#ifndef lint static const char RCSid[] = "$Id: gendaylit.c,v 2.3 2009/06/20 21:34:34 greg Exp $"; #endif /* Copyright (c) 1994 *Fraunhofer Institut for Solar Energy Systems * Oltmannstr 5, D-79100 Freiburg, Germany * *Agence de l'Environnement et de la Maitrise de l'Energie * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France * *BOUYGUES * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France */ /* * gendaylit.c program to generate the angular distribution of the daylight. * Our zenith is along the Z-axis, the X-axis * points east, and the Y-axis points north. */ #include #include #include #include #include #include "rtio.h" #include "fvect.h" #include "color.h" #include "paths.h" extern int jdate(int month, int day); extern double stadj(int jd); extern double sdec(int jd); extern double salt(double sd, double st); extern double sazi(double sd, double st); double normsc(); #define DATFILE "coeff_perez.dat" /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */ double sky_brightness(); double sky_clearness(); /* calculation of the direct and diffuse components from the Perez parametrization */ double diffus_irradiance_from_sky_brightness(); double direct_irradiance_from_sky_clearness(); /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */ double glob_h_effi_PEREZ(); double glob_h_diffuse_effi_PEREZ(); double direct_n_effi_PEREZ(); /*likelihood check of the epsilon, delta, direct and diffuse components*/ void check_parametrization(); void check_irradiances(); void check_illuminances(); void illu_to_irra_index(); /* Perez sky luminance model */ int lect_coeff_perez(char *filename,float **coeff_perez); double calc_rel_lum_perez(double dzeta,double gamma,double Z, double epsilon,double Delta,float *coeff_perez); /* coefficients for the sky luminance perez model */ void coeff_lum_perez(double Z, double epsilon, double Delta, float *coeff_perez); double radians(double degres); double degres(double radians); void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z); double integ_lv(float *lv,float *theta); float *theta_ordered(char *filename); float *phi_ordered(char *filename); void skip_comments(FILE *fp); /* astronomy and geometry*/ double get_eccentricity(); double air_mass(); double get_angle_sun_direction(double sun_zenith, double sun_azimut, double direction_zenith, double direction_azimut); /* date*/ int jdate(int month, int day); /* sun calculation constants */ extern double s_latitude; extern double s_longitude; extern double s_meridian; const double AU = 149597890E3; const double solar_constant_e = 1367; /* solar constant W/m^2 */ const double solar_constant_l = 127.5; /* solar constant klux */ const double half_sun_angle = 0.2665; const double half_direct_angle = 2.85; const double skyclearinf = 1.000; /* limitations for the variation of the Perez parameters */ const double skyclearsup = 12.1; const double skybriginf = 0.01; const double skybrigsup = 0.6; /* required values */ int month, day; /* date */ double hour; /* time */ int tsolar; /* 0=standard, 1=solar */ double altitude, azimuth; /* or solar angles */ /* definition of the sky conditions through the Perez parametrization */ double skyclearness, skybrightness; double solarradiance; /*radiance of the sun disk and of the circumsolar area*/ double diffusilluminance, directilluminance, diffusirradiance, directirradiance; double sunzenith, daynumber=150, atm_preci_water=2; double diffnormalization, dirnormalization; double *c_perez; int output=0; /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/ int input=0; /*define the input for the calulation*/ /* default values */ int cloudy = 0; /* 1=standard, 2=uniform */ int dosun = 1; double zenithbr = -1.0; double betaturbidity = 0.1; double gprefl = 0.2; int S_INTER=0; /* computed values */ double sundir[3]; double groundbr; double F2; double solarbr = 0.0; int u_solar = 0; /* -1=irradiance, 1=radiance */ char *progname; char errmsg[128]; main(argc, argv) int argc; char *argv[]; { int i; progname = argv[0]; if (argc == 2 && !strcmp(argv[1], "-defaults")) { printdefaults(); exit(0); } if (argc < 4) userror("arg count"); if (!strcmp(argv[1], "-ang")) { altitude = atof(argv[2]) * (M_PI/180); azimuth = atof(argv[3]) * (M_PI/180); month = 0; } else { month = atoi(argv[1]); if (month < 1 || month > 12) userror("bad month"); day = atoi(argv[2]); if (day < 1 || day > 31) userror("bad day"); hour = atof(argv[3]); if (hour < 0 || hour >= 24) userror("bad hour"); tsolar = argv[3][0] == '+'; } for (i = 4; i < argc; i++) if (argv[i][0] == '-' || argv[i][0] == '+') switch (argv[i][1]) { case 's': cloudy = 0; dosun = argv[i][0] == '+'; break; case 'r': case 'R': u_solar = argv[i][1] == 'R' ? -1 : 1; solarbr = atof(argv[++i]); break; case 'c': cloudy = argv[i][0] == '+' ? 2 : 1; dosun = 0; break; case 't': betaturbidity = atof(argv[++i]); break; case 'b': zenithbr = atof(argv[++i]); break; case 'g': gprefl = atof(argv[++i]); break; case 'a': s_latitude = atof(argv[++i]) * (M_PI/180); break; case 'o': s_longitude = atof(argv[++i]) * (M_PI/180); break; case 'm': s_meridian = atof(argv[++i]) * (M_PI/180); break; case 'O': output = atof(argv[++i]); /*define the unit of the output of the program : sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) default is set to 0*/ break; case 'P': input = 0; /* Perez parameters: epsilon, delta */ skyclearness = atof(argv[++i]); skybrightness = atof(argv[++i]); break; case 'W': /* direct normal Irradiance [W/m^2] */ input = 1; /* diffuse horizontal Irrad. [W/m^2] */ directirradiance = atof(argv[++i]); diffusirradiance = atof(argv[++i]); break; case 'L': /* direct normal Illuminance [Lux] */ input = 2; /* diffuse horizontal Ill. [Lux] */ directilluminance = atof(argv[++i]); diffusilluminance = atof(argv[++i]); break; case 'G': /* direct horizontal Irradiance [W/m^2] */ input = 3; /* diffuse horizontal Irrad. [W/m^2] */ directirradiance = atof(argv[++i]); diffusirradiance = atof(argv[++i]); break; default: sprintf(errmsg, "unknown option: %s", argv[i]); userror(errmsg); } else userror("bad option"); if (fabs(s_meridian-s_longitude) > 30*M_PI/180) fprintf(stderr, "%s: warning: %.1f hours btwn. standard meridian and longitude\n", progname, (s_longitude-s_meridian)*12/M_PI); /* allocation dynamique de memoire pour les pointeurs */ if ( (c_perez = malloc(5*sizeof(double))) == NULL ) { fprintf(stderr,"Out of memory error in function main !"); exit(1); } printhead(argc, argv); computesky(); printsky(); exit(0); } computesky() /* compute sky parameters */ { /* new variables */ int j, i; float *lv_mod; /* 145 luminance values*/ /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */ float *theta_o, *phi_o, *coeff_perez; double dzeta, gamma; double diffusion; double normfactor; /* compute solar direction */ if (month) { /* from date and time */ int jd; double sd, st; jd = jdate(month, day); /* Julian date */ sd = sdec(jd); /* solar declination */ if (tsolar) /* solar time */ st = hour; else st = hour + stadj(jd); altitude = salt(sd, st); azimuth = sazi(sd, st); daynumber = (double)jdate(month, day); } if (!cloudy && altitude > 87.*M_PI/180.) { fprintf(stderr, "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n", progname); printf( "# warning - sun too close to zenith, reducing altitude to 87 degrees\n"); altitude = 87.*M_PI/180.; } sundir[0] = -sin(azimuth)*cos(altitude); sundir[1] = -cos(azimuth)*cos(altitude); sundir[2] = sin(altitude); /* calculation for the new functions */ sunzenith = 90 - altitude*180/M_PI; /* compute the inputs for the calculation of the light distribution over the sky*/ if (input==0) { check_parametrization(); diffusirradiance = diffus_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/ directirradiance = direct_irradiance_from_sky_clearness(); check_irradiances(); if (output==0 || output==2) { diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else if (input==1) { check_irradiances(); skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); if (output==0 || output==2) { diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else if (input==2) { check_illuminances(); illu_to_irra_index(); check_parametrization(); } else if (input==3) { if (altitude<=0) { fprintf(stderr, "solar zenith angle larger than 90³ \n the models used are not more valid\n"); exit(1); } directirradiance=directirradiance/sin(altitude); check_irradiances(); skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); if (output==0 || output==2) { diffusilluminance = diffusirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else {fprintf(stderr,"error in giving the input arguments"); exit(1);} /* normalization factor for the relative sky luminance distribution, diffuse part*/ /* allocation dynamique de memoire pour les pointeurs */ if ( (coeff_perez = malloc(8*20*sizeof(float))) == NULL ) { fprintf(stderr,"Out of memory error in function main !"); exit(1); } /* read the coefficients for the Perez sky luminance model */ if (lect_coeff_perez(DATFILE, &coeff_perez) > 0) { fprintf(stderr,"lect_coeff_perez does not work\n"); exit(2); } if ( (lv_mod = malloc(145*sizeof(float))) == NULL) { fprintf(stderr,"Out of memory in function main"); exit(1); } /* read the angles */ theta_o = theta_ordered("defangle.dat"); phi_o = phi_ordered("defangle.dat"); /* parameters for the perez model */ coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez); /*calculation of the modelled luminance */ for (j=0;j<145;j++) { theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith)); *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez); /*printf("theta, phi, lv_mod %lf\t %lf\t %lf\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));*/ } /* integration of luminance for the normalization factor, diffuse part of the sky*/ diffnormalization = integ_lv(lv_mod, theta_o); /*printf("perez integration %lf\n", diffnormalization);*/ /*normalization coefficient in lumen or in watt*/ if (output==0) { diffnormalization = diffusilluminance/diffnormalization/WHTEFFICACY; } else if (output==1) { diffnormalization = diffusirradiance/diffnormalization; } else if (output==2) { diffnormalization = diffusilluminance/diffnormalization; } else {fprintf(stderr,"output argument : wrong number"); exit(1);} /* calculation for the solar source */ if (output==0) solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY; else if (output==1) solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180))); else solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180))); /* Compute the ground radiance */ zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez); zenithbr*=diffnormalization; /* fprintf(stderr, "gendaylit : the actual zenith radiance(W/m^2/sr) or luminance(cd/m^2) is : %.0lf\n", zenithbr); */ if (skyclearness==1) normfactor = 0.777778; if (skyclearness>=6) { F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]); normfactor = normsc()/F2/M_PI; } if ( (skyclearness>1) && (skyclearness<6) ) { S_INTER=1; F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude)); normfactor = normsc()/F2/M_PI; } groundbr = zenithbr*normfactor; printf("# Ground ambient level: %.1f\n", groundbr); if (dosun&&(skyclearness>1)) groundbr += 6.8e-5/M_PI*solarradiance*sundir[2]; groundbr *= gprefl; return; } printsky() /* print out sky */ { if (dosun&&(skyclearness>1)) { printf("\nvoid light solar\n"); printf("0\n0\n"); printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance); printf("\nsolar source sun\n"); printf("0\n0\n"); printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle); } if (dosun&&(skyclearness==1)) { printf("\nvoid light solar\n"); printf("0\n0\n"); printf("3 0.0 0.0 0.0\n"); printf("\nsolar source sun\n"); printf("0\n0\n"); printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle); } printf("\nvoid brightfunc skyfunc\n"); printf("2 skybright perezlum.cal\n"); printf("0\n"); printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr, *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4), sundir[0], sundir[1], sundir[2]); } printdefaults() /* print default values */ { printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl); if (zenithbr > 0.0) printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr); else printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity); printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI)); printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI)); printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI)); } userror(msg) /* print usage error and quit */ char *msg; { if (msg != NULL) fprintf(stderr, "%s: Use error - %s\n", progname, msg); fprintf(stderr, "Usage: %s month day hour [-P|-W|-L] direct_value diffus_value [options]\n", progname); fprintf(stderr, "or : %s -ang altitude azimuth [-P|-W|-L] direct_value diffus_value [options]\n", progname); fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n"); fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n"); fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n"); fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n"); fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n"); exit(1); } double normsc() /* compute normalization factor (E0*F2/L0) */ { static double nfc[2][5] = { /* clear sky approx. */ {2.766521, 0.547665, -0.369832, 0.009237, 0.059229}, /* intermediate sky approx. */ {3.5556, -2.7152, -1.3081, 1.0660, 0.60227}, }; register double *nf; double x, nsc; register int i; /* polynomial approximation */ nf = nfc[S_INTER]; x = (altitude - M_PI/4.0)/(M_PI/4.0); nsc = nf[i=4]; while (i--) nsc = nsc*x + nf[i]; return(nsc); } printhead(ac, av) /* print command header */ register int ac; register char **av; { putchar('#'); while (ac--) { putchar(' '); fputs(*av++, stdout); } putchar('\n'); } void skip_comments(FILE *fp) /* skip comments in file */ { int c; while ((c = getc(fp)) != EOF) if (c == '#') { while ((c = getc(fp)) != EOF) if (c == '\n') break; } else if (!isspace(c)) { ungetc(c, fp); break; } } /* Perez models */ /* Perez global horizontal luminous efficacy model */ double glob_h_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; if (skyclearnessskyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup) fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n"); /* initialize category bounds (clearness index bounds) */ category_total_number = 8; category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.01; /* initialize model coefficients */ a[1] = 96.63; a[2] = 107.54; a[3] = 98.73; a[4] = 92.72; a[5] = 86.73; a[6] = 88.34; a[7] = 78.63; a[8] = 99.65; b[1] = -0.47; b[2] = 0.79; b[3] = 0.70; b[4] = 0.56; b[5] = 0.98; b[6] = 1.39; b[7] = 1.47; b[8] = 1.86; c[1] = 11.50; c[2] = 1.79; c[3] = 4.40; c[4] = 8.36; c[5] = 7.10; c[6] = 6.06; c[7] = 4.93; c[8] = -4.46; d[1] = -9.16; d[2] = -1.19; d[3] = -6.95; d[4] = -8.31; d[5] = -10.94; d[6] = -7.60; d[7] = -11.37; d[8] = -3.15; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness); return(value); } /* global horizontal diffuse efficacy model, according to PEREZ */ double glob_h_diffuse_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; if (skyclearnessskyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup) fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n"); /* initialize category bounds (clearness index bounds) */ category_total_number = 8; category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.01; /* initialize model coefficients */ a[1] = 97.24; a[2] = 107.22; a[3] = 104.97; a[4] = 102.39; a[5] = 100.71; a[6] = 106.42; a[7] = 141.88; a[8] = 152.23; b[1] = -0.46; b[2] = 1.15; b[3] = 2.96; b[4] = 5.59; b[5] = 5.94; b[6] = 3.83; b[7] = 1.90; b[8] = 0.35; c[1] = 12.00; c[2] = 0.59; c[3] = -5.53; c[4] = -13.95; c[5] = -22.75; c[6] = -36.15; c[7] = -53.24; c[8] = -45.27; d[1] = -8.91; d[2] = -3.95; d[3] = -8.77; d[4] = -13.90; d[5] = -23.74; d[6] = -28.83; d[7] = -14.03; d[8] = -7.98; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness); return(value); } /* direct normal efficacy model, according to PEREZ */ double direct_n_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; if (skyclearnessskyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup) fprintf(stderr, "Warning : skyclearness or skybrightness out of range ; \n Check your input parameters\n"); /* initialize category bounds (clearness index bounds) */ category_total_number = 8; category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.1; /* initialize model coefficients */ a[1] = 57.20; a[2] = 98.99; a[3] = 109.83; a[4] = 110.34; a[5] = 106.36; a[6] = 107.19; a[7] = 105.75; a[8] = 101.18; b[1] = -4.55; b[2] = -3.46; b[3] = -4.90; b[4] = -5.84; b[5] = -3.97; b[6] = -1.25; b[7] = 0.77; b[8] = 1.58; c[1] = -2.98; c[2] = -1.21; c[3] = -1.71; c[4] = -1.99; c[5] = -1.75; c[6] = -1.51; c[7] = -1.26; c[8] = -1.10; d[1] = 117.12; d[2] = 12.38; d[3] = -8.81; d[4] = -4.56; d[5] = -6.16; d[6] = -26.73; d[7] = -34.44; d[8] = -8.29; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness; if (value < 0) value = 0; return(value); } /*check the range of epsilon and delta indexes of the perez parametrization*/ void check_parametrization() { if (skyclearnessskyclearsup || skybrightness<=skybriginf || skybrightness>skybrigsup) { fprintf(stderr,"sky clearness or sky brightness out of range %lf\t %lf\n", skyclearness, skybrightness); exit(1); } else return; } /* likelihood of the direct and diffuse components */ void check_illuminances() { if (!( (directilluminance>=0) && (directilluminance<=solar_constant_l*1000) && (diffusilluminance>0) )) { fprintf(stderr,"direct or diffuse illuminances out of range\n"); exit(1); } return; } void check_irradiances() { if (!( (directirradiance>=0) && (directirradiance<=solar_constant_e) && (diffusirradiance>0) )) { fprintf(stderr,"direct or diffuse irradiances out of range\n"); exit(1); } return; } /* Perez sky's brightness */ double sky_brightness() { double value; value = diffusirradiance * air_mass() / ( solar_constant_e*get_eccentricity()); return(value); } /* Perez sky's clearness */ double sky_clearness() { double value; value = ( (diffusirradiance + directirradiance)/(diffusirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ; return(value); } /* diffus horizontal irradiance from Perez sky's brightness */ double diffus_irradiance_from_sky_brightness() { double value; value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity()); return(value); } /* direct normal irradiance from Perez sky's clearness */ double direct_irradiance_from_sky_clearness() { double value; value = diffus_irradiance_from_sky_brightness(); value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ); return(value); } void illu_to_irra_index(void) { double test1=0.1, test2=0.1; int counter=0; diffusirradiance = diffusilluminance*solar_constant_e/(solar_constant_l*1000); directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000); skyclearness = sky_clearness(); skybrightness = sky_brightness(); if (skyclearness>12) skyclearness=12; if (skybrightness<0.05) skybrightness=0.01; while ( ((fabs(diffusirradiance-test1)>10) || (fabs(directirradiance-test2)>10) || skyclearness>skyclearinf || skyclearnessskybriginf || skybrightness12) skyclearness=12; if (skybrightness<0.05) skybrightness=0.01; /*fprintf(stderr, "%lf\t %lf\n", skybrightness, skyclearness);*/ } return; } int lect_coeff_perez(char *filename,float **coeff_perez) { FILE *fcoeff_perez; float temp; int i,j; if ((fcoeff_perez = frlibopen(filename)) == NULL) { fprintf(stderr,"file %s cannot be opened\n", filename); return 1; /* il y a un probleme de fichier */ } else { /*printf("file %s open\n", filename);*/ } skip_comments(fcoeff_perez); for (i=0;i<8;i++) for (j=0;j<20;j++) { fscanf(fcoeff_perez,"%f",&temp); *(*coeff_perez+i*20+j) = temp; } fclose(fcoeff_perez); return 0; /* tout est OK */ } /* sky luminance perez model */ double calc_rel_lum_perez(double dzeta,double gamma,double Z, double epsilon,double Delta,float *coeff_perez) { float x[5][4]; int i,j,num_lin; double c_perez[5]; if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) { fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n"); exit(1); } /* correction de modele de Perez solar energy ...*/ if ( (epsilon > 1.065) && (epsilon < 2.8) ) { if ( Delta < 0.2 ) Delta = 0.2; } if ( (epsilon >= 1.000) && (epsilon < 1.065) ) num_lin = 0; if ( (epsilon >= 1.065) && (epsilon < 1.230) ) num_lin = 1; if ( (epsilon >= 1.230) && (epsilon < 1.500) ) num_lin = 2; if ( (epsilon >= 1.500) && (epsilon < 1.950) ) num_lin = 3; if ( (epsilon >= 1.950) && (epsilon < 2.800) ) num_lin = 4; if ( (epsilon >= 2.800) && (epsilon < 4.500) ) num_lin = 5; if ( (epsilon >= 4.500) && (epsilon < 6.200) ) num_lin = 6; if ( (epsilon >= 6.200) && (epsilon < 14.00) ) num_lin = 7; for (i=0;i<5;i++) for (j=0;j<4;j++) { x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j); /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */ } if (num_lin) { for (i=0;i<5;i++) c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z); } else { c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z); c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z); c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z); c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3]; c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3]; } return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) * (1 + c_perez[2]*exp(c_perez[3]*gamma) + c_perez[4]*cos(gamma)*cos(gamma) ); } /* coefficients for the sky luminance perez model */ void coeff_lum_perez(double Z, double epsilon, double Delta, float *coeff_perez) { float x[5][4]; int i,j,num_lin; if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) { fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n"); exit(1); } /* correction du modele de Perez solar energy ...*/ if ( (epsilon > 1.065) && (epsilon < 2.8) ) { if ( Delta < 0.2 ) Delta = 0.2; } if ( (epsilon >= 1.000) && (epsilon < 1.065) ) num_lin = 0; if ( (epsilon >= 1.065) && (epsilon < 1.230) ) num_lin = 1; if ( (epsilon >= 1.230) && (epsilon < 1.500) ) num_lin = 2; if ( (epsilon >= 1.500) && (epsilon < 1.950) ) num_lin = 3; if ( (epsilon >= 1.950) && (epsilon < 2.800) ) num_lin = 4; if ( (epsilon >= 2.800) && (epsilon < 4.500) ) num_lin = 5; if ( (epsilon >= 4.500) && (epsilon < 6.200) ) num_lin = 6; if ( (epsilon >= 6.200) && (epsilon < 14.00) ) num_lin = 7; for (i=0;i<5;i++) for (j=0;j<4;j++) { x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j); /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */ } if (num_lin) { for (i=0;i<5;i++) *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z); } else { *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z); *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z); *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z); *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3]; *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3]; } return; } /* degrees into radians */ double radians(double degres) { return degres*M_PI/180.0; } /* radian into degrees */ double degres(double radians) { return radians/M_PI*180.0; } /* calculation of the angles dzeta and gamma */ void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z) { *dzeta = theta; /* dzeta = phi */ if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) ) *gamma = 0; else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 ) { printf("error in calculation of gamma (angle between point and sun"); exit(3); } else *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)); } /********************************************************************************/ /* Fonction: theta_ordered */ /* */ /* In: char *filename */ /* */ /* Out: float * */ /* */ /* Update: 29/08/93 */ /* */ /* Rem: theta en degres */ /* */ /* But: fournit les valeurs de theta du fichier d'entree a la memoire */ /* */ /********************************************************************************/ float *theta_ordered(char *filename) { int i; float buffer,*ptr; FILE *file_in; if ( (file_in = frlibopen(filename)) == NULL ) { fprintf(stderr,"Cannot open file %s in function theta_ordered\n",filename); exit(1); } skip_comments(file_in); if ( (ptr = malloc(145*sizeof(float))) == NULL ) { fprintf(stderr,"Out of memory in function theta_ordered\n"); exit(1); } for (i=0;i<145;i++) { fscanf(file_in,"%f",&buffer); *(ptr+i) = buffer; fscanf(file_in,"%f",&buffer); } fclose(file_in); return ptr; } /********************************************************************************/ /* Fonction: phi_ordered */ /* */ /* In: char *filename */ /* */ /* Out: float * */ /* */ /* Update: 29/08/93 */ /* */ /* Rem: valeurs de Phi en DEGRES */ /* */ /* But: mettre les angles contenus dans le fichier d'entree dans la memoire */ /* */ /********************************************************************************/ float *phi_ordered(char *filename) { int i; float buffer,*ptr; FILE *file_in; if ( (file_in = frlibopen(filename)) == NULL ) { fprintf(stderr,"Cannot open file %s in function phi_ordered\n",filename); exit(1); } skip_comments(file_in); if ( (ptr = malloc(145*sizeof(float))) == NULL ) { fprintf(stderr,"Out of memory in function phi_ordered"); exit(1); } for (i=0;i<145;i++) { fscanf(file_in,"%f",&buffer); fscanf(file_in,"%f",&buffer); *(ptr+i) = buffer; } fclose(file_in); return ptr; } /********************************************************************************/ /* Fonction: integ_lv */ /* */ /* In: float *lv,*theta */ /* int sun_pos */ /* */ /* Out: double */ /* */ /* Update: 29/08/93 */ /* */ /* Rem: */ /* */ /* But: calcul l'integrale de luminance relative sans la dir. du soleil */ /* */ /********************************************************************************/ double integ_lv(float *lv,float *theta) { int i; double buffer=0.0; for (i=0;i<145;i++) buffer += (*(lv+i))*cos(radians(*(theta+i))); return buffer*2*M_PI/144; } /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */ double get_eccentricity() { double day_angle; double E0; day_angle = 2*M_PI*(daynumber - 1)/365; E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+ 0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle); return (E0); } /* enter sunzenith angle (degrees) return relative air mass (double) */ double air_mass() { double m; if (sunzenith>90) { fprintf(stderr, "solar zenith angle larger than 90³ in fuction air_mass():\n the models used are not more valid\n"); exit(1); } m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) ); return(m); } double get_angle_sun_direction(double sun_zenith, double sun_azimut, double direction_zenith, double direction_azimut) { double angle; if (sun_zenith == 0) puts("WARNING: zenith_angle = 0 in function get_angle_sun_vert_plan"); angle = acos( cos(sun_zenith*M_PI/180)*cos(direction_zenith*M_PI/180) + sin(sun_zenith*M_PI/180)*sin(direction_zenith*M_PI/180)*cos((sun_azimut-direction_azimut)*M_PI/180) ); angle = angle*180/M_PI; return(angle); }