ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
Revision: 2.10
Committed: Wed Feb 13 18:30:22 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +4 -2 lines
Log Message:
Added #define _USE_MATH_DEFINES

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: gendaylit.c,v 2.9 2013/01/30 01:02:42 greg Exp $";
3 #endif
4 /* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
5 * Heidenhofstr. 2, D-79110 Freiburg, Germany
6 * *Agence de l'Environnement et de la Maitrise de l'Energie
7 * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
8 * *BOUYGUES
9 * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
10 *
11 * 24.1.2006 some adjustments for cygwin compilation, inclusion of RADIANCE3.7 libraries, by J. Wienold
12 * 2011/10/08 [email protected]:
13 * - integrated coeff_perez.dat and defangles.dat
14 * - avoid some segfaults caused by out of range parameters and
15 * - numerically dangerous range checks
16 */
17
18 /*
19 * gendaylit.c program to generate the angular distribution of the daylight.
20 * Our zenith is along the Z-axis, the X-axis
21 * points east, and the Y-axis points north.
22 */
23
24 #define _USE_MATH_DEFINES
25
26 #include <stdio.h>
27 #include <string.h>
28 #include <math.h>
29 #include <stdlib.h>
30
31 #include "color.h"
32 #include "paths.h"
33
34 #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
35
36 double normsc();
37
38 /*static char *rcsid="$Header: /cvs/radiance/ray/src/gen/gendaylit.c,v 2.9 2013/01/30 01:02:42 greg Exp $";*/
39
40 float coeff_perez[] = {
41 1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,
42 -1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,
43 -1.1000,-0.2515,0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,-2.6204,-0.0156,0.1597,0.4199,-0.5562,
44 -0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,
45 -0.6000,-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,
46 -1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,
47 -1.0000,0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,0.2656,1.0468,-0.3788,-2.4517,1.4656,
48 -1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
49
50
51 float defangle_theta[] = {84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
52
53 float defangle_phi[] = {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
54
55
56
57 /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
58 double sky_brightness();
59 double sky_clearness();
60
61 /* calculation of the direct and diffuse components from the Perez parametrization */
62 double diffuse_irradiance_from_sky_brightness();
63 double direct_irradiance_from_sky_clearness();
64
65
66 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
67 double glob_h_effi_PEREZ();
68 double glob_h_diffuse_effi_PEREZ();
69 double direct_n_effi_PEREZ();
70 /*likelihood check of the epsilon, delta, direct and diffuse components*/
71 void check_parametrization();
72 void check_irradiances();
73 void check_illuminances();
74 void illu_to_irra_index();
75 void print_error_sky();
76
77
78 /* Perez sky luminance model */
79 double calc_rel_lum_perez(double dzeta,double gamma,double Z,
80 double epsilon,double Delta,float coeff_perez[]);
81 /* coefficients for the sky luminance perez model */
82 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
83 double radians(double degres);
84 double degres(double radians);
85 void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
86 double integ_lv(float *lv,float *theta);
87
88 void printdefaults();
89 void computesky();
90 void printhead(int ac, char** av);
91 void userror(char* msg);
92 void printsky();
93
94 FILE * frlibopen(char* fname);
95
96 /* astronomy and geometry*/
97 double get_eccentricity();
98 double air_mass();
99
100 extern int jdate(int month, int day);
101 extern double stadj(int jd);
102 extern double sdec(int jd);
103 extern double salt(double sd, double st);
104 extern double sazi(double sd, double st);
105
106
107 /* sun calculation constants */
108 extern double s_latitude;
109 extern double s_longitude;
110 extern double s_meridian;
111
112 const double AU = 149597890E3;
113 const double solar_constant_e = 1367; /* solar constant W/m^2 */
114 const double solar_constant_l = 127.5; /* solar constant klux */
115
116 const double half_sun_angle = 0.2665;
117 const double half_direct_angle = 2.85;
118
119 const double skyclearinf = 1.000; /* limitations for the variation of the Perez parameters */
120 const double skyclearsup = 12.1;
121 const double skybriginf = 0.01;
122 const double skybrigsup = 0.6;
123
124
125
126 /* required values */
127 int month, day; /* date */
128 double hour; /* time */
129 int tsolar; /* 0=standard, 1=solar */
130 double altitude, azimuth; /* or solar angles */
131
132
133
134 /* definition of the sky conditions through the Perez parametrization */
135 double skyclearness = 0;
136 double skybrightness = 0;
137 double solarradiance; /*radiance of the sun disk and of the circumsolar area*/
138 double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance;
139 double sunzenith, daynumber=150, atm_preci_water=2;
140
141 double sunaltitude_border = 0;
142 double diffnormalization = 0;
143 double dirnormalization = 0;
144 double *c_perez;
145
146 int output=0; /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/
147 int input=0; /*define the input for the calulation*/
148
149 int suppress_warnings=0;
150
151 /* default values */
152 int cloudy = 0; /* 1=standard, 2=uniform */
153 int dosun = 1;
154 double zenithbr = -1.0;
155 double betaturbidity = 0.1;
156 double gprefl = 0.2;
157 int S_INTER=0;
158
159 /* computed values */
160 double sundir[3];
161 double groundbr = 0;
162 double F2;
163 double solarbr = 0.0;
164 int u_solar = 0; /* -1=irradiance, 1=radiance */
165
166 char *progname;
167 char errmsg[128];
168
169
170 int main(int argc, char** argv)
171 {
172 int i;
173
174 progname = argv[0];
175 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
176 printdefaults();
177 return 0;
178 }
179 if (argc < 4)
180 userror("arg count");
181 if (!strcmp(argv[1], "-ang")) {
182 altitude = atof(argv[2]) * (M_PI/180);
183 azimuth = atof(argv[3]) * (M_PI/180);
184 month = 0;
185 } else {
186 month = atoi(argv[1]);
187 if (month < 1 || month > 12)
188 userror("bad month");
189 day = atoi(argv[2]);
190 if (day < 1 || day > 31)
191 userror("bad day");
192 hour = atof(argv[3]);
193 if (hour < 0 || hour >= 24)
194 userror("bad hour");
195 tsolar = argv[3][0] == '+';
196 }
197 for (i = 4; i < argc; i++)
198 if (argv[i][0] == '-' || argv[i][0] == '+')
199 switch (argv[i][1]) {
200 case 's':
201 cloudy = 0;
202 dosun = argv[i][0] == '+';
203 break;
204 case 'r':
205 case 'R':
206 u_solar = argv[i][1] == 'R' ? -1 : 1;
207 solarbr = atof(argv[++i]);
208 break;
209 case 'c':
210 cloudy = argv[i][0] == '+' ? 2 : 1;
211 dosun = 0;
212 break;
213 case 't':
214 betaturbidity = atof(argv[++i]);
215 break;
216 case 'w':
217 suppress_warnings = 1;
218 break;
219 case 'b':
220 zenithbr = atof(argv[++i]);
221 break;
222 case 'g':
223 gprefl = atof(argv[++i]);
224 break;
225 case 'a':
226 s_latitude = atof(argv[++i]) * (M_PI/180);
227 break;
228 case 'o':
229 s_longitude = atof(argv[++i]) * (M_PI/180);
230 break;
231 case 'm':
232 s_meridian = atof(argv[++i]) * (M_PI/180);
233 break;
234
235 case 'O':
236 output = atof(argv[++i]); /*define the unit of the output of the program :
237 sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */
238 break;
239
240 case 'P':
241 input = 0; /* Perez parameters: epsilon, delta */
242 skyclearness = atof(argv[++i]);
243 skybrightness = atof(argv[++i]);
244 break;
245
246 case 'W': /* direct normal Irradiance [W/m^2] */
247 input = 1; /* diffuse horizontal Irrad. [W/m^2] */
248 directirradiance = atof(argv[++i]);
249 diffuseirradiance = atof(argv[++i]);
250 break;
251
252 case 'L': /* direct normal Illuminance [Lux] */
253 input = 2; /* diffuse horizontal Ill. [Lux] */
254 directilluminance = atof(argv[++i]);
255 diffuseilluminance = atof(argv[++i]);
256 break;
257
258 case 'G': /* direct horizontal Irradiance [W/m^2] */
259 input = 3; /* diffuse horizontal Irrad. [W/m^2] */
260 directirradiance = atof(argv[++i]);
261 diffuseirradiance = atof(argv[++i]);
262 break;
263
264 case 'l':
265 sunaltitude_border = atof(argv[++i]);
266 break;
267
268
269 default:
270 sprintf(errmsg, "unknown option: %s", argv[i]);
271 userror(errmsg);
272 }
273 else
274 userror("bad option");
275
276 if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
277 fprintf(stderr,
278 "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
279 progname, (s_longitude-s_meridian)*12/M_PI);
280
281
282 /* allocation dynamique de memoire pour les pointeurs */
283 if ( (c_perez = calloc(5, sizeof(double))) == NULL )
284 {
285 fprintf(stderr,"Out of memory error in function main !");
286 return 1;
287 }
288
289 printhead(argc, argv);
290
291 computesky();
292 printsky();
293
294 return 0;
295 }
296
297
298 void computesky() /* compute sky parameters */
299 {
300
301 /* new variables */
302 int j;
303 float *lv_mod; /* 145 luminance values*/
304 /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */
305 float *theta_o, *phi_o;
306 double dzeta, gamma;
307 double normfactor;
308
309
310
311 /* compute solar direction */
312
313 if (month) { /* from date and time */
314 int jd;
315 double sd, st;
316
317 jd = jdate(month, day); /* Julian date */
318 sd = sdec(jd); /* solar declination */
319 if (tsolar) /* solar time */
320 st = hour;
321 else
322 st = hour + stadj(jd);
323 altitude = salt(sd, st);
324 azimuth = sazi(sd, st);
325
326 daynumber = (double)jdate(month, day);
327
328 }
329
330
331
332
333
334 /* if loop for the -l option. 01/2013 Sprenger */
335
336 if (altitude*180/M_PI < sunaltitude_border) {
337
338 if (suppress_warnings==0)
339 fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border);
340 print_error_sky();
341 exit(0);
342 }
343
344
345
346
347
348 if (!cloudy && altitude > 87.*M_PI/180.) {
349
350 if (suppress_warnings==0) {
351 fprintf(stderr,
352 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
353 progname);
354 }
355 altitude = 87.*M_PI/180.;
356 }
357
358 sundir[0] = -sin(azimuth)*cos(altitude);
359 sundir[1] = -cos(azimuth)*cos(altitude);
360 sundir[2] = sin(altitude);
361
362
363 /* calculation for the new functions */
364 sunzenith = 90 - altitude*180/M_PI;
365
366
367
368 /* compute the inputs for the calculation of the light distribution over the sky*/
369 if (input==0)
370 {
371 check_parametrization();
372 diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
373 directirradiance = direct_irradiance_from_sky_clearness();
374 check_irradiances();
375
376 if (output==0 || output==2)
377 {
378 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
379 directilluminance = directirradiance*direct_n_effi_PEREZ();
380 check_illuminances();
381 }
382 }
383
384
385 else if (input==1)
386 {
387 check_irradiances();
388 skybrightness = sky_brightness();
389 skyclearness = sky_clearness();
390 check_parametrization();
391
392 if (output==0 || output==2)
393 {
394 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
395 directilluminance = directirradiance*direct_n_effi_PEREZ();
396 check_illuminances();
397 }
398
399 }
400
401
402 else if (input==2)
403 {
404 check_illuminances();
405 illu_to_irra_index();
406 check_parametrization();
407 }
408
409
410 else if (input==3)
411 {
412 if (altitude<=0)
413 {
414 if (suppress_warnings==0)
415 fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n");
416 directirradiance = 0;
417 diffuseirradiance = 0;
418 } else {
419 directirradiance=directirradiance/sin(altitude);
420 }
421 check_irradiances();
422 skybrightness = sky_brightness();
423 skyclearness = sky_clearness();
424 check_parametrization();
425
426 if (output==0 || output==2)
427 {
428 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
429 directilluminance = directirradiance*direct_n_effi_PEREZ();
430 check_illuminances();
431 }
432
433 }
434
435
436 else {fprintf(stderr,"error in giving the input arguments"); exit(1);}
437
438
439
440 /* normalization factor for the relative sky luminance distribution, diffuse part*/
441
442 if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
443 {
444 fprintf(stderr,"Out of memory in function main");
445 exit(1);
446 }
447
448 /* read the angles */
449 theta_o = defangle_theta;
450 phi_o = defangle_phi;
451
452 /* parameters for the perez model */
453 coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
454
455 /*calculation of the modelled luminance */
456 for (j=0;j<145;j++)
457 {
458 theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
459 *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
460 // printf("theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));
461 }
462
463 /* integration of luminance for the normalization factor, diffuse part of the sky*/
464 diffnormalization = integ_lv(lv_mod, theta_o);
465 /*printf("perez integration %lf\n", diffnormalization);*/
466
467
468
469
470 /*normalization coefficient in lumen or in watt*/
471 if (output==0)
472 {
473 diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
474 }
475 else if (output==1)
476 {
477 diffnormalization = diffuseirradiance/diffnormalization;
478 }
479 else if (output==2)
480 {
481 diffnormalization = diffuseilluminance/diffnormalization;
482 }
483
484 else {fprintf(stderr,"Wrong output specification.\n"); exit(1);}
485
486
487
488
489 /* calculation for the solar source */
490 if (output==0)
491 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
492
493 else if (output==1)
494 solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
495
496 else
497 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
498
499
500
501
502 /* Compute the ground radiance */
503 zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
504 zenithbr*=diffnormalization;
505
506 if (skyclearness==1)
507 normfactor = 0.777778;
508
509 if (skyclearness>=6)
510 {
511 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
512 normfactor = normsc()/F2/M_PI;
513 }
514
515 if ( (skyclearness>1) && (skyclearness<6) )
516 {
517 S_INTER=1;
518 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
519 normfactor = normsc()/F2/M_PI;
520 }
521
522 groundbr = zenithbr*normfactor;
523
524 if (dosun&&(skyclearness>1))
525 groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
526
527 groundbr *= gprefl;
528
529
530
531 return;
532 }
533
534
535
536
537 void print_error_sky()
538 {
539 sundir[0] = -sin(azimuth)*cos(altitude);
540 sundir[1] = -cos(azimuth)*cos(altitude);
541 sundir[2] = sin(altitude);
542
543 printf("\nvoid brightfunc skyfunc\n");
544 printf("2 skybright perezlum.cal\n");
545 printf("0\n");
546 printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]);
547 }
548
549
550
551 void printsky() /* print out sky */
552 {
553 if (dosun&&(skyclearness>1))
554 {
555 printf("\nvoid light solar\n");
556 printf("0\n0\n");
557 printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
558 printf("\nsolar source sun\n");
559 printf("0\n0\n");
560 printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
561 } else if (dosun) {
562 printf("\nvoid light solar\n");
563 printf("0\n0\n");
564 printf("3 0.0 0.0 0.0\n");
565 printf("\nsolar source sun\n");
566 printf("0\n0\n");
567 printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
568 }
569
570 printf("\nvoid brightfunc skyfunc\n");
571 printf("2 skybright perezlum.cal\n");
572 printf("0\n");
573 printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
574 *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
575 sundir[0], sundir[1], sundir[2]);
576 }
577
578
579 void printdefaults() /* print default values */
580 {
581 printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
582 if (zenithbr > 0.0)
583 printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
584 else
585 printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
586 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
587 printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
588 printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
589 }
590
591
592 void userror(char* msg) /* print usage error and quit */
593 {
594 if (msg != NULL)
595 fprintf(stderr, "%s: Use error - %s\n", progname, msg);
596 fprintf(stderr, "Usage: %s month day hour [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
597 fprintf(stderr, "or: %s -ang altitude azimuth [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
598 fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
599 fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
600 fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
601 fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
602 fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
603 fprintf(stderr, " gendaylit version 2.00 (2013/01/28) \n");
604 exit(1);
605 }
606
607
608
609 double normsc() /* compute normalization factor (E0*F2/L0) */
610 {
611 static double nfc[2][5] = {
612 /* clear sky approx. */
613 {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
614 /* intermediate sky approx. */
615 {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
616 };
617 register double *nf;
618 double x, nsc;
619 register int i;
620 /* polynomial approximation */
621 nf = nfc[S_INTER];
622 x = (altitude - M_PI/4.0)/(M_PI/4.0);
623 nsc = nf[i=4];
624 while (i--)
625 nsc = nsc*x + nf[i];
626
627 return(nsc);
628 }
629
630
631
632 void printhead(int ac, char** av) /* print command header */
633 {
634 putchar('#');
635 while (ac--) {
636 putchar(' ');
637 fputs(*av++, stdout);
638 }
639 putchar('\n');
640 }
641
642
643
644
645
646
647 /* Perez models */
648
649 /* Perez global horizontal luminous efficacy model */
650 double glob_h_effi_PEREZ()
651 {
652
653 double value;
654 double category_bounds[10], a[10], b[10], c[10], d[10];
655 int category_total_number, category_number, i;
656
657
658 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
659 fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n");
660
661 /* initialize category bounds (clearness index bounds) */
662
663 category_total_number = 8;
664
665 category_bounds[1] = 1;
666 category_bounds[2] = 1.065;
667 category_bounds[3] = 1.230;
668 category_bounds[4] = 1.500;
669 category_bounds[5] = 1.950;
670 category_bounds[6] = 2.800;
671 category_bounds[7] = 4.500;
672 category_bounds[8] = 6.200;
673 category_bounds[9] = 12.01;
674
675
676 /* initialize model coefficients */
677 a[1] = 96.63;
678 a[2] = 107.54;
679 a[3] = 98.73;
680 a[4] = 92.72;
681 a[5] = 86.73;
682 a[6] = 88.34;
683 a[7] = 78.63;
684 a[8] = 99.65;
685
686 b[1] = -0.47;
687 b[2] = 0.79;
688 b[3] = 0.70;
689 b[4] = 0.56;
690 b[5] = 0.98;
691 b[6] = 1.39;
692 b[7] = 1.47;
693 b[8] = 1.86;
694
695 c[1] = 11.50;
696 c[2] = 1.79;
697 c[3] = 4.40;
698 c[4] = 8.36;
699 c[5] = 7.10;
700 c[6] = 6.06;
701 c[7] = 4.93;
702 c[8] = -4.46;
703
704 d[1] = -9.16;
705 d[2] = -1.19;
706 d[3] = -6.95;
707 d[4] = -8.31;
708 d[5] = -10.94;
709 d[6] = -7.60;
710 d[7] = -11.37;
711 d[8] = -3.15;
712
713
714
715
716 for (i=1; i<=category_total_number; i++)
717 {
718 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
719 category_number = i;
720 }
721
722 value = a[category_number] + b[category_number]*atm_preci_water +
723 c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
724
725 return(value);
726 }
727
728
729 /* global horizontal diffuse efficacy model, according to PEREZ */
730 double glob_h_diffuse_effi_PEREZ()
731 {
732 double value;
733 double category_bounds[10], a[10], b[10], c[10], d[10];
734 int category_total_number, category_number, i;
735
736
737 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
738 fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_effi_PEREZ \n");
739
740 /* initialize category bounds (clearness index bounds) */
741
742 category_total_number = 8;
743
744 //XXX: category_bounds > 0.1
745 category_bounds[1] = 1;
746 category_bounds[2] = 1.065;
747 category_bounds[3] = 1.230;
748 category_bounds[4] = 1.500;
749 category_bounds[5] = 1.950;
750 category_bounds[6] = 2.800;
751 category_bounds[7] = 4.500;
752 category_bounds[8] = 6.200;
753 category_bounds[9] = 12.01;
754
755
756 /* initialize model coefficients */
757 a[1] = 97.24;
758 a[2] = 107.22;
759 a[3] = 104.97;
760 a[4] = 102.39;
761 a[5] = 100.71;
762 a[6] = 106.42;
763 a[7] = 141.88;
764 a[8] = 152.23;
765
766 b[1] = -0.46;
767 b[2] = 1.15;
768 b[3] = 2.96;
769 b[4] = 5.59;
770 b[5] = 5.94;
771 b[6] = 3.83;
772 b[7] = 1.90;
773 b[8] = 0.35;
774
775 c[1] = 12.00;
776 c[2] = 0.59;
777 c[3] = -5.53;
778 c[4] = -13.95;
779 c[5] = -22.75;
780 c[6] = -36.15;
781 c[7] = -53.24;
782 c[8] = -45.27;
783
784 d[1] = -8.91;
785 d[2] = -3.95;
786 d[3] = -8.77;
787 d[4] = -13.90;
788 d[5] = -23.74;
789 d[6] = -28.83;
790 d[7] = -14.03;
791 d[8] = -7.98;
792
793
794
795
796 category_number = -1;
797 for (i=1; i<=category_total_number; i++)
798 {
799 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
800 category_number = i;
801 }
802
803 if (category_number == -1) {
804 if (suppress_warnings==0)
805 fprintf(stderr, "ERROR: Model parameters out of range\n");
806 print_error_sky();
807 exit(1);
808 }
809
810
811 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
812 d[category_number]*log(skybrightness);
813
814 return(value);
815 }
816
817
818 /* direct normal efficacy model, according to PEREZ */
819
820 double direct_n_effi_PEREZ()
821
822 {
823 double value;
824 double category_bounds[10], a[10], b[10], c[10], d[10];
825 int category_total_number, category_number, i;
826
827
828 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
829 fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");
830
831
832 /* initialize category bounds (clearness index bounds) */
833
834 category_total_number = 8;
835
836 category_bounds[1] = 1;
837 category_bounds[2] = 1.065;
838 category_bounds[3] = 1.230;
839 category_bounds[4] = 1.500;
840 category_bounds[5] = 1.950;
841 category_bounds[6] = 2.800;
842 category_bounds[7] = 4.500;
843 category_bounds[8] = 6.200;
844 category_bounds[9] = 12.1;
845
846
847 /* initialize model coefficients */
848 a[1] = 57.20;
849 a[2] = 98.99;
850 a[3] = 109.83;
851 a[4] = 110.34;
852 a[5] = 106.36;
853 a[6] = 107.19;
854 a[7] = 105.75;
855 a[8] = 101.18;
856
857 b[1] = -4.55;
858 b[2] = -3.46;
859 b[3] = -4.90;
860 b[4] = -5.84;
861 b[5] = -3.97;
862 b[6] = -1.25;
863 b[7] = 0.77;
864 b[8] = 1.58;
865
866 c[1] = -2.98;
867 c[2] = -1.21;
868 c[3] = -1.71;
869 c[4] = -1.99;
870 c[5] = -1.75;
871 c[6] = -1.51;
872 c[7] = -1.26;
873 c[8] = -1.10;
874
875 d[1] = 117.12;
876 d[2] = 12.38;
877 d[3] = -8.81;
878 d[4] = -4.56;
879 d[5] = -6.16;
880 d[6] = -26.73;
881 d[7] = -34.44;
882 d[8] = -8.29;
883
884
885
886 for (i=1; i<=category_total_number; i++)
887 {
888 if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
889 category_number = i;
890 }
891
892 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
893
894 if (value < 0) value = 0;
895
896 return(value);
897 }
898
899
900 /*check the range of epsilon and delta indexes of the perez parametrization*/
901 void check_parametrization()
902 {
903 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
904 {
905
906 /* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
907 if (skyclearness<skyclearinf){
908 skyclearness=skyclearinf;
909 if (suppress_warnings==0)
910 fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness);
911 }
912 if (skyclearness>skyclearsup){
913 skyclearness=skyclearsup-0.1;
914 if (suppress_warnings==0)
915 fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness);
916 }
917 if (skybrightness<skybriginf){
918 skybrightness=skybriginf;
919 if (suppress_warnings==0)
920 fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness);
921 }
922 if (skybrightness>skybrigsup){
923 skybrightness=skybrigsup;
924 if (suppress_warnings==0)
925 fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness);
926 }
927
928 return; }
929 else return;
930 }
931
932
933 /* validity of the direct and diffuse components */
934 void check_illuminances()
935 {
936 if (directilluminance < 0) {
937 fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n");
938 directilluminance = 0.0;
939 }
940 if (diffuseilluminance < 0) {
941 fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n");
942 diffuseilluminance = 0.0;
943 }
944 if (directilluminance > solar_constant_l*1000.0) {
945 fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n");
946 exit(1);
947 }
948 }
949
950
951 void check_irradiances()
952 {
953 if (directirradiance < 0) {
954 fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n");
955 directirradiance = 0.0;
956 }
957 if (diffuseirradiance < 0) {
958 fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n");
959 diffuseirradiance = 0.0;
960 }
961 if (directirradiance > solar_constant_e) {
962 fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n");
963 exit(1);
964 }
965 }
966
967
968
969 /* Perez sky's brightness */
970 double sky_brightness()
971 {
972 double value;
973
974 value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
975
976 return(value);
977 }
978
979
980 /* Perez sky's clearness */
981 double sky_clearness()
982 {
983 double value;
984
985 value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
986
987 return(value);
988 }
989
990
991
992 /* diffus horizontal irradiance from Perez sky's brightness */
993 double diffuse_irradiance_from_sky_brightness()
994 {
995 double value;
996
997 value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
998
999 return(value);
1000 }
1001
1002
1003 /* direct normal irradiance from Perez sky's clearness */
1004 double direct_irradiance_from_sky_clearness()
1005 {
1006 double value;
1007
1008 value = diffuse_irradiance_from_sky_brightness();
1009 value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
1010
1011 return(value);
1012 }
1013
1014
1015 void illu_to_irra_index()
1016 {
1017 double test1=0.1, test2=0.1, d_eff;
1018 int counter=0;
1019
1020 diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000);
1021 directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
1022 skyclearness = sky_clearness();
1023 skybrightness = sky_brightness();
1024 check_parametrization();
1025
1026 while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1027 || skyclearness>skyclearinf || skyclearness<skyclearsup
1028 || skybrightness>skybriginf || skybrightness<skybrigsup )
1029 && !(counter==5) )
1030 {
1031
1032 test1=diffuseirradiance;
1033 test2=directirradiance;
1034 counter++;
1035
1036 diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1037 d_eff = direct_n_effi_PEREZ();
1038 if (d_eff < 0.1)
1039 directirradiance = 0;
1040 else
1041 directirradiance = directilluminance/d_eff;
1042
1043 skybrightness = sky_brightness();
1044 skyclearness = sky_clearness();
1045 check_parametrization();
1046
1047 }
1048
1049
1050 return;
1051 }
1052
1053 static int get_numlin(float epsilon)
1054 {
1055 if (epsilon < 1.065)
1056 return 0;
1057 else if (epsilon < 1.230)
1058 return 1;
1059 else if (epsilon < 1.500)
1060 return 2;
1061 else if (epsilon < 1.950)
1062 return 3;
1063 else if (epsilon < 2.800)
1064 return 4;
1065 else if (epsilon < 4.500)
1066 return 5;
1067 else if (epsilon < 6.200)
1068 return 6;
1069 return 7;
1070 }
1071
1072 /* sky luminance perez model */
1073 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1074 {
1075 float x[5][4];
1076 int i,j,num_lin;
1077 double c_perez[5];
1078
1079 if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1080 {
1081 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n");
1082 exit(1);
1083 }
1084
1085 /* correction de modele de Perez solar energy ...*/
1086 if ( (epsilon > 1.065) && (epsilon < 2.8) )
1087 {
1088 if ( Delta < 0.2 ) Delta = 0.2;
1089 }
1090
1091 num_lin = get_numlin(epsilon);
1092
1093 for (i=0;i<5;i++)
1094 for (j=0;j<4;j++)
1095 {
1096 x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1097 /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1098 }
1099
1100
1101 if (num_lin)
1102 {
1103 for (i=0;i<5;i++)
1104 c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1105 }
1106 else
1107 {
1108 c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1109 c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1110 c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1111 c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1112 c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1113 }
1114
1115
1116 return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
1117 (1 + c_perez[2]*exp(c_perez[3]*gamma) +
1118 c_perez[4]*cos(gamma)*cos(gamma) );
1119 }
1120
1121
1122
1123 /* coefficients for the sky luminance perez model */
1124 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[])
1125 {
1126 float x[5][4];
1127 int i,j,num_lin;
1128
1129 if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1130 {
1131 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1132 exit(1);
1133 }
1134
1135 /* correction du modele de Perez solar energy ...*/
1136 if ( (epsilon > 1.065) && (epsilon < 2.8) )
1137 {
1138 if ( Delta < 0.2 ) Delta = 0.2;
1139 }
1140
1141 num_lin = get_numlin(epsilon);
1142
1143 //fprintf(stderr,"numlin %d\n", num_lin);
1144
1145 for (i=0;i<5;i++)
1146 for (j=0;j<4;j++)
1147 {
1148 x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1149 /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1150 }
1151
1152
1153 if (num_lin)
1154 {
1155 for (i=0;i<5;i++)
1156 *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1157
1158 }
1159 else
1160 {
1161 *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1162 *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1163 *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1164 *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1165 *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1166
1167
1168 }
1169
1170
1171 return;
1172 }
1173
1174
1175 /* degrees into radians */
1176 double radians(double degres)
1177 {
1178 return degres*M_PI/180.0;
1179 }
1180
1181 /* radian into degrees */
1182 double degres(double radians)
1183 {
1184 return radians/M_PI*180.0;
1185 }
1186
1187 /* calculation of the angles dzeta and gamma */
1188 void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1189 {
1190 *dzeta = theta; /* dzeta = phi */
1191 if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
1192 *gamma = 0;
1193 else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1194 {
1195 printf("error in calculation of gamma (angle between point and sun");
1196 exit(3);
1197 }
1198 else
1199 *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
1200 }
1201
1202
1203
1204 /********************************************************************************/
1205 /* Fonction: integ_lv */
1206 /* */
1207 /* In: float *lv,*theta */
1208 /* int sun_pos */
1209 /* */
1210 /* Out: double */
1211 /* */
1212 /* Update: 29/08/93 */
1213 /* */
1214 /* Rem: */
1215 /* */
1216 /* But: calcul l'integrale de luminance relative sans la dir. du soleil */
1217 /* */
1218 /********************************************************************************/
1219 double integ_lv(float *lv,float *theta)
1220 {
1221 int i;
1222 double buffer=0.0;
1223
1224 for (i=0;i<145;i++)
1225 buffer += (*(lv+i))*cos(radians(*(theta+i)));
1226
1227 return buffer*2*M_PI/144;
1228
1229 }
1230
1231
1232
1233
1234
1235
1236 /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
1237
1238 double get_eccentricity()
1239 {
1240 double day_angle;
1241 double E0;
1242
1243 day_angle = 2*M_PI*(daynumber - 1)/365;
1244 E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
1245 0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1246
1247 return (E0);
1248
1249 }
1250
1251
1252 /* enter sunzenith angle (degrees) return relative air mass (double) */
1253 double air_mass()
1254 {
1255 double m;
1256
1257 if (sunzenith>90)
1258 {
1259 fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n");
1260 exit(1);
1261 }
1262
1263 m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1264 return(m);
1265 }
1266
1267
1268