ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
(Generate patch)

Comparing ray/src/gen/gendaylit.c (file contents):
Revision 2.11 by greg, Tue Apr 30 17:05:27 2013 UTC vs.
Revision 2.14 by greg, Fri Sep 6 16:54:06 2013 UTC

# Line 1 | Line 1
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
1   /*      Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
2   *                              Heidenhofstr. 2, D-79110 Freiburg, Germany
3   *                              *Agence de l'Environnement et de la Maitrise de l'Energie
4   *                              Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
5   *                              *BOUYGUES
6   *                              1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
10 *
11 *      24.1.2006                some adjustments for cygwin compilation, inclusion of RADIANCE3.7 libraries, by J. Wienold
12 *               2011/10/08      [email protected]:
13 *                                               - integrated coeff_perez.dat and defangles.dat
14 *                                               - avoid some segfaults caused by out of range parameters and
15 *                                               - numerically dangerous range checks
7   */
8  
18 /*
19 *  gendaylit.c         program to generate the angular distribution of the daylight.
20 *                      Our zenith is along the Z-axis, the X-axis
21 *                      points east, and the Y-axis points north.
22 */
23
24 #define _USE_MATH_DEFINES
25
9   #include  <stdio.h>
10   #include  <string.h>
11   #include  <math.h>
12   #include  <stdlib.h>
13  
14   #include  "color.h"
15 + #include  "sun.h"
16   #include  "paths.h"
17  
18   #define  DOT(v1,v2)     (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
19 + #define  _USE_MATH_DEFINES
20  
21   double  normsc();
22  
23   /*static        char *rcsid="$Header$";*/
24  
25   float coeff_perez[] = {
26 <        1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,
27 <        -1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,
28 <        -1.1000,-0.2515,0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,-2.6204,-0.0156,0.1597,0.4199,-0.5562,
29 <        -0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,
30 <        -0.6000,-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,
31 <        -1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,
32 <        -1.0000,0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,0.2656,1.0468,-0.3788,-2.4517,1.4656,
33 <        -1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
26 >        1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
27 >        0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
28 >        6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
29 >        0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
30 >        -2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
31 >        33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
32 >        -0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
33 >        1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
34 >        14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
35 >        0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
36 >        0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
37 >        -14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
38  
39  
40 < float defangle_theta[] = {84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
40 > float defangle_theta[] = {
41 >        84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
42 >        84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
43 >        72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
44 >        60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
45 >        48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
46 >        24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
47  
48 < float defangle_phi[] = {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
48 > float defangle_phi[] = {
49 >        0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
50 >        276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
51 >        192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
52 >        120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
53 >        90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
54 >        80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
55 >        240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
56  
57  
58  
59 < /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
59 > /* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */
60   double sky_brightness();
61   double sky_clearness();
62  
# Line 62 | Line 64 | double sky_clearness();
64   double  diffuse_irradiance_from_sky_brightness();
65   double  direct_irradiance_from_sky_clearness();
66  
67 + /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */
68 + /* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
69  
66 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
70   double  glob_h_effi_PEREZ();
71   double  glob_h_diffuse_effi_PEREZ();
72   double  direct_n_effi_PEREZ();
73 +
74   /*likelihood check of the epsilon, delta, direct and diffuse components*/
75   void    check_parametrization();
76   void    check_irradiances();
# Line 74 | Line 78 | void   check_illuminances();
78   void    illu_to_irra_index();
79   void    print_error_sky();
80  
81 <
78 < /* Perez sky luminance model */
79 < double  calc_rel_lum_perez(double dzeta,double gamma,double Z,
80 <                double epsilon,double Delta,float coeff_perez[]);
81 < /* coefficients for the sky luminance perez model */
81 > double  calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
82   void    coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
83   double  radians(double degres);
84   double  degres(double radians);
# Line 86 | Line 86 | void   theta_phi_to_dzeta_gamma(double theta,double phi,
86   double  integ_lv(float *lv,float *theta);
87  
88   void printdefaults();
89 + void check_sun_position();
90   void computesky();
91   void printhead(int ac, char** av);
92 < void userror(char* msg);
92 > void usage_error(char* msg);
93   void printsky();
94  
95   FILE * frlibopen(char* fname);
# Line 97 | Line 98 | FILE * frlibopen(char* fname);
98   double  get_eccentricity();
99   double  air_mass();
100  
101 < extern int jdate(int month, int day);
102 < extern double stadj(int  jd);
103 < extern double sdec(int  jd);
104 < extern double salt(double sd, double st);
104 < extern double sazi(double sd, double st);
101 > double  solar_sunset(int month, int day);
102 > double  solar_sunrise(int month, int day);
103 > double  stadj();
104 > int     jdate(int month, int day);
105  
106  
107   /* sun calculation constants */
108 < extern double  s_latitude;
109 < extern double  s_longitude;
110 < extern double  s_meridian;
108 > extern double   s_latitude;
109 > extern double   s_longitude;
110 > extern double   s_meridian;
111  
112   const double    AU = 149597890E3;
113   const double    solar_constant_e = 1367;    /* solar constant W/m^2 */
114 < const double    solar_constant_l = 127.5;   /* solar constant klux */
114 > const double    solar_constant_l = 127500;   /* solar constant lux */
115  
116   const double    half_sun_angle = 0.2665;
117   const double    half_direct_angle = 2.85;
118  
119 < const double    skyclearinf = 1.000;    /* limitations for the variation of the Perez parameters */
120 < const double    skyclearsup = 12.1;
119 > const double    skyclearinf = 1.0;          /* limitations for the variation of the Perez parameters */
120 > const double    skyclearsup = 12.01;
121   const double    skybriginf = 0.01;
122   const double    skybrigsup = 0.6;
123  
# Line 134 | Line 134 | double  altitude, azimuth;                     /* or solar angles */
134   /* definition of the sky conditions through the Perez parametrization */
135   double  skyclearness = 0;
136   double  skybrightness = 0;
137 < double  solarradiance;  /*radiance of the sun disk and of the circumsolar area*/
138 < double  diffuseilluminance, directilluminance, diffuseirradiance, directirradiance;
139 < double  sunzenith, daynumber=150, atm_preci_water=2;
137 > double  solarradiance;
138 > double  diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
139 > double  sunzenith, daynumber, atm_preci_water=2;
140  
141 < double sunaltitude_border = 0;
141 > /*double  sunaltitude_border = 0;*/
142   double  diffnormalization = 0;
143 < double dirnormalization = 0;
143 > double  dirnormalization = 0;
144   double  *c_perez;
145  
146 < int     output=0;       /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/
147 < int     input=0;        /*define the input for the calulation*/
146 > int     output=0;       /* define the unit of the output (sky luminance or radiance): */
147 >                        /* visible watt=0, solar watt=1, lumen=2 */
148 > int     input=0;        /* define the input for the calulation */
149  
150   int     suppress_warnings=0;
151  
152          /* default values */
153 < int  cloudy = 0;                                /* 1=standard, 2=uniform */
154 < int  dosun = 1;
153 > int     cloudy = 0;                             /* 1=standard, 2=uniform */
154 > int     dosun = 1;
155   double  zenithbr = -1.0;
156   double  betaturbidity = 0.1;
157   double  gprefl = 0.2;
# Line 162 | Line 163 | double  groundbr = 0;
163   double  F2;
164   double  solarbr = 0.0;
165   int     u_solar = 0;                            /* -1=irradiance, 1=radiance */
166 + float   timeinterval = 0;
167  
168 < char  *progname;
169 < char  errmsg[128];
168 > char    *progname;
169 > char    errmsg[128];
170  
171 + double  st;
172  
173 +
174   int main(int argc, char** argv)
175   {
176          int  i;
# Line 177 | Line 181 | int main(int argc, char** argv)
181                  return 0;
182          }
183          if (argc < 4)
184 <                userror("arg count");
184 >                usage_error("arg count");
185          if (!strcmp(argv[1], "-ang")) {
186                  altitude = atof(argv[2]) * (M_PI/180);
187                  azimuth = atof(argv[3]) * (M_PI/180);
# Line 185 | Line 189 | int main(int argc, char** argv)
189          } else {
190                  month = atoi(argv[1]);
191                  if (month < 1 || month > 12)
192 <                        userror("bad month");
192 >                        usage_error("bad month");
193                  day = atoi(argv[2]);
194                  if (day < 1 || day > 31)
195 <                        userror("bad day");
195 >                        usage_error("bad day");
196                  hour = atof(argv[3]);
197                  if (hour < 0 || hour >= 24)
198 <                        userror("bad hour");
198 >                        usage_error("bad hour");
199                  tsolar = argv[3][0] == '+';
200          }
201          for (i = 4; i < argc; i++)
# Line 201 | Line 205 | int main(int argc, char** argv)
205                                  cloudy = 0;
206                                  dosun = argv[i][0] == '+';
207                                  break;
204                        case 'r':
208                          case 'R':
209                                  u_solar = argv[i][1] == 'R' ? -1 : 1;
210                                  solarbr = atof(argv[++i]);
# Line 233 | Line 236 | int main(int argc, char** argv)
236                                  break;
237                          
238                          case 'O':
239 <                                output = atoi(argv[++i]);       /*define the unit of the output of the program :
240 <                                                                sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */
239 >                                output = atof(argv[++i]);       /*define the unit of the output of the program:
240 >                                                                sky and sun luminance/radiance
241 >                                                                (0==W visible, 1==W solar radiation, 2==lm) */
242                                  break;
243                                  
244                          case 'P':
# Line 261 | Line 265 | int main(int argc, char** argv)
265                                  diffuseirradiance = atof(argv[++i]);
266                                  break;
267                          
268 <                        case 'l':
269 <                                sunaltitude_border = atof(argv[++i]);
268 >                        case 'E':                                       /* Erbs model based on the */
269 >                                input = 4;                              /* global-horizontal irradiance [W/m^2] */
270 >                                globalirradiance = atof(argv[++i]);
271                                  break;
272                          
273 +                        case 'i':
274 +                                timeinterval = atof(argv[++i]);
275 +                                break;
276                          
277 +                        
278                          default:
279                                  sprintf(errmsg, "unknown option: %s", argv[i]);
280 <                                userror(errmsg);
280 >                                usage_error(errmsg);
281                          }
282                  else
283 <                        userror("bad option");
283 >                        usage_error("bad option");
284  
285 <        if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
286 <                fprintf(stderr,
278 <                    "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
285 >        if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*M_PI/180)
286 >                fprintf(stderr,"%s: warning: %.1f hours btwn. standard meridian and longitude\n",
287                      progname, (s_longitude-s_meridian)*12/M_PI);
288  
289  
290 <        /* allocation dynamique de memoire pour les pointeurs */
290 >        /* dynamic memory allocation for the pointers */
291          if ( (c_perez = calloc(5, sizeof(double))) == NULL )
292 <        {
285 <                fprintf(stderr,"Out of memory error in function main !");
286 <                return 1;
287 <        }
292 >        { fprintf(stderr,"Out of memory error in function main"); return 1; }
293  
294 +        
295          printhead(argc, argv);
290
296          computesky();
297          printsky();
293
298          return 0;
299 +
300   }
301  
302  
303 < void computesky()                       /* compute sky parameters */
303 >
304 >
305 >
306 > void computesky()
307   {
308  
301        /* new variables */
309          int     j;
310 <        float   *lv_mod;  /* 145 luminance values*/
311 <          /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */
310 >        
311 >        float   *lv_mod;  /* 145 luminance values */
312          float   *theta_o, *phi_o;
313          double  dzeta, gamma;
314          double  normfactor;
315 +        double  erbs_s0, erbs_kt;
316  
317  
310
318          /* compute solar direction */
319 <
319 >                
320          if (month) {                    /* from date and time */
321                  int  jd;
322 <                double  sd, st;
322 >                double  sd;
323  
324                  jd = jdate(month, day);         /* Julian date */
325                  sd = sdec(jd);                  /* solar declination */
# Line 320 | Line 327 | void computesky()                      /* compute sky parameters */
327                          st = hour;
328                  else
329                          st = hour + stadj(jd);
330 +                
331 +                                        
332 +                if(timeinterval) {
333 +                        
334 +                        if(timeinterval<0) {
335 +                        fprintf(stderr, "time interval negative\n");
336 +                        exit(1);
337 +                        }
338 +                                                                        
339 +                        if(fabs(solar_sunrise(month,day)-st)<=timeinterval/120) {                      
340 +                         st= (st+timeinterval/120+solar_sunrise(month,day))/2;
341 +                         if(suppress_warnings==0)
342 +                         { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
343 +                        }
344 +                
345 +                        if(fabs(solar_sunset(month,day)-st)<timeinterval/120) {
346 +                         st= (st-timeinterval/120+solar_sunset(month,day))/2;
347 +                         if(suppress_warnings==0)
348 +                         { fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
349 +                        }
350 +                        
351 +                        if((st<solar_sunrise(month,day)-timeinterval/120) || (st>solar_sunset(month,day)+timeinterval/120)) {
352 +                          if(suppress_warnings==0)
353 +                          { fprintf(stderr, "Warning: sun position too low, printing error sky at %d %d %.3f\n",month,day,hour); }
354 +                         altitude = salt(sd, st);
355 +                         azimuth = sazi(sd, st);
356 +                         print_error_sky();
357 +                         exit(0);
358 +                        }
359 +                }
360 +                else
361 +                
362 +                if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) {
363 +                        if(suppress_warnings==0)
364 +                        { fprintf(stderr, "Warning: sun altitude below zero at time step %i %i %.2f, printing error sky\n",month,day,hour); }
365 +                        altitude = salt(sd, st);
366 +                        azimuth = sazi(sd, st);
367 +                        print_error_sky();
368 +                        exit(0);
369 +                }
370 +                
371                  altitude = salt(sd, st);
372                  azimuth = sazi(sd, st);
373                  
374                  daynumber = (double)jdate(month, day);
375 <
375 >                
376          }
377          
378          
379 <        
380 <        
333 <        
334 <        /* if loop for the -l option. 01/2013 Sprenger  */
335 <        
336 <        if (altitude*180/M_PI < sunaltitude_border) {
337 <        
338 <        if (suppress_warnings==0)
339 <            fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border);
340 <        print_error_sky();
341 <        exit(0);
342 <        }
343 <        
344 <        
379 >
380 >
381                          
346        
347                        
382          if (!cloudy && altitude > 87.*M_PI/180.) {
383                  
384                  if (suppress_warnings==0) {
# Line 355 | Line 389 | void computesky()                      /* compute sky parameters */
389                  altitude = 87.*M_PI/180.;
390          }
391          
392 +        
393 +        
394          sundir[0] = -sin(azimuth)*cos(altitude);
395          sundir[1] = -cos(azimuth)*cos(altitude);
396          sundir[2] = sin(altitude);
# Line 362 | Line 398 | void computesky()                      /* compute sky parameters */
398                  
399          /* calculation for the new functions */
400          sunzenith = 90 - altitude*180/M_PI;
401 <        
366 <        
401 >                        
402  
403          /* compute the inputs for the calculation of the light distribution over the sky*/
404 <        if (input==0)
404 >        if (input==0)           /* P */
405                  {
406                  check_parametrization();
407                  diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
# Line 382 | Line 417 | void computesky()                      /* compute sky parameters */
417                  }
418          
419  
420 <        else if (input==1)
420 >        else if (input==1)      /* W */
421                  {
422                  check_irradiances();
423                  skybrightness = sky_brightness();
424                  skyclearness =  sky_clearness();
425 +                
426                  check_parametrization();
427 <
427 >                                                        
428                  if (output==0 || output==2)
429                          {
430                          diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
# Line 399 | Line 435 | void computesky()                      /* compute sky parameters */
435                  }
436                          
437          
438 <        else if (input==2)
438 >        else if (input==2)      /* L */
439                  {              
440                  check_illuminances();
441                  illu_to_irra_index();
# Line 407 | Line 443 | void computesky()                      /* compute sky parameters */
443                  }
444                  
445  
446 <        else if (input==3)
446 >        else if (input==3)      /* G */
447                  {
448                          if (altitude<=0)
449                          {
450                                  if (suppress_warnings==0)
451 <                                     fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n");
451 >                                     fprintf(stderr, "Warning: sun altitude < 0, proceed with irradiance values of zero\n");
452                                  directirradiance = 0;
453                                  diffuseirradiance = 0;
454                          } else {
455 <                                directirradiance=directirradiance/sin(altitude);
455 >                        
456 >                                directirradiance=directirradiance/sin(altitude);
457                          }
458 +                                
459                  check_irradiances();
460                  skybrightness = sky_brightness();
461                  skyclearness =  sky_clearness();
# Line 432 | Line 470 | void computesky()                      /* compute sky parameters */
470  
471                  }
472  
473 +
474 +        else if (input==4)      /* E */         /* Implementation of the Erbs model. W.Sprenger (04/13) */
475 +                {
476 +                        
477 +                        if (altitude<=0)
478 +                        {
479 +                                if (suppress_warnings==0 && globalirradiance > 50)
480 +                                        fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n");
481 +                                globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0;
482 +                        
483 +                        } else {
484 +                        
485 +                        erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude);
486 +                        
487 +                        if (globalirradiance>erbs_s0)
488 +                        {
489 +                                if (suppress_warnings==0)
490 +                                        fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n");
491 +                                globalirradiance=erbs_s0*0.999;                
492 +                        }
493 +                        
494 +                        erbs_kt=globalirradiance/erbs_s0;
495 +                        
496 +                        if (erbs_kt<=0.22)      diffuseirradiance=globalirradiance*(1-0.09*erbs_kt);
497 +                        else if (erbs_kt<=0.8)  diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4));
498 +                        else if (erbs_kt<1)     diffuseirradiance=globalirradiance*(0.165);
499 +                        
500 +                        directirradiance=globalirradiance-diffuseirradiance;
501 +                        
502 +                        printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance);
503 +                        printf("# WARNING: the -E option is only recommended for a rough estimation!\n");
504 +                        
505 +                        directirradiance=directirradiance/sin(altitude);
506 +                                                                                                                        
507 +                        }
508 +                        
509 +                check_irradiances();
510 +                skybrightness = sky_brightness();
511 +                skyclearness =  sky_clearness();
512 +                check_parametrization();
513 +
514 +                if (output==0 || output==2)
515 +                        {
516 +                        diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
517 +                        directilluminance = directirradiance*direct_n_effi_PEREZ();
518 +                        check_illuminances();
519 +                        }
520 +
521 +                }
522 +                
523 +                
524 +                
525          
526 <        else    {fprintf(stderr,"error in giving the input arguments"); exit(1);}
526 >        else    { fprintf(stderr,"error at the input arguments"); exit(1); }
527  
528  
529          
530          /* normalization factor for the relative sky luminance distribution, diffuse part*/
531 <
531 >        
532          if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
533          {
534                  fprintf(stderr,"Out of memory in function main");
# Line 448 | Line 538 | void computesky()                      /* compute sky parameters */
538          /* read the angles */
539          theta_o = defangle_theta;
540          phi_o = defangle_phi;
541 +        
542  
543          /* parameters for the perez model */
544          coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
545  
546 +        
547 +        
548          /*calculation of the modelled luminance */
549          for (j=0;j<145;j++)
550          {
551                  theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
552 +                                
553                  *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
554 <                // printf("theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));
554 >                
555 >                /* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */
556          }
557 <
557 >        
558          /* integration of luminance for the normalization factor, diffuse part of the sky*/
559 +        
560          diffnormalization = integ_lv(lv_mod, theta_o);
465        /*printf("perez integration %lf\n", diffnormalization);*/
561          
467        
562  
563  
564          /*normalization coefficient in lumen or in watt*/
# Line 496 | Line 590 | void computesky()                      /* compute sky parameters */
590          else
591                  solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
592          
499                        
593  
594  
595 < /* Compute the ground radiance */
596 < zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
597 < zenithbr*=diffnormalization;
595 >        /* Compute the ground radiance */
596 >        zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
597 >        zenithbr*=diffnormalization;
598          
599 < if (skyclearness==1)
599 >        if (skyclearness==1)
600          normfactor = 0.777778;
601                  
602 < if (skyclearness>=6)
602 >        if (skyclearness>=6)
603          {              
604          F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
605          normfactor = normsc()/F2/M_PI;
606          }
607  
608 < if ( (skyclearness>1) && (skyclearness<6) )
608 >        if ( (skyclearness>1) && (skyclearness<6) )
609          {
610          S_INTER=1;
611          F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
612          normfactor = normsc()/F2/M_PI;
613          }
614  
615 < groundbr = zenithbr*normfactor;
615 >        groundbr = zenithbr*normfactor;
616  
617 < if (dosun&&(skyclearness>1))
617 >        if (dosun&&(skyclearness>1))
618          groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];                
619  
620 < groundbr *= gprefl;
620 >        groundbr *= gprefl;
621  
622  
623 +                
624 +        if(*(c_perez+1)>0)
625 +        {
626 +          if(suppress_warnings==0)
627 +                {  fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));}  
628 +          print_error_sky();
629 +          exit(0);
630 +        }
631  
632 +
633   return;
634   }
635  
636  
637  
638  
639 < void print_error_sky()
639 >
640 > double solar_sunset(int month,int day)
641   {
642 <        sundir[0] = -sin(azimuth)*cos(altitude);
643 <        sundir[1] = -cos(azimuth)*cos(altitude);
644 <        sundir[2] = sin(altitude);
645 <        
543 <        printf("\nvoid brightfunc skyfunc\n");
544 <        printf("2 skybright perezlum.cal\n");
545 <        printf("0\n");
546 <        printf("10 0.00 0.00  0.000 0.000 0.000 0.000 0.000  %f %f %f \n", sundir[0], sundir[1], sundir[2]);
642 >     float W;
643 >     extern double s_latitude;
644 >     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
645 >     return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
646   }
548        
647  
648  
649 < void printsky()                 /* print out sky */
649 >
650 >
651 > double solar_sunrise(int month,int day)
652   {
653 +     float W;
654 +     extern double s_latitude;
655 +     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
656 +     return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
657 + }
658 +
659 +
660 +
661 +
662 + void printsky()
663 + {      
664 +        
665 +        printf("# Local solar time: %.2f\n", st);
666 +        printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
667 +
668 +
669          if (dosun&&(skyclearness>1))
670          {              
671                  printf("\nvoid light solar\n");
# Line 567 | Line 683 | void printsky()                        /* print out sky */
683                  printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
684          }
685          
686 +
687          printf("\nvoid brightfunc skyfunc\n");
688          printf("2 skybright perezlum.cal\n");
689          printf("0\n");
690          printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
691                  *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
692                  sundir[0], sundir[1], sundir[2]);
693 +        
694   }
695  
696  
697 +
698 + void print_error_sky()
699 + {
700 +
701 +
702 +        sundir[0] = -sin(azimuth)*cos(altitude);
703 +        sundir[1] = -cos(azimuth)*cos(altitude);
704 +        sundir[2] = sin(altitude);
705 +
706 +        printf("# Local solar time: %.2f\n", st);
707 +        printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
708 +
709 +        printf("\nvoid brightfunc skyfunc\n");
710 +        printf("2 skybright perezlum.cal\n");
711 +        printf("0\n");
712 +        printf("10 0.00 0.00  0.000 0.000 0.000 0.000 0.000  %f %f %f \n", sundir[0], sundir[1], sundir[2]);
713 + }
714 +        
715 +
716 +
717 +
718 +
719   void printdefaults()                    /* print default values */
720   {
721          printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
# Line 589 | Line 729 | void printdefaults()                   /* print default values */
729   }
730  
731  
732 < void userror(char* msg)                 /* print usage error and quit */
732 >
733 >
734 > void usage_error(char* msg)                     /* print usage error and quit */
735   {
736          if (msg != NULL)
737 <                fprintf(stderr, "%s: Use error - %s\n", progname, msg);
738 <        fprintf(stderr, "Usage: %s month day hour [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
739 <        fprintf(stderr, "or:    %s -ang altitude azimuth [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
737 >                fprintf(stderr, "%s: Use error - %s\n\n", progname, msg);
738 >        fprintf(stderr, "Usage: %s      month day hour    [...]\n", progname);
739 >        fprintf(stderr, "   or: %s -ang altitude azimuth  [...]\n", progname);
740 >        fprintf(stderr, "               followed by:      -P          epsilon delta [options]\n");
741 >        fprintf(stderr, "                        or:      [-W|-L|-G]  direct_value diffuse_value [options]\n");
742 >        fprintf(stderr, "                        or:      -E          global_irradiance [options]\n\n");
743 >        fprintf(stderr, "       Description:\n");
744          fprintf(stderr, "       -P epsilon delta  (these are the Perez parameters) \n");
745          fprintf(stderr, "       -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
746          fprintf(stderr, "       -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
747          fprintf(stderr, "       -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
748 +        fprintf(stderr, "       -E global-horizontal-irradiance (W/m^2)\n\n");
749 +        fprintf(stderr, "       Output specification with option:\n");
750          fprintf(stderr, "       -O [0|1|2]  (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
751 <        fprintf(stderr, "       gendaylit version 2.00 (2013/01/28)  \n");
751 >        fprintf(stderr, "       gendaylit version 2.4 (2013/09/04)  \n\n");
752          exit(1);
753   }
754  
755  
756  
757 +
758   double normsc()           /* compute normalization factor (E0*F2/L0) */
759   {
760          static double  nfc[2][5] = {
# Line 629 | Line 778 | double normsc()                  /* compute normalization fac
778  
779  
780  
781 +
782 +
783   void printhead(int ac, char** av)               /* print command header */
784   {
785          putchar('#');
# Line 653 | Line 804 | double glob_h_effi_PEREZ()
804          double  value;
805          double  category_bounds[10], a[10], b[10], c[10], d[10];
806          int     category_total_number, category_number, i;
807 <
808 <
809 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
810 <     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n");
811 <
807 >        
808 >        check_parametrization();
809 >        
810 >        
811 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
812 >     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */
813 >    
814 >    
815          /* initialize category bounds (clearness index bounds) */
816  
817          category_total_number = 8;
# Line 712 | Line 866 | if ((skyclearness<skyclearinf || skyclearness>skyclear
866  
867  
868  
715
869          for (i=1; i<=category_total_number; i++)
870          {
871                  if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
# Line 726 | Line 879 | if ((skyclearness<skyclearinf || skyclearness>skyclear
879   }
880  
881  
882 +
883 +
884   /* global horizontal diffuse efficacy model, according to PEREZ */
885   double glob_h_diffuse_effi_PEREZ()
886   {
# Line 733 | Line 888 | double glob_h_diffuse_effi_PEREZ()
888          double  category_bounds[10], a[10], b[10], c[10], d[10];
889          int     category_total_number, category_number, i;
890  
891 +        check_parametrization();
892          
893 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
894 <     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_effi_PEREZ \n");
895 <
893 >        
894 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
895 > fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
896 >    
897   /* initialize category bounds (clearness index bounds) */
898  
899          category_total_number = 8;
900  
901 < //XXX: category_bounds > 0.1
901 > //XXX:  category_bounds > 0.1
902          category_bounds[1] = 1;
903          category_bounds[2] = 1.065;
904          category_bounds[3] = 1.230;
# Line 792 | Line 949 | if ((skyclearness<skyclearinf || skyclearness>skyclear
949  
950  
951  
795
952          category_number = -1;
953          for (i=1; i<=category_total_number; i++)
954          {
# Line 802 | Line 958 | if ((skyclearness<skyclearinf || skyclearness>skyclear
958  
959          if (category_number == -1) {
960                  if (suppress_warnings==0)
961 <                    fprintf(stderr, "ERROR: Model parameters out of range\n");
961 >                    fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness);
962                  print_error_sky();
963 <                exit(1);
963 >                exit(0);
964          }
965                  
966  
# Line 812 | Line 968 | if ((skyclearness<skyclearinf || skyclearness>skyclear
968              d[category_number]*log(skybrightness);
969  
970          return(value);
971 +
972   }
973  
974  
975 +
976 +
977 +
978 +
979   /* direct normal efficacy model, according to PEREZ */
980  
981   double direct_n_effi_PEREZ()
# Line 825 | Line 986 | double         category_bounds[10], a[10], b[10], c[10], d[10
986   int     category_total_number, category_number, i;
987  
988  
989 < if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
990 <   fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");
989 > /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
990 >   fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/
991  
992  
993   /* initialize category bounds (clearness index bounds) */
# Line 900 | Line 1061 | return(value);
1061   /*check the range of epsilon and delta indexes of the perez parametrization*/
1062   void check_parametrization()
1063   {
1064 +
1065   if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
1066                  {
1067  
1068   /*  limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
1069 +                
1070                  if (skyclearness<skyclearinf){
1071 +                        /* if (suppress_warnings==0)
1072 +                            fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
1073                          skyclearness=skyclearinf;
909                        if (suppress_warnings==0)
910                            fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness);
1074                  }
1075                  if (skyclearness>skyclearsup){
1076 <                        skyclearness=skyclearsup-0.1;
1077 <                        if (suppress_warnings==0)
1078 <                            fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness);
1076 >                        /* if (suppress_warnings==0)
1077 >                            fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
1078 >                        skyclearness=skyclearsup-0.001;
1079                  }
1080                  if (skybrightness<skybriginf){
1081 +                        /* if (suppress_warnings==0)
1082 +                            fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
1083                          skybrightness=skybriginf;
919                        if (suppress_warnings==0)
920                            fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness);
1084                  }
1085                  if (skybrightness>skybrigsup){
1086 +                        /* if (suppress_warnings==0)
1087 +                            fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
1088                          skybrightness=skybrigsup;
924                        if (suppress_warnings==0)
925                            fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness);
1089                  }
1090  
1091          return; }
# Line 930 | Line 1093 | if (skyclearness<skyclearinf || skyclearness>skyclears
1093   }
1094  
1095  
1096 +
1097 +
1098 +
1099   /* validity of the direct and diffuse components */
1100   void    check_illuminances()
1101   {
1102          if (directilluminance < 0) {
1103 <                fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n");
1103 >                if(suppress_warnings==0)
1104 >                { fprintf(stderr,"Warning: direct illuminance < 0. Using 0.0\n"); }
1105                  directilluminance = 0.0;
1106          }
1107          if (diffuseilluminance < 0) {
1108 <                fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n");
1108 >                if(suppress_warnings==0)
1109 >                { fprintf(stderr,"Warning: diffuse illuminance < 0. Using 0.0\n"); }
1110                  diffuseilluminance = 0.0;
1111          }
1112 <        if (directilluminance > solar_constant_l*1000.0) {
1113 <                fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n");
1114 <                exit(1);
1112 >        
1113 >        if (directilluminance+diffuseilluminance==0 && altitude > 0) {
1114 >                if(suppress_warnings==0)
1115 >                { fprintf(stderr,"Warning: zero illuminance at sun altitude > 0, printing error sky\n"); }
1116 >                print_error_sky();
1117 >                exit(0);
1118          }
1119 +        
1120 +        if (directilluminance > solar_constant_l) {
1121 +                if(suppress_warnings==0)
1122 +                { fprintf(stderr,"Warning: direct illuminance exceeds solar constant\n"); }
1123 +                print_error_sky();
1124 +                exit(0);
1125 +        }
1126   }
1127  
1128  
1129   void    check_irradiances()
1130   {
1131          if (directirradiance < 0) {
1132 <                fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n");
1132 >                if(suppress_warnings==0)
1133 >                { fprintf(stderr,"Warning: direct irradiance < 0. Using 0.0\n"); }
1134                  directirradiance = 0.0;
1135          }
1136          if (diffuseirradiance < 0) {
1137 <                fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n");
1137 >                if(suppress_warnings==0)
1138 >                { fprintf(stderr,"Warning: diffuse irradiance < 0. Using 0.0\n"); }
1139                  diffuseirradiance = 0.0;
1140          }
1141 +        
1142 +        if (directirradiance+diffuseirradiance==0 && altitude > 0) {
1143 +                if(suppress_warnings==0)
1144 +                { fprintf(stderr,"Warning: zero irradiance at sun altitude > 0, printing error sky\n"); }
1145 +                print_error_sky();
1146 +                exit(0);
1147 +        }
1148 +        
1149          if (directirradiance > solar_constant_e) {
1150 <                fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n");
1151 <                exit(1);
1150 >                if(suppress_warnings==0)
1151 >                { fprintf(stderr,"Warning: direct irradiance exceeds solar constant\n"); }
1152 >                print_error_sky();
1153 >                exit(0);
1154          }
1155   }
1156          
# Line 1012 | Line 1202 | double direct_irradiance_from_sky_clearness()
1202   }
1203  
1204  
1205 +
1206 +
1207   void illu_to_irra_index()
1208   {
1209   double  test1=0.1, test2=0.1, d_eff;
1210   int     counter=0;      
1211  
1212 < diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000);
1213 < directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
1212 > diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l);
1213 > directirradiance = directilluminance*solar_constant_e/(solar_constant_l);
1214   skyclearness =  sky_clearness();
1215   skybrightness = sky_brightness();
1216   check_parametrization();
1217 <        
1217 >
1218 >
1219   while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1220 <                || skyclearness>skyclearinf || skyclearness<skyclearsup
1221 <                || skybrightness>skybriginf || skybrightness<skybrigsup )
1222 <                 && !(counter==5) )
1220 >                || (!(skyclearness<skyclearinf || skyclearness>skyclearsup))
1221 >                || (!(skybrightness<skybriginf || skybrightness>skybrigsup)) )
1222 >                 && !(counter==9) )
1223          {
1224 <
1224 >        
1225          test1=diffuseirradiance;
1226          test2=directirradiance;
1227          counter++;
1228          
1229          diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1230          d_eff = direct_n_effi_PEREZ();
1231 +        
1232 +        
1233          if (d_eff < 0.1)
1234                  directirradiance = 0;
1235 <        else
1235 >        else    
1236                  directirradiance = directilluminance/d_eff;
1237          
1238          skybrightness = sky_brightness();
1239          skyclearness =  sky_clearness();
1240          check_parametrization();
1241 <        
1241 >                
1242          }
1243  
1244  
# Line 1072 | Line 1267 | static int get_numlin(float epsilon)
1267   /* sky luminance perez model */
1268   double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1269   {
1270 +                        
1271          float x[5][4];
1272          int i,j,num_lin;
1273          double c_perez[5];
1274  
1275          if ( (epsilon <  skyclearinf) || (epsilon >= skyclearsup) )
1276          {
1277 <                fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n");
1277 >                fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n");
1278                  exit(1);
1279          }
1280  
# Line 1087 | Line 1283 | double calc_rel_lum_perez(double dzeta,double gamma,do
1283          {
1284                  if ( Delta < 0.2 ) Delta = 0.2;
1285          }
1286 <
1286 >        
1287 >        
1288          num_lin = get_numlin(epsilon);
1289 <
1289 >        
1290          for (i=0;i<5;i++)
1291                  for (j=0;j<4;j++)
1292                  {
1293                          x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1294 <                        /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1294 >                        /* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
1295                  }
1296  
1297  
# Line 1128 | Line 1325 | void coeff_lum_perez(double Z, double epsilon, double
1325  
1326          if ( (epsilon <  skyclearinf) || (epsilon >= skyclearsup) )
1327          {
1328 <                fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1328 >                fprintf(stderr,"Error: epsilon out of range in function coeff_lum_perez!\n");
1329                  exit(1);
1330          }
1331  
# Line 1137 | Line 1334 | void coeff_lum_perez(double Z, double epsilon, double
1334          {
1335                  if ( Delta < 0.2 ) Delta = 0.2;
1336          }
1337 <
1337 >        
1338 >        
1339          num_lin = get_numlin(epsilon);
1340  
1341 <        //fprintf(stderr,"numlin %d\n", num_lin);
1341 >        /*fprintf(stderr,"numlin %d\n", num_lin);*/
1342  
1343          for (i=0;i<5;i++)
1344                  for (j=0;j<4;j++)
# Line 1172 | Line 1370 | void coeff_lum_perez(double Z, double epsilon, double
1370   }
1371  
1372  
1373 +
1374   /* degrees into radians */
1375   double radians(double degres)
1376   {
1377          return degres*M_PI/180.0;
1378   }
1379  
1380 +
1381   /* radian into degrees */
1382   double degres(double radians)
1383   {
1384          return radians/M_PI*180.0;
1385   }
1386  
1387 +
1388   /* calculation of the angles dzeta and gamma */
1389   void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1390   {
# Line 1193 | Line 1394 | void theta_phi_to_dzeta_gamma(double theta,double phi,
1394          else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1395          {
1396                  printf("error in calculation of gamma (angle between point and sun");
1397 <                exit(3);
1397 >                exit(1);
1398          }
1399          else
1400                  *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
# Line 1201 | Line 1402 | void theta_phi_to_dzeta_gamma(double theta,double phi,
1402  
1403  
1404  
1204 /********************************************************************************/
1205 /*      Fonction: integ_lv                                                      */
1206 /*                                                                              */
1207 /*      In: float *lv,*theta                                                    */
1208 /*          int sun_pos                                                         */
1209 /*                                                                              */
1210 /*      Out: double                                                             */
1211 /*                                                                              */
1212 /*      Update: 29/08/93                                                        */
1213 /*                                                                              */
1214 /*      Rem:                                                                    */
1215 /*                                                                              */
1216 /*      But: calcul l'integrale de luminance relative sans la dir. du soleil    */
1217 /*                                                                              */
1218 /********************************************************************************/
1405   double integ_lv(float *lv,float *theta)
1406   {
1407          int i;
1408          double buffer=0.0;
1409 <
1409 >        
1410          for (i=0;i<145;i++)
1411 +        {
1412                  buffer += (*(lv+i))*cos(radians(*(theta+i)));
1413 <
1413 >        }
1414 >                        
1415          return buffer*2*M_PI/144;
1228
1416   }
1417  
1418  
1419  
1233
1234
1235
1420   /* enter day number(double), return E0 = square(R0/R):  eccentricity correction factor  */
1421  
1422   double get_eccentricity()
# Line 1245 | Line 1429 | double get_eccentricity()
1429              0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1430  
1431          return (E0);
1248
1432   }
1433  
1434  
# Line 1253 | Line 1436 | double get_eccentricity()
1436   double  air_mass()
1437   {
1438   double  m;
1256
1439   if (sunzenith>90)
1440          {
1441 <        fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n");
1442 <        exit(1);
1441 >        if(suppress_warnings==0)
1442 >        { fprintf(stderr, "Warning: air mass has reached the maximal value\n"); }
1443 >        sunzenith=90;
1444          }
1262        
1445   m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1446   return(m);
1447   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines