(stderr, "Usage: %s month day hour [-P|-W|-L] direct_value diffus_value [options]\n", progname);
567 fprintf(stderr, "or : %s -ang altitude azimuth [-P|-W|-L] direct_value diffus_value [options]\n", progname);
568 fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
569 fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
570 fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
571 fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
572 fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
573 exit(1);
574 }
575
576
577
578 double
579 normsc() /* compute normalization factor (E0*F2/L0) */
580 {
581 static double nfc[2][5] = {
582 /* clear sky approx. */
583 {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
584 /* intermediate sky approx. */
585 {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
586 };
587 register double *nf;
588 double x, nsc;
589 register int i;
590 /* polynomial approximation */
591 nf = nfc[S_INTER];
592 x = (altitude - M_PI/4.0)/(M_PI/4.0);
593 nsc = nf[i=4];
594 while (i--)
595 nsc = nsc*x + nf[i];
596
597 return(nsc);
598 }
599
600
601
602 printhead(ac, av) /* print command header */
603 register int ac;
604 register char **av;
605 {
606 putchar('#');
607 while (ac--) {
608 putchar(' ');
609 fputs(*av++, stdout);
610 }
611 putchar('\n');
612 }
613
614
615
616
617 void
618 skip_comments(FILE *fp) /* skip comments in file */
619 {
620 int c;
621
622 while ((c = getc(fp)) != EOF)
623 if (c == '#') {
624 while ((c = getc(fp)) != EOF)
625 if (c == '\n')
626 break;
627 } else if (!isspace(c)) {
628 ungetc(c, fp);
629 break;
630 }
631 }
632
633
634
635 /* Perez models */
636
637 /* Perez global horizontal luminous efficacy model */
638 double glob_h_effi_PEREZ()
639 {
640
641 double value;
642 double category_bounds[10], a[10], b[10], c[10], d[10];
643 int category_total_number, category_number, i;
644
645
646 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup)
647 fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n");
648
649 /* initialize category bounds (clearness index bounds) */
650
651 category_total_number = 8;
652
653 category_bounds[1] = 1;
654 category_bounds[2] = 1.065;
655 category_bounds[3] = 1.230;
656 category_bounds[4] = 1.500;
657 category_bounds[5] = 1.950;
658 category_bounds[6] = 2.800;
659 category_bounds[7] = 4.500;
660 category_bounds[8] = 6.200;
661 category_bounds[9] = 12.01;
662
663
664 /* initialize model coefficients */
665 a[1] = 96.63;
666 a[2] = 107.54;
667 a[3] = 98.73;
668 a[4] = 92.72;
669 a[5] = 86.73;
670 a[6] = 88.34;
671 a[7] = 78.63;
672 a[8] = 99.65;
673
674 b[1] = -0.47;
675 b[2] = 0.79;
676 b[3] = 0.70;
677 b[4] = 0.56;
678 b[5] = 0.98;
679 b[6] = 1.39;
680 b[7] = 1.47;
681 b[8] = 1.86;
682
683 c[1] = 11.50;
684 c[2] = 1.79;
685 c[3] = 4.40;
686 c[4] = 8.36;
687 c[5] = 7.10;
688 c[6] = 6.06;
689 c[7] = 4.93;
690 c[8] = -4.46;
691
692 d[1] = -9.16;
693 d[2] = -1.19;
694 d[3] = -6.95;
695 d[4] = -8.31;
696 d[5] = -10.94;
697 d[6] = -7.60;
698 d[7] = -11.37;
699 d[8] = -3.15;
700
701
702
703
704 for (i=1; i<=category_total_number; i++)
705 {
706 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
707 category_number = i;
708 }
709
710 value = a[category_number] + b[category_number]*atm_preci_water +
711 c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
712
713 return(value);
714 }
715
716
717 /* global horizontal diffuse efficacy model, according to PEREZ */
718 double glob_h_diffuse_effi_PEREZ()
719 {
720 double value;
721 double category_bounds[10], a[10], b[10], c[10], d[10];
722 int category_total_number, category_number, i;
723
724
725 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup)
726 fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n");
727
728 /* initialize category bounds (clearness index bounds) */
729
730 category_total_number = 8;
731
732 category_bounds[1] = 1;
733 category_bounds[2] = 1.065;
734 category_bounds[3] = 1.230;
735 category_bounds[4] = 1.500;
736 category_bounds[5] = 1.950;
737 category_bounds[6] = 2.800;
738 category_bounds[7] = 4.500;
739 category_bounds[8] = 6.200;
740 category_bounds[9] = 12.01;
741
742
743 /* initialize model coefficients */
744 a[1] = 97.24;
745 a[2] = 107.22;
746 a[3] = 104.97;
747 a[4] = 102.39;
748 a[5] = 100.71;
749 a[6] = 106.42;
750 a[7] = 141.88;
751 a[8] = 152.23;
752
753 b[1] = -0.46;
754 b[2] = 1.15;
755 b[3] = 2.96;
756 b[4] = 5.59;
757 b[5] = 5.94;
758 b[6] = 3.83;
759 b[7] = 1.90;
760 b[8] = 0.35;
761
762 c[1] = 12.00;
763 c[2] = 0.59;
764 c[3] = -5.53;
765 c[4] = -13.95;
766 c[5] = -22.75;
767 c[6] = -36.15;
768 c[7] = -53.24;
769 c[8] = -45.27;
770
771 d[1] = -8.91;
772 d[2] = -3.95;
773 d[3] = -8.77;
774 d[4] = -13.90;
775 d[5] = -23.74;
776 d[6] = -28.83;
777 d[7] = -14.03;
778 d[8] = -7.98;
779
780
781
782
783 for (i=1; i<=category_total_number; i++)
784 {
785 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
786 category_number = i;
787 }
788
789 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
790 d[category_number]*log(skybrightness);
791
792 return(value);
793 }
794
795
796 /* direct normal efficacy model, according to PEREZ */
797
798 double direct_n_effi_PEREZ()
799
800 {
801 double value;
802 double category_bounds[10], a[10], b[10], c[10], d[10];
803 int category_total_number, category_number, i;
804
805
806 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup)
807 fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n");
808
809
810 /* initialize category bounds (clearness index bounds) */
811
812 category_total_number = 8;
813
814 category_bounds[1] = 1;
815 category_bounds[2] = 1.065;
816 category_bounds[3] = 1.230;
817 category_bounds[4] = 1.500;
818 category_bounds[5] = 1.950;
819 category_bounds[6] = 2.800;
820 category_bounds[7] = 4.500;
821 category_bounds[8] = 6.200;
822 category_bounds[9] = 12.1;
823
824
825 /* initialize model coefficients */
826 a[1] = 57.20;
827 a[2] = 98.99;
828 a[3] = 109.83;
829 a[4] = 110.34;
830 a[5] = 106.36;
831 a[6] = 107.19;
832 a[7] = 105.75;
833 a[8] = 101.18;
834
835 b[1] = -4.55;
836 b[2] = -3.46;
837 b[3] = -4.90;
838 b[4] = -5.84;
839 b[5] = -3.97;
840 b[6] = -1.25;
841 b[7] = 0.77;
842 b[8] = 1.58;
843
844 c[1] = -2.98;
845 c[2] = -1.21;
846 c[3] = -1.71;
847 c[4] = -1.99;
848 c[5] = -1.75;
849 c[6] = -1.51;
850 c[7] = -1.26;
851 c[8] = -1.10;
852
853 d[1] = 117.12;
854 d[2] = 12.38;
855 d[3] = -8.81;
856 d[4] = -4.56;
857 d[5] = -6.16;
858 d[6] = -26.73;
859 d[7] = -34.44;
860 d[8] = -8.29;
861
862
863
864 for (i=1; i<=category_total_number; i++)
865 {
866 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
867 category_number = i;
868 }
869
870 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
871
872 if (value < 0) value = 0;
873
874 return(value);
875 }
876
877
878 /*check the range of epsilon and delta indexes of the perez parametrization*/
879 void check_parametrization()
880 {
881 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup)
882 {
883 fprintf(stderr,"sky clearness or sky brightness out of range %lf\t %lf\n", skyclearness, skybrightness);
884 exit(1);
885 }
886 else return;
887 }
888
889
890 /* likelihood of the direct and diffuse components */
891 void check_illuminances()
892 {
893 if (!( (directilluminance>=0) && (directilluminance<=solar_constant_l*1000) && (diffusilluminance>0) ))
894 {
895 fprintf(stderr,"direct or diffuse illuminances out of range\n");
896 exit(1);
897 }
898 return;
899 }
900
901
902 void check_irradiances()
903 {
904 if (!( (directirradiance>=0) && (directirradiance<=solar_constant_e) && (diffusirradiance>0) ))
905 {
906 fprintf(stderr,"direct or diffuse irradiances out of range\n");
907 exit(1);
908 }
909 return;
910 }
911
912
913
914 /* Perez sky's brightness */
915 double sky_brightness()
916 {
917 double value;
918
919 value = diffusirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
920
921 return(value);
922 }
923
924
925 /* Perez sky's clearness */
926 double sky_clearness()
927 {
928 double value;
929
930 value = ( (diffusirradiance + directirradiance)/(diffusirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
931
932 return(value);
933 }
934
935
936
937 /* diffus horizontal irradiance from Perez sky's brightness */
938 double diffus_irradiance_from_sky_brightness()
939 {
940 double value;
941
942 value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
943
944 return(value);
945 }
946
947
948 /* direct normal irradiance from Perez sky's clearness */
949 double direct_irradiance_from_sky_clearness()
950 {
951 double value;
952
953 value = diffus_irradiance_from_sky_brightness();
954 value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
955
956 return(value);
957 }
958
959
960 void illu_to_irra_index(void)
961 {
962 double test1=0.1, test2=0.1;
963 int counter=0;
964
965 diffusirradiance = diffusilluminance*solar_constant_e/(solar_constant_l*1000);
966 directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
967 skyclearness = sky_clearness();
968 skybrightness = sky_brightness();
969 if (skyclearness>12) skyclearness=12;
970 if (skybrightness<0.05) skybrightness=0.01;
971
972
973 while ( ((fabs(diffusirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
974 || skyclearness>skyclearinf || skyclearness<skyclearsup
975 || skybrightness>skybriginf || skybrightness<skybrigsup )
976 && !(counter==5) )
977 {
978 /*fprintf(stderr, "conversion illuminance into irradiance %lf\t %lf\n", diffusirradiance, directirradiance);*/
979
980 test1=diffusirradiance;
981 test2=directirradiance;
982 counter++;
983
984 diffusirradiance = diffusilluminance/glob_h_diffuse_effi_PEREZ();
985 directirradiance = directilluminance/direct_n_effi_PEREZ();
986 /*fprintf(stderr, "conversion illuminance into irradiance %lf\t %lf\n", diffusirradiance, directirradiance);*/
987
988 skybrightness = sky_brightness();
989 skyclearness = sky_clearness();
990 if (skyclearness>12) skyclearness=12;
991 if (skybrightness<0.05) skybrightness=0.01;
992
993 /*fprintf(stderr, "%lf\t %lf\n", skybrightness, skyclearness);*/
994
995 }
996
997
998 return;
999 }
1000
1001
1002 int lect_coeff_perez(char *filename,float **coeff_perez)
1003 {
1004 FILE *fcoeff_perez;
1005 float temp;
1006 int i,j;
1007
1008 if ((fcoeff_perez = frlibopen(filename)) == NULL)
1009 {
1010 fprintf(stderr,"file %s cannot be opened\n", filename);
1011 return 1; /* il y a un probleme de fichier */
1012 }
1013 else
1014 {
1015 /*printf("file %s open\n", filename);*/
1016 }
1017
1018 skip_comments(fcoeff_perez);
1019
1020 for (i=0;i<8;i++)
1021 for (j=0;j<20;j++)
1022 {
1023 fscanf(fcoeff_perez,"%f",&temp);
1024 *(*coeff_perez+i*20+j) = temp;
1025 }
1026 fclose(fcoeff_perez);
1027
1028 return 0; /* tout est OK */
1029 }
1030
1031
1032
1033 /* sky luminance perez model */
1034 double calc_rel_lum_perez(double dzeta,double gamma,double Z,
1035 double epsilon,double Delta,float *coeff_perez)
1036 {
1037 float x[5][4];
1038 int i,j,num_lin;
1039 double c_perez[5];
1040
1041 if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1042 {
1043 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1044 exit(1);
1045 }
1046
1047 /* correction de modele de Perez solar energy ...*/
1048 if ( (epsilon > 1.065) && (epsilon < 2.8) )
1049 {
1050 if ( Delta < 0.2 ) Delta = 0.2;
1051 }
1052
1053 if ( (epsilon >= 1.000) && (epsilon < 1.065) ) num_lin = 0;
1054 if ( (epsilon >= 1.065) && (epsilon < 1.230) ) num_lin = 1;
1055 if ( (epsilon >= 1.230) && (epsilon < 1.500) ) num_lin = 2;
1056 if ( (epsilon >= 1.500) && (epsilon < 1.950) ) num_lin = 3;
1057 if ( (epsilon >= 1.950) && (epsilon < 2.800) ) num_lin = 4;
1058 if ( (epsilon >= 2.800) && (epsilon < 4.500) ) num_lin = 5;
1059 if ( (epsilon >= 4.500) && (epsilon < 6.200) ) num_lin = 6;
1060 if ( (epsilon >= 6.200) && (epsilon < 14.00) ) num_lin = 7;
1061
1062 for (i=0;i<5;i++)
1063 for (j=0;j<4;j++)
1064 {
1065 x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1066 /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1067 }
1068
1069
1070 if (num_lin)
1071 {
1072 for (i=0;i<5;i++)
1073 c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1074 }
1075 else
1076 {
1077 c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1078 c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1079 c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1080 c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1081 c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1082 }
1083
1084
1085 return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
1086 (1 + c_perez[2]*exp(c_perez[3]*gamma) +
1087 c_perez[4]*cos(gamma)*cos(gamma) );
1088 }
1089
1090
1091
1092 /* coefficients for the sky luminance perez model */
1093 void coeff_lum_perez(double Z, double epsilon, double Delta, float *coeff_perez)
1094 {
1095 float x[5][4];
1096 int i,j,num_lin;
1097
1098 if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1099 {
1100 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1101 exit(1);
1102 }
1103
1104 /* correction du modele de Perez solar energy ...*/
1105 if ( (epsilon > 1.065) && (epsilon < 2.8) )
1106 {
1107 if ( Delta < 0.2 ) Delta = 0.2;
1108 }
1109
1110 if ( (epsilon >= 1.000) && (epsilon < 1.065) ) num_lin = 0;
1111 if ( (epsilon >= 1.065) && (epsilon < 1.230) ) num_lin = 1;
1112 if ( (epsilon >= 1.230) && (epsilon < 1.500) ) num_lin = 2;
1113 if ( (epsilon >= 1.500) && (epsilon < 1.950) ) num_lin = 3;
1114 if ( (epsilon >= 1.950) && (epsilon < 2.800) ) num_lin = 4;
1115 if ( (epsilon >= 2.800) && (epsilon < 4.500) ) num_lin = 5;
1116 if ( (epsilon >= 4.500) && (epsilon < 6.200) ) num_lin = 6;
1117 if ( (epsilon >= 6.200) && (epsilon < 14.00) ) num_lin = 7;
1118
1119 for (i=0;i<5;i++)
1120 for (j=0;j<4;j++)
1121 {
1122 x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1123 /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1124 }
1125
1126
1127 if (num_lin)
1128 {
1129 for (i=0;i<5;i++)
1130 *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1131
1132 }
1133 else
1134 {
1135 *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1136 *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1137 *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1138 *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1139 *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1140
1141
1142 }
1143
1144
1145 return;
1146 }
1147
1148
1149 /* degrees into radians */
1150 double radians(double degres)
1151 {
1152 return degres*M_PI/180.0;
1153 }
1154
1155 /* radian into degrees */
1156 double degres(double radians)
1157 {
1158 return radians/M_PI*180.0;
1159 }
1160
1161 /* calculation of the angles dzeta and gamma */
1162 void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1163 {
1164 *dzeta = theta; /* dzeta = phi */
1165 if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
1166 *gamma = 0;
1167 else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1168 {
1169 printf("error in calculation of gamma (angle between point and sun");
1170 exit(3);
1171 }
1172 else
1173 *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
1174 }
1175
1176
1177 /********************************************************************************/
1178 /* Fonction: theta_ordered */
1179 /* */
1180 /* In: char *filename */
1181 /* */
1182 /* Out: float * */
1183 /* */
1184 /* Update: 29/08/93 */
1185 /* */
1186 /* Rem: theta en degres */
1187 /* */
1188 /* But: fournit les valeurs de theta du fichier d'entree a la memoire */
1189 /* */
1190 /********************************************************************************/
1191 float *theta_ordered(char *filename)
1192 {
1193 int i;
1194 float buffer,*ptr;
1195 FILE *file_in;
1196
1197 if ( (file_in = frlibopen(filename)) == NULL )
1198 {
1199 fprintf(stderr,"Cannot open file %s in function theta_ordered\n",filename);
1200 exit(1);
1201 }
1202
1203 skip_comments(file_in);
1204
1205 if ( (ptr = malloc(145*sizeof(float))) == NULL )
1206 {
1207 fprintf(stderr,"Out of memory in function theta_ordered\n");
1208 exit(1);
1209 }
1210
1211 for (i=0;i<145;i++)
1212 {
1213 fscanf(file_in,"%f",&buffer);
1214 *(ptr+i) = buffer;
1215 fscanf(file_in,"%f",&buffer);
1216 }
1217
1218 fclose(file_in);
1219 return ptr;
1220 }
1221
1222
1223 /********************************************************************************/
1224 /* Fonction: phi_ordered */
1225 /* */
1226 /* In: char *filename */
1227 /* */
1228 /* Out: float * */
1229 /* */
1230 /* Update: 29/08/93 */
1231 /* */
1232 /* Rem: valeurs de Phi en DEGRES */
1233 /* */
1234 /* But: mettre les angles contenus dans le fichier d'entree dans la memoire */
1235 /* */
1236 /********************************************************************************/
1237 float *phi_ordered(char *filename)
1238 {
1239 int i;
1240 float buffer,*ptr;
1241 FILE *file_in;
1242
1243 if ( (file_in = frlibopen(filename)) == NULL )
1244 {
1245 fprintf(stderr,"Cannot open file %s in function phi_ordered\n",filename);
1246 exit(1);
1247 }
1248
1249 skip_comments(file_in);
1250
1251 if ( (ptr = malloc(145*sizeof(float))) == NULL )
1252 {
1253 fprintf(stderr,"Out of memory in function phi_ordered");
1254 exit(1);
1255 }
1256
1257 for (i=0;i<145;i++)
1258 {
1259 fscanf(file_in,"%f",&buffer);
1260 fscanf(file_in,"%f",&buffer);
1261 *(ptr+i) = buffer;
1262 }
1263
1264 fclose(file_in);
1265 return ptr;
1266 }
1267
1268
1269 /********************************************************************************/
1270 /* Fonction: integ_lv */
1271 /* */
1272 /* In: float *lv,*theta */
1273 /* int sun_pos */
1274 /* */
1275 /* Out: double */
1276 /* */
1277 /* Update: 29/08/93 */
1278 /* */
1279 /* Rem: */
1280 /* */
1281 /* But: calcul l'integrale de luminance relative sans la dir. du soleil */
1282 /* */
1283 /********************************************************************************/
1284 double integ_lv(float *lv,float *theta)
1285 {
1286 int i;
1287 double buffer=0.0;
1288
1289 for (i=0;i<145;i++)
1290 buffer += (*(lv+i))*cos(radians(*(theta+i)));
1291
1292 return buffer*2*M_PI/144;
1293
1294 }
1295
1296
1297
1298
1299
1300
1301 /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
1302
1303 double get_eccentricity()
1304 {
1305 double day_angle;
1306 double E0;
1307
1308 day_angle = 2*M_PI*(daynumber - 1)/365;
1309 E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
1310 0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1311
1312 return (E0);
1313
1314 }
1315
1316
1317 /* enter sunzenith angle (degrees) return relative air mass (double) */
1318 double air_mass()
1319 {
1320 double m;
1321
1322 if (sunzenith>90)
1323 {
1324 fprintf(stderr, "solar zenith angle larger than 90� in fuction air_mass():\n the models used are not more valid\n");
1325 exit(1);
1326 }
1327
1328 m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1329 return(m);
1330 }
1331
1332
1333 double get_angle_sun_direction(double sun_zenith, double sun_azimut, double direction_zenith, double direction_azimut)
1334
1335 {
1336
1337 double angle;
1338
1339
1340 if (sun_zenith == 0)
1341 puts("WARNING: zenith_angle = 0 in function get_angle_sun_vert_plan");
1342
1343 angle = acos( cos(sun_zenith*M_PI/180)*cos(direction_zenith*M_PI/180) + sin(sun_zenith*M_PI/180)*sin(direction_zenith*M_PI/180)*cos((sun_azimut-direction_azimut)*M_PI/180) );
1344 angle = angle*180/M_PI;
1345 return(angle);
1346 }
1347
1348
1349
1350
1351
1352
1353
1354