/* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems * Heidenhofstr. 2, D-79110 Freiburg, Germany * *Agence de l'Environnement et de la Maitrise de l'Energie * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France * *BOUYGUES * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France */ #define _USE_MATH_DEFINES #include #include #include #include #include "color.h" #include "sun.h" #include "paths.h" #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) double normsc(); /*static char *rcsid="$Header: /usr/local/cvs/radiance/ray/src/gen/gendaylit.c,v 2.13 2013/08/14 17:11:43 greg Exp $";*/ float coeff_perez[] = { 1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297, 0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156, 6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515, 0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229, -2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297, 33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000, -0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554, 1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750, 14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000, 0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844, 0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625, -14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636}; float defangle_theta[] = { 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0}; float defangle_phi[] = { 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0}; /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */ double sky_brightness(); double sky_clearness(); /* calculation of the direct and diffuse components from the Perez parametrization */ double diffuse_irradiance_from_sky_brightness(); double direct_irradiance_from_sky_clearness(); /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */ /* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */ double glob_h_effi_PEREZ(); double glob_h_diffuse_effi_PEREZ(); double direct_n_effi_PEREZ(); /*likelihood check of the epsilon, delta, direct and diffuse components*/ void check_parametrization(); void check_irradiances(); void check_illuminances(); void illu_to_irra_index(); void print_error_sky(); double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]); void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]); double radians(double degres); double degres(double radians); void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z); double integ_lv(float *lv,float *theta); void printdefaults(); void check_sun_position(); void computesky(); void printhead(int ac, char** av); void userror(char* msg); void printsky(); FILE * frlibopen(char* fname); /* astronomy and geometry*/ double get_eccentricity(); double air_mass(); double solar_sunset(); double solar_sunrise(); double stadj(); int jdate(int month, int day); /* sun calculation constants */ extern double s_latitude; extern double s_longitude; extern double s_meridian; const double AU = 149597890E3; const double solar_constant_e = 1367; /* solar constant W/m^2 */ const double solar_constant_l = 127.5; /* solar constant klux */ const double half_sun_angle = 0.2665; const double half_direct_angle = 2.85; const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */ const double skyclearsup = 12.1; const double skybriginf = 0.01; const double skybrigsup = 0.6; /* required values */ int month, day; /* date */ double hour; /* time */ int tsolar; /* 0=standard, 1=solar */ double altitude, azimuth; /* or solar angles */ /* definition of the sky conditions through the Perez parametrization */ double skyclearness = 0; double skybrightness = 0; double solarradiance; double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance; double sunzenith, daynumber, atm_preci_water=2; /*double sunaltitude_border = 0;*/ double diffnormalization = 0; double dirnormalization = 0; double *c_perez; int output=0; /* define the unit of the output (sky luminance or radiance): */ /* visible watt=0, solar watt=1, lumen=2 */ int input=0; /* define the input for the calulation */ int suppress_warnings=0; /* default values */ int cloudy = 0; /* 1=standard, 2=uniform */ int dosun = 1; double zenithbr = -1.0; double betaturbidity = 0.1; double gprefl = 0.2; int S_INTER=0; /* computed values */ double sundir[3]; double groundbr = 0; double F2; double solarbr = 0.0; int u_solar = 0; /* -1=irradiance, 1=radiance */ float timeinterval = 0; char *progname; char errmsg[128]; int main(int argc, char** argv) { int i; progname = argv[0]; if (argc == 2 && !strcmp(argv[1], "-defaults")) { printdefaults(); return 0; } if (argc < 4) userror("arg count"); if (!strcmp(argv[1], "-ang")) { altitude = atof(argv[2]) * (M_PI/180); azimuth = atof(argv[3]) * (M_PI/180); month = 0; } else { month = atoi(argv[1]); if (month < 1 || month > 12) userror("bad month"); day = atoi(argv[2]); if (day < 1 || day > 31) userror("bad day"); hour = atof(argv[3]); if (hour < 0 || hour >= 24) userror("bad hour"); tsolar = argv[3][0] == '+'; } for (i = 4; i < argc; i++) if (argv[i][0] == '-' || argv[i][0] == '+') switch (argv[i][1]) { case 's': cloudy = 0; dosun = argv[i][0] == '+'; break; case 'R': u_solar = argv[i][1] == 'R' ? -1 : 1; solarbr = atof(argv[++i]); break; case 'c': cloudy = argv[i][0] == '+' ? 2 : 1; dosun = 0; break; case 't': betaturbidity = atof(argv[++i]); break; case 'w': suppress_warnings = 1; break; case 'b': zenithbr = atof(argv[++i]); break; case 'g': gprefl = atof(argv[++i]); break; case 'a': s_latitude = atof(argv[++i]) * (M_PI/180); break; case 'o': s_longitude = atof(argv[++i]) * (M_PI/180); break; case 'm': s_meridian = atof(argv[++i]) * (M_PI/180); break; case 'O': output = atof(argv[++i]); /*define the unit of the output of the program : sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */ break; case 'P': input = 0; /* Perez parameters: epsilon, delta */ skyclearness = atof(argv[++i]); skybrightness = atof(argv[++i]); break; case 'W': /* direct normal Irradiance [W/m^2] */ input = 1; /* diffuse horizontal Irrad. [W/m^2] */ directirradiance = atof(argv[++i]); diffuseirradiance = atof(argv[++i]); break; case 'L': /* direct normal Illuminance [Lux] */ input = 2; /* diffuse horizontal Ill. [Lux] */ directilluminance = atof(argv[++i]); diffuseilluminance = atof(argv[++i]); break; case 'G': /* direct horizontal Irradiance [W/m^2] */ input = 3; /* diffuse horizontal Irrad. [W/m^2] */ directirradiance = atof(argv[++i]); diffuseirradiance = atof(argv[++i]); break; case 'E': /* Erbs model based on the */ input = 4; /* global-horizontal irradiance [W/m^2] */ globalirradiance = atof(argv[++i]); break; /* case 'l': sunaltitude_border = atof(argv[++i]); break; */ case 'i': timeinterval = atof(argv[++i]); break; default: sprintf(errmsg, "unknown option: %s", argv[i]); userror(errmsg); } else userror("bad option"); if (fabs(s_meridian-s_longitude) > 30*M_PI/180) fprintf(stderr, "%s: warning: %.1f hours btwn. standard meridian and longitude\n", progname, (s_longitude-s_meridian)*12/M_PI); /* dynamic memory allocation for the pointers */ if ( (c_perez = calloc(5, sizeof(double))) == NULL ) { fprintf(stderr,"Out of memory error in function main"); return 1; } printhead(argc, argv); computesky(); if(*(c_perez+1)>0) { fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1)); print_error_sky(); exit(1); } printsky(); return 0; } void computesky() { int j; float *lv_mod; /* 145 luminance values */ float *theta_o, *phi_o; double dzeta, gamma; double normfactor; double erbs_s0, erbs_kt; /* compute solar direction */ if (month) { /* from date and time */ int jd; double sd, st; jd = jdate(month, day); /* Julian date */ sd = sdec(jd); /* solar declination */ if (tsolar) /* solar time */ st = hour; else st = hour + stadj(jd); if(stsolar_sunset(month,day)) { print_error_sky(); exit(1); } if(timeinterval) { if(timeinterval<0) { fprintf(stderr, "time interval negative\n"); exit(1); } if(fabs(solar_sunrise(month,day)-st) 87.*M_PI/180.) { if (suppress_warnings==0) { fprintf(stderr, "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n", progname); } altitude = 87.*M_PI/180.; } sundir[0] = -sin(azimuth)*cos(altitude); sundir[1] = -cos(azimuth)*cos(altitude); sundir[2] = sin(altitude); /* calculation for the new functions */ sunzenith = 90 - altitude*180/M_PI; /* compute the inputs for the calculation of the light distribution over the sky*/ if (input==0) /* P */ { check_parametrization(); diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/ directirradiance = direct_irradiance_from_sky_clearness(); check_irradiances(); if (output==0 || output==2) { diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else if (input==1) /* W */ { check_irradiances(); skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); if (output==0 || output==2) { diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else if (input==2) /* L */ { check_illuminances(); illu_to_irra_index(); check_parametrization(); } else if (input==3) /* G */ { if (altitude<=0) { if (suppress_warnings==0) fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n"); directirradiance = 0; diffuseirradiance = 0; } else { directirradiance=directirradiance/sin(altitude); } check_irradiances(); skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); if (output==0 || output==2) { diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else if (input==4) /* E */ /* Implementation of the Erbs model. W.Sprenger (04/13) */ { if (altitude<=0) { if (suppress_warnings==0 && globalirradiance > 50) fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n"); globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0; } else { erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude); if (globalirradiance>erbs_s0) { if (suppress_warnings==0) fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n"); globalirradiance=erbs_s0*0.999; } erbs_kt=globalirradiance/erbs_s0; if (erbs_kt<=0.22) diffuseirradiance=globalirradiance*(1-0.09*erbs_kt); else if (erbs_kt<=0.8) diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4)); else if (erbs_kt<1) diffuseirradiance=globalirradiance*(0.165); directirradiance=globalirradiance-diffuseirradiance; printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance); printf("# WARNING: the -E option is only recommended for a rough estimation!"); directirradiance=directirradiance/sin(altitude); } check_irradiances(); skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); if (output==0 || output==2) { diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/ directilluminance = directirradiance*direct_n_effi_PEREZ(); check_illuminances(); } } else {fprintf(stderr,"error at the input arguments"); exit(1);} /* normalization factor for the relative sky luminance distribution, diffuse part*/ if ( (lv_mod = malloc(145*sizeof(float))) == NULL) { fprintf(stderr,"Out of memory in function main"); exit(1); } /* read the angles */ theta_o = defangle_theta; phi_o = defangle_phi; /* parameters for the perez model */ coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez); /*calculation of the modelled luminance */ for (j=0;j<145;j++) { theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith)); *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez); /* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */ } /* integration of luminance for the normalization factor, diffuse part of the sky*/ diffnormalization = integ_lv(lv_mod, theta_o); /*normalization coefficient in lumen or in watt*/ if (output==0) { diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY; } else if (output==1) { diffnormalization = diffuseirradiance/diffnormalization; } else if (output==2) { diffnormalization = diffuseilluminance/diffnormalization; } else {fprintf(stderr,"Wrong output specification.\n"); exit(1);} /* calculation for the solar source */ if (output==0) solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY; else if (output==1) solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180))); else solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180))); /* Compute the ground radiance */ zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez); zenithbr*=diffnormalization; if (skyclearness==1) normfactor = 0.777778; if (skyclearness>=6) { F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]); normfactor = normsc()/F2/M_PI; } if ( (skyclearness>1) && (skyclearness<6) ) { S_INTER=1; F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude)); normfactor = normsc()/F2/M_PI; } groundbr = zenithbr*normfactor; if (dosun&&(skyclearness>1)) groundbr += 6.8e-5/M_PI*solarradiance*sundir[2]; groundbr *= gprefl; return; } void print_error_sky() { sundir[0] = -sin(azimuth)*cos(altitude); sundir[1] = -cos(azimuth)*cos(altitude); sundir[2] = sin(altitude); printf("\nvoid brightfunc skyfunc\n"); printf("2 skybright perezlum.cal\n"); printf("0\n"); printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]); } double solar_sunset(int month,int day) { float W; extern double s_latitude; W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day)))); return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15)); } double solar_sunrise(int month,int day) { float W; extern double s_latitude; W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day)))); return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15)); } void printsky() /* print out sky */ { if (dosun&&(skyclearness>1)) { printf("\nvoid light solar\n"); printf("0\n0\n"); printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance); printf("\nsolar source sun\n"); printf("0\n0\n"); printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle); } else if (dosun) { printf("\nvoid light solar\n"); printf("0\n0\n"); printf("3 0.0 0.0 0.0\n"); printf("\nsolar source sun\n"); printf("0\n0\n"); printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle); } printf("\nvoid brightfunc skyfunc\n"); printf("2 skybright perezlum.cal\n"); printf("0\n"); printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr, *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4), sundir[0], sundir[1], sundir[2]); } void printdefaults() /* print default values */ { printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl); if (zenithbr > 0.0) printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr); else printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity); printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI)); printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI)); printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI)); } void userror(char* msg) /* print usage error and quit */ { if (msg != NULL) fprintf(stderr, "%s: Use error - %s\n\n", progname, msg); fprintf(stderr, "Usage: %s month day hour [...]\n", progname); fprintf(stderr, " or: %s -ang altitude azimuth [...]\n", progname); fprintf(stderr, " followed by: -P epsilon delta [options]\n"); fprintf(stderr, " or: [-W|-L|-G] direct_value diffuse_value [options]\n"); fprintf(stderr, " or: -E global_irradiance [options]\n\n"); fprintf(stderr, " Description:\n"); fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n"); fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n"); fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n"); fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n"); fprintf(stderr, " -E global-horizontal-irradiance (W/m^2)\n\n"); fprintf(stderr, " Output specification with option:\n"); fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n"); fprintf(stderr, " gendaylit version 2.3 (2013/08/08) \n\n"); exit(1); } double normsc() /* compute normalization factor (E0*F2/L0) */ { static double nfc[2][5] = { /* clear sky approx. */ {2.766521, 0.547665, -0.369832, 0.009237, 0.059229}, /* intermediate sky approx. */ {3.5556, -2.7152, -1.3081, 1.0660, 0.60227}, }; register double *nf; double x, nsc; register int i; /* polynomial approximation */ nf = nfc[S_INTER]; x = (altitude - M_PI/4.0)/(M_PI/4.0); nsc = nf[i=4]; while (i--) nsc = nsc*x + nf[i]; return(nsc); } void printhead(int ac, char** av) /* print command header */ { putchar('#'); while (ac--) { putchar(' '); fputs(*av++, stdout); } putchar('\n'); } /* Perez models */ /* Perez global horizontal luminous efficacy model */ double glob_h_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; check_parametrization(); /*if ((skyclearnessskyclearsup || skybrightnessskybrigsup) && suppress_warnings==0) fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */ /* initialize category bounds (clearness index bounds) */ category_total_number = 8; category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.01; /* initialize model coefficients */ a[1] = 96.63; a[2] = 107.54; a[3] = 98.73; a[4] = 92.72; a[5] = 86.73; a[6] = 88.34; a[7] = 78.63; a[8] = 99.65; b[1] = -0.47; b[2] = 0.79; b[3] = 0.70; b[4] = 0.56; b[5] = 0.98; b[6] = 1.39; b[7] = 1.47; b[8] = 1.86; c[1] = 11.50; c[2] = 1.79; c[3] = 4.40; c[4] = 8.36; c[5] = 7.10; c[6] = 6.06; c[7] = 4.93; c[8] = -4.46; d[1] = -9.16; d[2] = -1.19; d[3] = -6.95; d[4] = -8.31; d[5] = -10.94; d[6] = -7.60; d[7] = -11.37; d[8] = -3.15; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness); return(value); } /* global horizontal diffuse efficacy model, according to PEREZ */ double glob_h_diffuse_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; check_parametrization(); /*if ((skyclearnessskyclearsup || skybrightnessskybrigsup) && suppress_warnings==0) fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */ /* initialize category bounds (clearness index bounds) */ category_total_number = 8; //XXX: category_bounds > 0.1 category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.01; /* initialize model coefficients */ a[1] = 97.24; a[2] = 107.22; a[3] = 104.97; a[4] = 102.39; a[5] = 100.71; a[6] = 106.42; a[7] = 141.88; a[8] = 152.23; b[1] = -0.46; b[2] = 1.15; b[3] = 2.96; b[4] = 5.59; b[5] = 5.94; b[6] = 3.83; b[7] = 1.90; b[8] = 0.35; c[1] = 12.00; c[2] = 0.59; c[3] = -5.53; c[4] = -13.95; c[5] = -22.75; c[6] = -36.15; c[7] = -53.24; c[8] = -45.27; d[1] = -8.91; d[2] = -3.95; d[3] = -8.77; d[4] = -13.90; d[5] = -23.74; d[6] = -28.83; d[7] = -14.03; d[8] = -7.98; category_number = -1; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } if (category_number == -1) { if (suppress_warnings==0) fprintf(stderr, "ERROR: Model parameters out of range, skyclearness = %lf \n", skyclearness); print_error_sky(); exit(1); } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness); return(value); } /* direct normal efficacy model, according to PEREZ */ double direct_n_effi_PEREZ() { double value; double category_bounds[10], a[10], b[10], c[10], d[10]; int category_total_number, category_number, i; if ((skyclearnessskyclearsup || skybrightnessskybrigsup) && suppress_warnings==0) fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n"); /* initialize category bounds (clearness index bounds) */ category_total_number = 8; category_bounds[1] = 1; category_bounds[2] = 1.065; category_bounds[3] = 1.230; category_bounds[4] = 1.500; category_bounds[5] = 1.950; category_bounds[6] = 2.800; category_bounds[7] = 4.500; category_bounds[8] = 6.200; category_bounds[9] = 12.1; /* initialize model coefficients */ a[1] = 57.20; a[2] = 98.99; a[3] = 109.83; a[4] = 110.34; a[5] = 106.36; a[6] = 107.19; a[7] = 105.75; a[8] = 101.18; b[1] = -4.55; b[2] = -3.46; b[3] = -4.90; b[4] = -5.84; b[5] = -3.97; b[6] = -1.25; b[7] = 0.77; b[8] = 1.58; c[1] = -2.98; c[2] = -1.21; c[3] = -1.71; c[4] = -1.99; c[5] = -1.75; c[6] = -1.51; c[7] = -1.26; c[8] = -1.10; d[1] = 117.12; d[2] = 12.38; d[3] = -8.81; d[4] = -4.56; d[5] = -6.16; d[6] = -26.73; d[7] = -34.44; d[8] = -8.29; for (i=1; i<=category_total_number; i++) { if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) ) category_number = i; } value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness; if (value < 0) value = 0; return(value); } /*check the range of epsilon and delta indexes of the perez parametrization*/ void check_parametrization() { if (skyclearnessskyclearsup || skybrightnessskybrigsup) { /* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */ if (skyclearnessskyclearsup){ if (suppress_warnings==0) /* fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */ skyclearness=skyclearsup-0.1; } if (skybrightnessskybrigsup){ if (suppress_warnings==0) /* fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */ skybrightness=skybrigsup; } return; } else return; } /* validity of the direct and diffuse components */ void check_illuminances() { if (directilluminance < 0) { fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n"); directilluminance = 0.0; } if (diffuseilluminance < 0) { fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n"); diffuseilluminance = 0.0; } if (directilluminance > solar_constant_l*1000.0) { fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n"); exit(1); } } void check_irradiances() { if (directirradiance < 0) { fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n"); directirradiance = 0.0; } if (diffuseirradiance < 0) { fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n"); diffuseirradiance = 0.0; } if (directirradiance > solar_constant_e) { fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n"); exit(1); } } /* Perez sky's brightness */ double sky_brightness() { double value; value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity()); return(value); } /* Perez sky's clearness */ double sky_clearness() { double value; value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ; return(value); } /* diffus horizontal irradiance from Perez sky's brightness */ double diffuse_irradiance_from_sky_brightness() { double value; value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity()); return(value); } /* direct normal irradiance from Perez sky's clearness */ double direct_irradiance_from_sky_clearness() { double value; value = diffuse_irradiance_from_sky_brightness(); value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ); return(value); } void illu_to_irra_index() { double test1=0.1, test2=0.1, d_eff; int counter=0; diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000); directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000); skyclearness = sky_clearness(); skybrightness = sky_brightness(); check_parametrization(); while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10) || (!(skyclearnessskyclearsup)) || (!(skybrightnessskybrigsup)) ) && !(counter==9) ) { test1=diffuseirradiance; test2=directirradiance; counter++; diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ(); d_eff = direct_n_effi_PEREZ(); if (d_eff < 0.1) directirradiance = 0; else directirradiance = directilluminance/d_eff; skybrightness = sky_brightness(); skyclearness = sky_clearness(); check_parametrization(); /*fprintf(stderr,"skyclearness = %lf, skybrightness = %lf, directirradiance = %lf, diffuseirradiance = %lf\n",skyclearness, skybrightness, directirradiance, diffuseirradiance);*/ } return; } static int get_numlin(float epsilon) { if (epsilon < 1.065) return 0; else if (epsilon < 1.230) return 1; else if (epsilon < 1.500) return 2; else if (epsilon < 1.950) return 3; else if (epsilon < 2.800) return 4; else if (epsilon < 4.500) return 5; else if (epsilon < 6.200) return 6; return 7; } /* sky luminance perez model */ double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]) { float x[5][4]; int i,j,num_lin; double c_perez[5]; if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) { fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n"); exit(1); } /* correction de modele de Perez solar energy ...*/ if ( (epsilon > 1.065) && (epsilon < 2.8) ) { if ( Delta < 0.2 ) Delta = 0.2; } num_lin = get_numlin(epsilon); for (i=0;i<5;i++) for (j=0;j<4;j++) { x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j); /* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */ } if (num_lin) { for (i=0;i<5;i++) c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z); } else { c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z); c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z); c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z); c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3]; c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3]; } return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) * (1 + c_perez[2]*exp(c_perez[3]*gamma) + c_perez[4]*cos(gamma)*cos(gamma) ); } /* coefficients for the sky luminance perez model */ void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]) { float x[5][4]; int i,j,num_lin; if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) ) { fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n"); exit(1); } /* correction du modele de Perez solar energy ...*/ if ( (epsilon > 1.065) && (epsilon < 2.8) ) { if ( Delta < 0.2 ) Delta = 0.2; } num_lin = get_numlin(epsilon); /*fprintf(stderr,"numlin %d\n", num_lin);*/ for (i=0;i<5;i++) for (j=0;j<4;j++) { x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j); /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */ } if (num_lin) { for (i=0;i<5;i++) *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z); } else { *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z); *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z); *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z); *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3]; *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3]; } return; } /* degrees into radians */ double radians(double degres) { return degres*M_PI/180.0; } /* radian into degrees */ double degres(double radians) { return radians/M_PI*180.0; } /* calculation of the angles dzeta and gamma */ void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z) { *dzeta = theta; /* dzeta = phi */ if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) ) *gamma = 0; else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 ) { printf("error in calculation of gamma (angle between point and sun"); exit(3); } else *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)); } double integ_lv(float *lv,float *theta) { int i; double buffer=0.0; for (i=0;i<145;i++) { buffer += (*(lv+i))*cos(radians(*(theta+i))); } return buffer*2*M_PI/144; } /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */ double get_eccentricity() { double day_angle; double E0; day_angle = 2*M_PI*(daynumber - 1)/365; E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+ 0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle); return (E0); } /* enter sunzenith angle (degrees) return relative air mass (double) */ double air_mass() { double m; if (sunzenith>90) { fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n"); exit(1); } m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) ); return(m); }