ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
(Generate patch)

Comparing ray/src/gen/gendaylit.c (file contents):
Revision 2.10 by greg, Wed Feb 13 18:30:22 2013 UTC vs.
Revision 2.16 by greg, Wed Jul 30 17:30:27 2014 UTC

# Line 1 | Line 1
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
1   /*      Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
2   *                              Heidenhofstr. 2, D-79110 Freiburg, Germany
3   *                              *Agence de l'Environnement et de la Maitrise de l'Energie
4   *                              Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
5   *                              *BOUYGUES
6   *                              1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
10 *
11 *      24.1.2006                some adjustments for cygwin compilation, inclusion of RADIANCE3.7 libraries, by J. Wienold
12 *               2011/10/08      [email protected]:
13 *                                               - integrated coeff_perez.dat and defangles.dat
14 *                                               - avoid some segfaults caused by out of range parameters and
15 *                                               - numerically dangerous range checks
7   */
8  
9 < /*
19 < *  gendaylit.c         program to generate the angular distribution of the daylight.
20 < *                      Our zenith is along the Z-axis, the X-axis
21 < *                      points east, and the Y-axis points north.
22 < */
23 <
24 < #define _USE_MATH_DEFINES
25 <
9 > #define  _USE_MATH_DEFINES
10   #include  <stdio.h>
11   #include  <string.h>
12   #include  <math.h>
13   #include  <stdlib.h>
14  
15   #include  "color.h"
16 + #include  "sun.h"
17   #include  "paths.h"
18  
19   #define  DOT(v1,v2)     (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
# Line 38 | Line 23 | double  normsc();
23   /*static        char *rcsid="$Header$";*/
24  
25   float coeff_perez[] = {
26 <        1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,
27 <        -1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,
28 <        -1.1000,-0.2515,0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,-2.6204,-0.0156,0.1597,0.4199,-0.5562,
29 <        -0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,
30 <        -0.6000,-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,
31 <        -1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,
32 <        -1.0000,0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,0.2656,1.0468,-0.3788,-2.4517,1.4656,
33 <        -1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
26 >        1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
27 >        0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
28 >        6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
29 >        0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
30 >        -2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
31 >        33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
32 >        -0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
33 >        1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
34 >        14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
35 >        0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
36 >        0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
37 >        -14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
38  
39  
40 < float defangle_theta[] = {84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
40 > float defangle_theta[] = {
41 >        84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
42 >        84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
43 >        72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
44 >        60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
45 >        48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
46 >        24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
47  
48 < float defangle_phi[] = {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
48 > float defangle_phi[] = {
49 >        0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
50 >        276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
51 >        192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
52 >        120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
53 >        90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
54 >        80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
55 >        240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
56  
57  
58  
59 < /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
59 > /* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */
60   double sky_brightness();
61   double sky_clearness();
62  
# Line 62 | Line 64 | double sky_clearness();
64   double  diffuse_irradiance_from_sky_brightness();
65   double  direct_irradiance_from_sky_clearness();
66  
67 + /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */
68 + /* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
69  
66 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
70   double  glob_h_effi_PEREZ();
71   double  glob_h_diffuse_effi_PEREZ();
72   double  direct_n_effi_PEREZ();
73 +
74   /*likelihood check of the epsilon, delta, direct and diffuse components*/
75   void    check_parametrization();
76   void    check_irradiances();
# Line 74 | Line 78 | void   check_illuminances();
78   void    illu_to_irra_index();
79   void    print_error_sky();
80  
81 <
78 < /* Perez sky luminance model */
79 < double  calc_rel_lum_perez(double dzeta,double gamma,double Z,
80 <                double epsilon,double Delta,float coeff_perez[]);
81 < /* coefficients for the sky luminance perez model */
81 > double  calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
82   void    coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
83   double  radians(double degres);
84   double  degres(double radians);
# Line 86 | Line 86 | void   theta_phi_to_dzeta_gamma(double theta,double phi,
86   double  integ_lv(float *lv,float *theta);
87  
88   void printdefaults();
89 + void check_sun_position();
90   void computesky();
91   void printhead(int ac, char** av);
92 < void userror(char* msg);
92 > void usage_error(char* msg);
93   void printsky();
94  
95   FILE * frlibopen(char* fname);
# Line 97 | Line 98 | FILE * frlibopen(char* fname);
98   double  get_eccentricity();
99   double  air_mass();
100  
101 < extern int jdate(int month, int day);
102 < extern double stadj(int  jd);
103 < extern double sdec(int  jd);
104 < extern double salt(double sd, double st);
104 < extern double sazi(double sd, double st);
101 > double  solar_sunset(int month, int day);
102 > double  solar_sunrise(int month, int day);
103 > double  stadj();
104 > int     jdate(int month, int day);
105  
106
107 /* sun calculation constants */
108 extern double  s_latitude;
109 extern double  s_longitude;
110 extern double  s_meridian;
111
106   const double    AU = 149597890E3;
107   const double    solar_constant_e = 1367;    /* solar constant W/m^2 */
108 < const double    solar_constant_l = 127.5;   /* solar constant klux */
108 > const double    solar_constant_l = 127500;   /* solar constant lux */
109  
110   const double    half_sun_angle = 0.2665;
111   const double    half_direct_angle = 2.85;
112  
113 < const double    skyclearinf = 1.000;    /* limitations for the variation of the Perez parameters */
114 < const double    skyclearsup = 12.1;
113 > const double    skyclearinf = 1.0;          /* limitations for the variation of the Perez parameters */
114 > const double    skyclearsup = 12.01;
115   const double    skybriginf = 0.01;
116   const double    skybrigsup = 0.6;
117  
# Line 134 | Line 128 | double  altitude, azimuth;                     /* or solar angles */
128   /* definition of the sky conditions through the Perez parametrization */
129   double  skyclearness = 0;
130   double  skybrightness = 0;
131 < double  solarradiance;  /*radiance of the sun disk and of the circumsolar area*/
132 < double  diffuseilluminance, directilluminance, diffuseirradiance, directirradiance;
133 < double  sunzenith, daynumber=150, atm_preci_water=2;
131 > double  solarradiance;
132 > double  diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
133 > double  sunzenith, daynumber, atm_preci_water=2;
134  
135 < double sunaltitude_border = 0;
135 > /*double  sunaltitude_border = 0;*/
136   double  diffnormalization = 0;
137 < double dirnormalization = 0;
137 > double  dirnormalization = 0;
138   double  *c_perez;
139  
140 < int     output=0;       /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/
141 < int     input=0;        /*define the input for the calulation*/
140 > int     output=0;       /* define the unit of the output (sky luminance or radiance): */
141 >                        /* visible watt=0, solar watt=1, lumen=2 */
142 > int     input=0;        /* define the input for the calulation */
143  
144   int     suppress_warnings=0;
145  
146          /* default values */
147 < int  cloudy = 0;                                /* 1=standard, 2=uniform */
148 < int  dosun = 1;
147 > int     cloudy = 0;                             /* 1=standard, 2=uniform */
148 > int     dosun = 1;
149   double  zenithbr = -1.0;
150   double  betaturbidity = 0.1;
151   double  gprefl = 0.2;
# Line 162 | Line 157 | double  groundbr = 0;
157   double  F2;
158   double  solarbr = 0.0;
159   int     u_solar = 0;                            /* -1=irradiance, 1=radiance */
160 + float   timeinterval = 0;
161  
162 < char  *progname;
163 < char  errmsg[128];
162 > char    *progname;
163 > char    errmsg[128];
164  
165 + double  st;
166  
167 +
168   int main(int argc, char** argv)
169   {
170          int  i;
# Line 177 | Line 175 | int main(int argc, char** argv)
175                  return 0;
176          }
177          if (argc < 4)
178 <                userror("arg count");
178 >                usage_error("arg count");
179          if (!strcmp(argv[1], "-ang")) {
180                  altitude = atof(argv[2]) * (M_PI/180);
181                  azimuth = atof(argv[3]) * (M_PI/180);
# Line 185 | Line 183 | int main(int argc, char** argv)
183          } else {
184                  month = atoi(argv[1]);
185                  if (month < 1 || month > 12)
186 <                        userror("bad month");
186 >                        usage_error("bad month");
187                  day = atoi(argv[2]);
188                  if (day < 1 || day > 31)
189 <                        userror("bad day");
189 >                        usage_error("bad day");
190                  hour = atof(argv[3]);
191                  if (hour < 0 || hour >= 24)
192 <                        userror("bad hour");
192 >                        usage_error("bad hour");
193                  tsolar = argv[3][0] == '+';
194          }
195          for (i = 4; i < argc; i++)
# Line 201 | Line 199 | int main(int argc, char** argv)
199                                  cloudy = 0;
200                                  dosun = argv[i][0] == '+';
201                                  break;
204                        case 'r':
202                          case 'R':
203                                  u_solar = argv[i][1] == 'R' ? -1 : 1;
204                                  solarbr = atof(argv[++i]);
# Line 233 | Line 230 | int main(int argc, char** argv)
230                                  break;
231                          
232                          case 'O':
233 <                                output = atof(argv[++i]);       /*define the unit of the output of the program :
234 <                                                                sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */
233 >                                output = atof(argv[++i]);       /*define the unit of the output of the program:
234 >                                                                sky and sun luminance/radiance
235 >                                                                (0==W visible, 1==W solar radiation, 2==lm) */
236                                  break;
237                                  
238                          case 'P':
# Line 261 | Line 259 | int main(int argc, char** argv)
259                                  diffuseirradiance = atof(argv[++i]);
260                                  break;
261                          
262 <                        case 'l':
263 <                                sunaltitude_border = atof(argv[++i]);
262 >                        case 'E':                                       /* Erbs model based on the */
263 >                                input = 4;                              /* global-horizontal irradiance [W/m^2] */
264 >                                globalirradiance = atof(argv[++i]);
265                                  break;
266                          
267 +                        case 'i':
268 +                                timeinterval = atof(argv[++i]);
269 +                                break;
270                          
271 +                        
272                          default:
273                                  sprintf(errmsg, "unknown option: %s", argv[i]);
274 <                                userror(errmsg);
274 >                                usage_error(errmsg);
275                          }
276                  else
277 <                        userror("bad option");
277 >                        usage_error("bad option");
278  
279 <        if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
280 <                fprintf(stderr,
278 <                    "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
279 >        if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*M_PI/180)
280 >                fprintf(stderr,"%s: warning: %.1f hours btwn. standard meridian and longitude\n",
281                      progname, (s_longitude-s_meridian)*12/M_PI);
282  
283  
284 <        /* allocation dynamique de memoire pour les pointeurs */
284 >        /* dynamic memory allocation for the pointers */
285          if ( (c_perez = calloc(5, sizeof(double))) == NULL )
286 <        {
285 <                fprintf(stderr,"Out of memory error in function main !");
286 <                return 1;
287 <        }
286 >        { fprintf(stderr,"Out of memory error in function main"); return 1; }
287  
288 +        
289          printhead(argc, argv);
290
290          computesky();
291          printsky();
293
292          return 0;
293 +
294   }
295  
296  
297 < void computesky()                       /* compute sky parameters */
297 >
298 >
299 >
300 > void computesky()
301   {
302  
301        /* new variables */
303          int     j;
304 <        float   *lv_mod;  /* 145 luminance values*/
305 <          /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */
304 >        
305 >        float   *lv_mod;  /* 145 luminance values */
306          float   *theta_o, *phi_o;
307          double  dzeta, gamma;
308          double  normfactor;
309 +        double  erbs_s0, erbs_kt;
310  
311  
310
312          /* compute solar direction */
313 <
313 >                
314          if (month) {                    /* from date and time */
315                  int  jd;
316 <                double  sd, st;
316 >                double  sd;
317  
318                  jd = jdate(month, day);         /* Julian date */
319                  sd = sdec(jd);                  /* solar declination */
# Line 320 | Line 321 | void computesky()                      /* compute sky parameters */
321                          st = hour;
322                  else
323                          st = hour + stadj(jd);
324 +                
325 +                                        
326 +                if(timeinterval) {
327 +                        
328 +                        if(timeinterval<0) {
329 +                        fprintf(stderr, "time interval negative\n");
330 +                        exit(1);
331 +                        }
332 +                                                                        
333 +                        if(fabs(solar_sunrise(month,day)-st)<=timeinterval/120) {                      
334 +                         st= (st+timeinterval/120+solar_sunrise(month,day))/2;
335 +                         if(suppress_warnings==0)
336 +                         { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
337 +                        }
338 +                
339 +                        if(fabs(solar_sunset(month,day)-st)<timeinterval/120) {
340 +                         st= (st-timeinterval/120+solar_sunset(month,day))/2;
341 +                         if(suppress_warnings==0)
342 +                         { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
343 +                        }
344 +                        
345 +                        if((st<solar_sunrise(month,day)-timeinterval/120) || (st>solar_sunset(month,day)+timeinterval/120)) {
346 +                          if(suppress_warnings==0)
347 +                          { fprintf(stderr, "Warning: sun position too low, printing error sky at %d %d %.3f\n",month,day,hour); }
348 +                         altitude = salt(sd, st);
349 +                         azimuth = sazi(sd, st);
350 +                         print_error_sky();
351 +                         exit(0);
352 +                        }
353 +                }
354 +                else
355 +                
356 +                if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) {
357 +                        if(suppress_warnings==0)
358 +                        { fprintf(stderr, "Warning: sun altitude below zero at time step %i %i %.2f, printing error sky\n",month,day,hour); }
359 +                        altitude = salt(sd, st);
360 +                        azimuth = sazi(sd, st);
361 +                        print_error_sky();
362 +                        exit(0);
363 +                }
364 +                
365                  altitude = salt(sd, st);
366                  azimuth = sazi(sd, st);
367                  
368                  daynumber = (double)jdate(month, day);
369 <
369 >                
370          }
371          
372          
373 <        
374 <        
333 <        
334 <        /* if loop for the -l option. 01/2013 Sprenger  */
335 <        
336 <        if (altitude*180/M_PI < sunaltitude_border) {
337 <        
338 <        if (suppress_warnings==0)
339 <            fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border);
340 <        print_error_sky();
341 <        exit(0);
342 <        }
343 <        
344 <        
373 >
374 >
375                          
346        
347                        
376          if (!cloudy && altitude > 87.*M_PI/180.) {
377                  
378                  if (suppress_warnings==0) {
# Line 355 | Line 383 | void computesky()                      /* compute sky parameters */
383                  altitude = 87.*M_PI/180.;
384          }
385          
386 +        
387 +        
388          sundir[0] = -sin(azimuth)*cos(altitude);
389          sundir[1] = -cos(azimuth)*cos(altitude);
390          sundir[2] = sin(altitude);
# Line 362 | Line 392 | void computesky()                      /* compute sky parameters */
392                  
393          /* calculation for the new functions */
394          sunzenith = 90 - altitude*180/M_PI;
395 <        
366 <        
395 >                        
396  
397          /* compute the inputs for the calculation of the light distribution over the sky*/
398 <        if (input==0)
398 >        if (input==0)           /* P */
399                  {
400                  check_parametrization();
401                  diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
# Line 382 | Line 411 | void computesky()                      /* compute sky parameters */
411                  }
412          
413  
414 <        else if (input==1)
414 >        else if (input==1)      /* W */
415                  {
416                  check_irradiances();
417                  skybrightness = sky_brightness();
418                  skyclearness =  sky_clearness();
419 +                
420                  check_parametrization();
421 <
421 >                                                        
422                  if (output==0 || output==2)
423                          {
424                          diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
# Line 399 | Line 429 | void computesky()                      /* compute sky parameters */
429                  }
430                          
431          
432 <        else if (input==2)
432 >        else if (input==2)      /* L */
433                  {              
434                  check_illuminances();
435                  illu_to_irra_index();
# Line 407 | Line 437 | void computesky()                      /* compute sky parameters */
437                  }
438                  
439  
440 <        else if (input==3)
440 >        else if (input==3)      /* G */
441                  {
442                          if (altitude<=0)
443                          {
444                                  if (suppress_warnings==0)
445 <                                     fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n");
445 >                                     fprintf(stderr, "Warning: sun altitude < 0, proceed with irradiance values of zero\n");
446                                  directirradiance = 0;
447                                  diffuseirradiance = 0;
448                          } else {
449 <                                directirradiance=directirradiance/sin(altitude);
449 >                        
450 >                                directirradiance=directirradiance/sin(altitude);
451                          }
452 +                                
453                  check_irradiances();
454                  skybrightness = sky_brightness();
455                  skyclearness =  sky_clearness();
# Line 432 | Line 464 | void computesky()                      /* compute sky parameters */
464  
465                  }
466  
467 +
468 +        else if (input==4)      /* E */         /* Implementation of the Erbs model. W.Sprenger (04/13) */
469 +                {
470 +                        
471 +                        if (altitude<=0)
472 +                        {
473 +                                if (suppress_warnings==0 && globalirradiance > 50)
474 +                                        fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n");
475 +                                globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0;
476 +                        
477 +                        } else {
478 +                        
479 +                        erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude);
480 +                        
481 +                        if (globalirradiance>erbs_s0)
482 +                        {
483 +                                if (suppress_warnings==0)
484 +                                        fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n");
485 +                                globalirradiance=erbs_s0*0.999;                
486 +                        }
487 +                        
488 +                        erbs_kt=globalirradiance/erbs_s0;
489 +                        
490 +                        if (erbs_kt<=0.22)      diffuseirradiance=globalirradiance*(1-0.09*erbs_kt);
491 +                        else if (erbs_kt<=0.8)  diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4));
492 +                        else if (erbs_kt<1)     diffuseirradiance=globalirradiance*(0.165);
493 +                        
494 +                        directirradiance=globalirradiance-diffuseirradiance;
495 +                        
496 +                        printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance);
497 +                        printf("# WARNING: the -E option is only recommended for a rough estimation!\n");
498 +                        
499 +                        directirradiance=directirradiance/sin(altitude);
500 +                                                                                                                        
501 +                        }
502 +                        
503 +                check_irradiances();
504 +                skybrightness = sky_brightness();
505 +                skyclearness =  sky_clearness();
506 +                check_parametrization();
507 +
508 +                if (output==0 || output==2)
509 +                        {
510 +                        diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
511 +                        directilluminance = directirradiance*direct_n_effi_PEREZ();
512 +                        check_illuminances();
513 +                        }
514 +
515 +                }
516 +                
517 +                
518 +                
519          
520 <        else    {fprintf(stderr,"error in giving the input arguments"); exit(1);}
520 >        else    { fprintf(stderr,"error at the input arguments"); exit(1); }
521  
522  
523          
524          /* normalization factor for the relative sky luminance distribution, diffuse part*/
525 <
525 >        
526          if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
527          {
528                  fprintf(stderr,"Out of memory in function main");
# Line 448 | Line 532 | void computesky()                      /* compute sky parameters */
532          /* read the angles */
533          theta_o = defangle_theta;
534          phi_o = defangle_phi;
535 +        
536  
537          /* parameters for the perez model */
538          coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
539  
540 +        
541 +        
542          /*calculation of the modelled luminance */
543          for (j=0;j<145;j++)
544          {
545                  theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
546 +                                
547                  *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
548 <                // printf("theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));
548 >                
549 >                /* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */
550          }
551 <
551 >        
552          /* integration of luminance for the normalization factor, diffuse part of the sky*/
553 +        
554          diffnormalization = integ_lv(lv_mod, theta_o);
465        /*printf("perez integration %lf\n", diffnormalization);*/
555          
467        
556  
557  
558          /*normalization coefficient in lumen or in watt*/
# Line 496 | Line 584 | void computesky()                      /* compute sky parameters */
584          else
585                  solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
586          
499                        
587  
588  
589 < /* Compute the ground radiance */
590 < zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
591 < zenithbr*=diffnormalization;
589 >        /* Compute the ground radiance */
590 >        zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
591 >        zenithbr*=diffnormalization;
592          
593 < if (skyclearness==1)
593 >        if (skyclearness==1)
594          normfactor = 0.777778;
595                  
596 < if (skyclearness>=6)
596 >        if (skyclearness>=6)
597          {              
598          F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
599          normfactor = normsc()/F2/M_PI;
600          }
601  
602 < if ( (skyclearness>1) && (skyclearness<6) )
602 >        if ( (skyclearness>1) && (skyclearness<6) )
603          {
604          S_INTER=1;
605          F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
606          normfactor = normsc()/F2/M_PI;
607          }
608  
609 < groundbr = zenithbr*normfactor;
609 >        groundbr = zenithbr*normfactor;
610  
611 < if (dosun&&(skyclearness>1))
611 >        if (dosun&&(skyclearness>1))
612          groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];                
613  
614 < groundbr *= gprefl;
614 >        groundbr *= gprefl;
615  
616  
617 +                
618 +        if(*(c_perez+1)>0)
619 +        {
620 +          if(suppress_warnings==0)
621 +                {  fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));}  
622 +          print_error_sky();
623 +          exit(0);
624 +        }
625  
626 +
627   return;
628   }
629  
630  
631  
632  
633 < void print_error_sky()
633 >
634 > double solar_sunset(int month,int day)
635   {
636 <        sundir[0] = -sin(azimuth)*cos(altitude);
637 <        sundir[1] = -cos(azimuth)*cos(altitude);
638 <        sundir[2] = sin(altitude);
639 <        
543 <        printf("\nvoid brightfunc skyfunc\n");
544 <        printf("2 skybright perezlum.cal\n");
545 <        printf("0\n");
546 <        printf("10 0.00 0.00  0.000 0.000 0.000 0.000 0.000  %f %f %f \n", sundir[0], sundir[1], sundir[2]);
636 >     float W;
637 >     extern double s_latitude;
638 >     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
639 >     return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
640   }
548        
641  
642  
643 < void printsky()                 /* print out sky */
643 >
644 >
645 > double solar_sunrise(int month,int day)
646   {
647 +     float W;
648 +     extern double s_latitude;
649 +     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
650 +     return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
651 + }
652 +
653 +
654 +
655 +
656 + void printsky()
657 + {      
658 +        
659 +        printf("# Local solar time: %.2f\n", st);
660 +        printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
661 +
662 +
663          if (dosun&&(skyclearness>1))
664          {              
665                  printf("\nvoid light solar\n");
# Line 567 | Line 677 | void printsky()                        /* print out sky */
677                  printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
678          }
679          
680 +
681          printf("\nvoid brightfunc skyfunc\n");
682          printf("2 skybright perezlum.cal\n");
683          printf("0\n");
684          printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
685                  *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
686                  sundir[0], sundir[1], sundir[2]);
687 +        
688   }
689  
690  
691 +
692 + void print_error_sky()
693 + {
694 +
695 +
696 +        sundir[0] = -sin(azimuth)*cos(altitude);
697 +        sundir[1] = -cos(azimuth)*cos(altitude);
698 +        sundir[2] = sin(altitude);
699 +
700 +        printf("# Local solar time: %.2f\n", st);
701 +        printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
702 +
703 +        printf("\nvoid brightfunc skyfunc\n");
704 +        printf("2 skybright perezlum.cal\n");
705 +        printf("0\n");
706 +        printf("10 0.00 0.00  0.000 0.000 0.000 0.000 0.000  %f %f %f \n", sundir[0], sundir[1], sundir[2]);
707 + }
708 +        
709 +
710 +
711 +
712 +
713   void printdefaults()                    /* print default values */
714   {
715          printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
# Line 589 | Line 723 | void printdefaults()                   /* print default values */
723   }
724  
725  
726 < void userror(char* msg)                 /* print usage error and quit */
726 >
727 >
728 > void usage_error(char* msg)                     /* print usage error and quit */
729   {
730          if (msg != NULL)
731 <                fprintf(stderr, "%s: Use error - %s\n", progname, msg);
732 <        fprintf(stderr, "Usage: %s month day hour [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
733 <        fprintf(stderr, "or:    %s -ang altitude azimuth [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
731 >                fprintf(stderr, "%s: Use error - %s\n\n", progname, msg);
732 >        fprintf(stderr, "Usage: %s      month day hour    [...]\n", progname);
733 >        fprintf(stderr, "   or: %s -ang altitude azimuth  [...]\n", progname);
734 >        fprintf(stderr, "               followed by:      -P          epsilon delta [options]\n");
735 >        fprintf(stderr, "                        or:      [-W|-L|-G]  direct_value diffuse_value [options]\n");
736 >        fprintf(stderr, "                        or:      -E          global_irradiance [options]\n\n");
737 >        fprintf(stderr, "       Description:\n");
738          fprintf(stderr, "       -P epsilon delta  (these are the Perez parameters) \n");
739          fprintf(stderr, "       -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
740          fprintf(stderr, "       -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
741          fprintf(stderr, "       -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
742 +        fprintf(stderr, "       -E global-horizontal-irradiance (W/m^2)\n\n");
743 +        fprintf(stderr, "       Output specification with option:\n");
744          fprintf(stderr, "       -O [0|1|2]  (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
745 <        fprintf(stderr, "       gendaylit version 2.00 (2013/01/28)  \n");
745 >        fprintf(stderr, "       gendaylit version 2.4 (2013/09/04)  \n\n");
746          exit(1);
747   }
748  
749  
750  
751 +
752   double normsc()           /* compute normalization factor (E0*F2/L0) */
753   {
754          static double  nfc[2][5] = {
# Line 629 | Line 772 | double normsc()                  /* compute normalization fac
772  
773  
774  
775 +
776 +
777   void printhead(int ac, char** av)               /* print command header */
778   {
779          putchar('#');
# Line 653 | Line 798 | double glob_h_effi_PEREZ()
798          double  value;
799          double  category_bounds[10], a[10], b[10], c[10], d[10];
800          int     category_total_number, category_number, i;
801 <
802 <
803 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
804 <     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n");
805 <
801 >        
802 >        check_parametrization();
803 >        
804 >        
805 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
806 >     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */
807 >    
808 >    
809          /* initialize category bounds (clearness index bounds) */
810  
811          category_total_number = 8;
# Line 712 | Line 860 | if ((skyclearness<skyclearinf || skyclearness>skyclear
860  
861  
862  
715
863          for (i=1; i<=category_total_number; i++)
864          {
865                  if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
# Line 726 | Line 873 | if ((skyclearness<skyclearinf || skyclearness>skyclear
873   }
874  
875  
876 +
877 +
878   /* global horizontal diffuse efficacy model, according to PEREZ */
879   double glob_h_diffuse_effi_PEREZ()
880   {
# Line 733 | Line 882 | double glob_h_diffuse_effi_PEREZ()
882          double  category_bounds[10], a[10], b[10], c[10], d[10];
883          int     category_total_number, category_number, i;
884  
885 +        check_parametrization();
886          
887 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
888 <     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_effi_PEREZ \n");
889 <
887 >        
888 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
889 > fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
890 >    
891   /* initialize category bounds (clearness index bounds) */
892  
893          category_total_number = 8;
894  
895 < //XXX: category_bounds > 0.1
895 > //XXX:  category_bounds > 0.1
896          category_bounds[1] = 1;
897          category_bounds[2] = 1.065;
898          category_bounds[3] = 1.230;
# Line 792 | Line 943 | if ((skyclearness<skyclearinf || skyclearness>skyclear
943  
944  
945  
795
946          category_number = -1;
947          for (i=1; i<=category_total_number; i++)
948          {
# Line 802 | Line 952 | if ((skyclearness<skyclearinf || skyclearness>skyclear
952  
953          if (category_number == -1) {
954                  if (suppress_warnings==0)
955 <                    fprintf(stderr, "ERROR: Model parameters out of range\n");
955 >                    fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness);
956                  print_error_sky();
957 <                exit(1);
957 >                exit(0);
958          }
959                  
960  
# Line 812 | Line 962 | if ((skyclearness<skyclearinf || skyclearness>skyclear
962              d[category_number]*log(skybrightness);
963  
964          return(value);
965 +
966   }
967  
968  
969 +
970 +
971 +
972 +
973   /* direct normal efficacy model, according to PEREZ */
974  
975   double direct_n_effi_PEREZ()
# Line 825 | Line 980 | double         category_bounds[10], a[10], b[10], c[10], d[10
980   int     category_total_number, category_number, i;
981  
982  
983 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
984 <   fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");
983 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
984 >   fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/
985  
986  
987   /* initialize category bounds (clearness index bounds) */
# Line 900 | Line 1055 | return(value);
1055   /*check the range of epsilon and delta indexes of the perez parametrization*/
1056   void check_parametrization()
1057   {
1058 +
1059   if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
1060                  {
1061  
1062   /*  limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
1063 +                
1064                  if (skyclearness<skyclearinf){
1065 +                        /* if (suppress_warnings==0)
1066 +                            fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
1067                          skyclearness=skyclearinf;
909                        if (suppress_warnings==0)
910                            fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness);
1068                  }
1069                  if (skyclearness>skyclearsup){
1070 <                        skyclearness=skyclearsup-0.1;
1071 <                        if (suppress_warnings==0)
1072 <                            fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness);
1070 >                        /* if (suppress_warnings==0)
1071 >                            fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
1072 >                        skyclearness=skyclearsup-0.001;
1073                  }
1074                  if (skybrightness<skybriginf){
1075 +                        /* if (suppress_warnings==0)
1076 +                            fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
1077                          skybrightness=skybriginf;
919                        if (suppress_warnings==0)
920                            fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness);
1078                  }
1079                  if (skybrightness>skybrigsup){
1080 +                        /* if (suppress_warnings==0)
1081 +                            fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
1082                          skybrightness=skybrigsup;
924                        if (suppress_warnings==0)
925                            fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness);
1083                  }
1084  
1085          return; }
# Line 930 | Line 1087 | if (skyclearness<skyclearinf || skyclearness>skyclears
1087   }
1088  
1089  
1090 +
1091 +
1092 +
1093   /* validity of the direct and diffuse components */
1094   void    check_illuminances()
1095   {
1096          if (directilluminance < 0) {
1097 <                fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n");
1097 >                if(suppress_warnings==0)
1098 >                { fprintf(stderr,"Warning: direct illuminance < 0. Using 0.0\n"); }
1099                  directilluminance = 0.0;
1100          }
1101          if (diffuseilluminance < 0) {
1102 <                fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n");
1102 >                if(suppress_warnings==0)
1103 >                { fprintf(stderr,"Warning: diffuse illuminance < 0. Using 0.0\n"); }
1104                  diffuseilluminance = 0.0;
1105          }
1106 <        if (directilluminance > solar_constant_l*1000.0) {
1107 <                fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n");
1108 <                exit(1);
1106 >        
1107 >        if (directilluminance+diffuseilluminance==0 && altitude > 0) {
1108 >                if(suppress_warnings==0)
1109 >                { fprintf(stderr,"Warning: zero illuminance at sun altitude > 0, printing error sky\n"); }
1110 >                print_error_sky();
1111 >                exit(0);
1112          }
1113 +        
1114 +        if (directilluminance > solar_constant_l) {
1115 +                if(suppress_warnings==0)
1116 +                { fprintf(stderr,"Warning: direct illuminance exceeds solar constant\n"); }
1117 +                print_error_sky();
1118 +                exit(0);
1119 +        }
1120   }
1121  
1122  
1123   void    check_irradiances()
1124   {
1125          if (directirradiance < 0) {
1126 <                fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n");
1126 >                if(suppress_warnings==0)
1127 >                { fprintf(stderr,"Warning: direct irradiance < 0. Using 0.0\n"); }
1128                  directirradiance = 0.0;
1129          }
1130          if (diffuseirradiance < 0) {
1131 <                fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n");
1131 >                if(suppress_warnings==0)
1132 >                { fprintf(stderr,"Warning: diffuse irradiance < 0. Using 0.0\n"); }
1133                  diffuseirradiance = 0.0;
1134          }
1135 +        
1136 +        if (directirradiance+diffuseirradiance==0 && altitude > 0) {
1137 +                if(suppress_warnings==0)
1138 +                { fprintf(stderr,"Warning: zero irradiance at sun altitude > 0, printing error sky\n"); }
1139 +                print_error_sky();
1140 +                exit(0);
1141 +        }
1142 +        
1143          if (directirradiance > solar_constant_e) {
1144 <                fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n");
1145 <                exit(1);
1144 >                if(suppress_warnings==0)
1145 >                { fprintf(stderr,"Warning: direct irradiance exceeds solar constant\n"); }
1146 >                print_error_sky();
1147 >                exit(0);
1148          }
1149   }
1150          
# Line 1012 | Line 1196 | double direct_irradiance_from_sky_clearness()
1196   }
1197  
1198  
1199 +
1200 +
1201   void illu_to_irra_index()
1202   {
1203   double  test1=0.1, test2=0.1, d_eff;
1204   int     counter=0;      
1205  
1206 < diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000);
1207 < directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
1206 > diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l);
1207 > directirradiance = directilluminance*solar_constant_e/(solar_constant_l);
1208   skyclearness =  sky_clearness();
1209   skybrightness = sky_brightness();
1210   check_parametrization();
1211 <        
1211 >
1212 >
1213   while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1214 <                || skyclearness>skyclearinf || skyclearness<skyclearsup
1215 <                || skybrightness>skybriginf || skybrightness<skybrigsup )
1216 <                 && !(counter==5) )
1214 >                || (!(skyclearness<skyclearinf || skyclearness>skyclearsup))
1215 >                || (!(skybrightness<skybriginf || skybrightness>skybrigsup)) )
1216 >                 && !(counter==9) )
1217          {
1218 <
1218 >        
1219          test1=diffuseirradiance;
1220          test2=directirradiance;
1221          counter++;
1222          
1223          diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1224          d_eff = direct_n_effi_PEREZ();
1225 +        
1226 +        
1227          if (d_eff < 0.1)
1228                  directirradiance = 0;
1229 <        else
1229 >        else    
1230                  directirradiance = directilluminance/d_eff;
1231          
1232          skybrightness = sky_brightness();
1233          skyclearness =  sky_clearness();
1234          check_parametrization();
1235 <        
1235 >                
1236          }
1237  
1238  
# Line 1072 | Line 1261 | static int get_numlin(float epsilon)
1261   /* sky luminance perez model */
1262   double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1263   {
1264 +                        
1265          float x[5][4];
1266          int i,j,num_lin;
1267          double c_perez[5];
1268  
1269          if ( (epsilon <  skyclearinf) || (epsilon >= skyclearsup) )
1270          {
1271 <                fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n");
1271 >                fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n");
1272                  exit(1);
1273          }
1274  
# Line 1087 | Line 1277 | double calc_rel_lum_perez(double dzeta,double gamma,do
1277          {
1278                  if ( Delta < 0.2 ) Delta = 0.2;
1279          }
1280 <
1280 >        
1281 >        
1282          num_lin = get_numlin(epsilon);
1283 <
1283 >        
1284          for (i=0;i<5;i++)
1285                  for (j=0;j<4;j++)
1286                  {
1287                          x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1288 <                        /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1288 >                        /* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
1289                  }
1290  
1291  
# Line 1128 | Line 1319 | void coeff_lum_perez(double Z, double epsilon, double
1319  
1320          if ( (epsilon <  skyclearinf) || (epsilon >= skyclearsup) )
1321          {
1322 <                fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1322 >                fprintf(stderr,"Error: epsilon out of range in function coeff_lum_perez!\n");
1323                  exit(1);
1324          }
1325  
# Line 1137 | Line 1328 | void coeff_lum_perez(double Z, double epsilon, double
1328          {
1329                  if ( Delta < 0.2 ) Delta = 0.2;
1330          }
1331 <
1331 >        
1332 >        
1333          num_lin = get_numlin(epsilon);
1334  
1335 <        //fprintf(stderr,"numlin %d\n", num_lin);
1335 >        /*fprintf(stderr,"numlin %d\n", num_lin);*/
1336  
1337          for (i=0;i<5;i++)
1338                  for (j=0;j<4;j++)
# Line 1172 | Line 1364 | void coeff_lum_perez(double Z, double epsilon, double
1364   }
1365  
1366  
1367 +
1368   /* degrees into radians */
1369   double radians(double degres)
1370   {
1371          return degres*M_PI/180.0;
1372   }
1373  
1374 +
1375   /* radian into degrees */
1376   double degres(double radians)
1377   {
1378          return radians/M_PI*180.0;
1379   }
1380  
1381 +
1382   /* calculation of the angles dzeta and gamma */
1383   void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1384   {
# Line 1193 | Line 1388 | void theta_phi_to_dzeta_gamma(double theta,double phi,
1388          else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1389          {
1390                  printf("error in calculation of gamma (angle between point and sun");
1391 <                exit(3);
1391 >                exit(1);
1392          }
1393          else
1394                  *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
# Line 1201 | Line 1396 | void theta_phi_to_dzeta_gamma(double theta,double phi,
1396  
1397  
1398  
1204 /********************************************************************************/
1205 /*      Fonction: integ_lv                                                      */
1206 /*                                                                              */
1207 /*      In: float *lv,*theta                                                    */
1208 /*          int sun_pos                                                         */
1209 /*                                                                              */
1210 /*      Out: double                                                             */
1211 /*                                                                              */
1212 /*      Update: 29/08/93                                                        */
1213 /*                                                                              */
1214 /*      Rem:                                                                    */
1215 /*                                                                              */
1216 /*      But: calcul l'integrale de luminance relative sans la dir. du soleil    */
1217 /*                                                                              */
1218 /********************************************************************************/
1399   double integ_lv(float *lv,float *theta)
1400   {
1401          int i;
1402          double buffer=0.0;
1403 <
1403 >        
1404          for (i=0;i<145;i++)
1405 +        {
1406                  buffer += (*(lv+i))*cos(radians(*(theta+i)));
1407 <
1407 >        }
1408 >                        
1409          return buffer*2*M_PI/144;
1228
1410   }
1411  
1412  
1413  
1233
1234
1235
1414   /* enter day number(double), return E0 = square(R0/R):  eccentricity correction factor  */
1415  
1416   double get_eccentricity()
# Line 1245 | Line 1423 | double get_eccentricity()
1423              0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1424  
1425          return (E0);
1248
1426   }
1427  
1428  
# Line 1253 | Line 1430 | double get_eccentricity()
1430   double  air_mass()
1431   {
1432   double  m;
1256
1433   if (sunzenith>90)
1434          {
1435 <        fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n");
1436 <        exit(1);
1435 >        if(suppress_warnings==0)
1436 >        { fprintf(stderr, "Warning: air mass has reached the maximal value\n"); }
1437 >        sunzenith=90;
1438          }
1262        
1439   m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1440   return(m);
1441   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines