ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
Revision: 2.13
Committed: Wed Aug 14 17:11:43 2013 UTC (10 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.12: +2 -1 lines
Log Message:
Inserted math definition macro

File Contents

# User Rev Content
1 greg 2.9 /* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
2     * Heidenhofstr. 2, D-79110 Freiburg, Germany
3 greg 2.1 * *Agence de l'Environnement et de la Maitrise de l'Energie
4     * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
5     * *BOUYGUES
6     * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
7     */
8    
9 greg 2.13 #define _USE_MATH_DEFINES
10 greg 2.1 #include <stdio.h>
11     #include <string.h>
12     #include <math.h>
13     #include <stdlib.h>
14    
15     #include "color.h"
16 greg 2.12 #include "sun.h"
17 greg 2.1 #include "paths.h"
18    
19 greg 2.9 #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
20 greg 2.1
21     double normsc();
22    
23 greg 2.13 /*static char *rcsid="$Header: /cvs/radiance/ray/src/gen/gendaylit.c,v 2.12 2013/08/09 16:44:19 greg Exp $";*/
24 greg 2.9
25     float coeff_perez[] = {
26 greg 2.12 1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
27     0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
28     6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
29     0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
30     -2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
31     33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
32     -0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
33     1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
34     14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
35     0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
36     0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
37     -14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
38    
39    
40     float defangle_theta[] = {
41     84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
42     84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
43     72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
44     60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
45     48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
46     24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
47    
48     float defangle_phi[] = {
49     0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
50     276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
51     192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
52     120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
53     90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
54     80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
55     240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
56 greg 2.1
57    
58    
59     /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
60     double sky_brightness();
61     double sky_clearness();
62    
63     /* calculation of the direct and diffuse components from the Perez parametrization */
64 greg 2.9 double diffuse_irradiance_from_sky_brightness();
65 greg 2.1 double direct_irradiance_from_sky_clearness();
66    
67 greg 2.12 /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */
68     /* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
69 greg 2.1
70     double glob_h_effi_PEREZ();
71     double glob_h_diffuse_effi_PEREZ();
72     double direct_n_effi_PEREZ();
73 greg 2.12
74 greg 2.1 /*likelihood check of the epsilon, delta, direct and diffuse components*/
75     void check_parametrization();
76     void check_irradiances();
77     void check_illuminances();
78     void illu_to_irra_index();
79 greg 2.9 void print_error_sky();
80 greg 2.1
81 greg 2.12 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
82 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
83 greg 2.1 double radians(double degres);
84     double degres(double radians);
85     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
86     double integ_lv(float *lv,float *theta);
87    
88 greg 2.9 void printdefaults();
89 greg 2.12 void check_sun_position();
90 greg 2.9 void computesky();
91     void printhead(int ac, char** av);
92     void userror(char* msg);
93     void printsky();
94 greg 2.1
95 greg 2.9 FILE * frlibopen(char* fname);
96 greg 2.1
97     /* astronomy and geometry*/
98     double get_eccentricity();
99     double air_mass();
100    
101 greg 2.12 double solar_sunset();
102     double solar_sunrise();
103     double stadj();
104     int jdate(int month, int day);
105    
106 greg 2.1
107    
108     /* sun calculation constants */
109 greg 2.12 extern double s_latitude;
110     extern double s_longitude;
111     extern double s_meridian;
112 greg 2.1
113     const double AU = 149597890E3;
114     const double solar_constant_e = 1367; /* solar constant W/m^2 */
115     const double solar_constant_l = 127.5; /* solar constant klux */
116    
117     const double half_sun_angle = 0.2665;
118     const double half_direct_angle = 2.85;
119    
120 greg 2.12 const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */
121 greg 2.1 const double skyclearsup = 12.1;
122     const double skybriginf = 0.01;
123     const double skybrigsup = 0.6;
124    
125    
126    
127     /* required values */
128     int month, day; /* date */
129     double hour; /* time */
130     int tsolar; /* 0=standard, 1=solar */
131     double altitude, azimuth; /* or solar angles */
132    
133    
134    
135     /* definition of the sky conditions through the Perez parametrization */
136 greg 2.9 double skyclearness = 0;
137     double skybrightness = 0;
138 greg 2.12 double solarradiance;
139     double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
140     double sunzenith, daynumber, atm_preci_water=2;
141 greg 2.1
142 greg 2.12 /*double sunaltitude_border = 0;*/
143 greg 2.9 double diffnormalization = 0;
144 greg 2.12 double dirnormalization = 0;
145 greg 2.1 double *c_perez;
146    
147 greg 2.12 int output=0; /* define the unit of the output (sky luminance or radiance): */
148     /* visible watt=0, solar watt=1, lumen=2 */
149     int input=0; /* define the input for the calulation */
150 greg 2.1
151 greg 2.9 int suppress_warnings=0;
152    
153 greg 2.1 /* default values */
154 greg 2.12 int cloudy = 0; /* 1=standard, 2=uniform */
155     int dosun = 1;
156 greg 2.1 double zenithbr = -1.0;
157     double betaturbidity = 0.1;
158     double gprefl = 0.2;
159     int S_INTER=0;
160    
161     /* computed values */
162     double sundir[3];
163 greg 2.9 double groundbr = 0;
164 greg 2.1 double F2;
165     double solarbr = 0.0;
166     int u_solar = 0; /* -1=irradiance, 1=radiance */
167 greg 2.12 float timeinterval = 0;
168    
169     char *progname;
170     char errmsg[128];
171    
172 greg 2.1
173    
174    
175 greg 2.9 int main(int argc, char** argv)
176 greg 2.1 {
177     int i;
178    
179     progname = argv[0];
180     if (argc == 2 && !strcmp(argv[1], "-defaults")) {
181     printdefaults();
182 greg 2.9 return 0;
183 greg 2.1 }
184     if (argc < 4)
185     userror("arg count");
186     if (!strcmp(argv[1], "-ang")) {
187 greg 2.9 altitude = atof(argv[2]) * (M_PI/180);
188     azimuth = atof(argv[3]) * (M_PI/180);
189 greg 2.1 month = 0;
190     } else {
191     month = atoi(argv[1]);
192     if (month < 1 || month > 12)
193     userror("bad month");
194     day = atoi(argv[2]);
195     if (day < 1 || day > 31)
196     userror("bad day");
197     hour = atof(argv[3]);
198     if (hour < 0 || hour >= 24)
199     userror("bad hour");
200     tsolar = argv[3][0] == '+';
201     }
202     for (i = 4; i < argc; i++)
203     if (argv[i][0] == '-' || argv[i][0] == '+')
204     switch (argv[i][1]) {
205     case 's':
206     cloudy = 0;
207     dosun = argv[i][0] == '+';
208     break;
209     case 'R':
210     u_solar = argv[i][1] == 'R' ? -1 : 1;
211     solarbr = atof(argv[++i]);
212     break;
213     case 'c':
214     cloudy = argv[i][0] == '+' ? 2 : 1;
215     dosun = 0;
216     break;
217     case 't':
218     betaturbidity = atof(argv[++i]);
219     break;
220 greg 2.9 case 'w':
221     suppress_warnings = 1;
222     break;
223 greg 2.1 case 'b':
224     zenithbr = atof(argv[++i]);
225     break;
226     case 'g':
227     gprefl = atof(argv[++i]);
228     break;
229     case 'a':
230 greg 2.9 s_latitude = atof(argv[++i]) * (M_PI/180);
231 greg 2.1 break;
232     case 'o':
233 greg 2.9 s_longitude = atof(argv[++i]) * (M_PI/180);
234 greg 2.1 break;
235     case 'm':
236 greg 2.9 s_meridian = atof(argv[++i]) * (M_PI/180);
237 greg 2.1 break;
238    
239     case 'O':
240 greg 2.12 output = atof(argv[++i]); /*define the unit of the output of the program :
241 greg 2.9 sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */
242 greg 2.1 break;
243    
244     case 'P':
245     input = 0; /* Perez parameters: epsilon, delta */
246     skyclearness = atof(argv[++i]);
247     skybrightness = atof(argv[++i]);
248     break;
249    
250     case 'W': /* direct normal Irradiance [W/m^2] */
251     input = 1; /* diffuse horizontal Irrad. [W/m^2] */
252     directirradiance = atof(argv[++i]);
253 greg 2.9 diffuseirradiance = atof(argv[++i]);
254 greg 2.1 break;
255    
256     case 'L': /* direct normal Illuminance [Lux] */
257     input = 2; /* diffuse horizontal Ill. [Lux] */
258     directilluminance = atof(argv[++i]);
259 greg 2.9 diffuseilluminance = atof(argv[++i]);
260 greg 2.1 break;
261    
262     case 'G': /* direct horizontal Irradiance [W/m^2] */
263     input = 3; /* diffuse horizontal Irrad. [W/m^2] */
264     directirradiance = atof(argv[++i]);
265 greg 2.9 diffuseirradiance = atof(argv[++i]);
266     break;
267    
268 greg 2.12 case 'E': /* Erbs model based on the */
269     input = 4; /* global-horizontal irradiance [W/m^2] */
270     globalirradiance = atof(argv[++i]);
271     break;
272    
273     /*
274     case 'l':
275 greg 2.9 sunaltitude_border = atof(argv[++i]);
276 greg 2.1 break;
277 greg 2.12 */
278    
279     case 'i':
280     timeinterval = atof(argv[++i]);
281     break;
282 greg 2.9
283 greg 2.1
284     default:
285     sprintf(errmsg, "unknown option: %s", argv[i]);
286     userror(errmsg);
287     }
288     else
289     userror("bad option");
290    
291 greg 2.9 if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
292 greg 2.1 fprintf(stderr,
293     "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
294 greg 2.9 progname, (s_longitude-s_meridian)*12/M_PI);
295 greg 2.1
296    
297 greg 2.12 /* dynamic memory allocation for the pointers */
298    
299 greg 2.9 if ( (c_perez = calloc(5, sizeof(double))) == NULL )
300 greg 2.1 {
301 greg 2.12 fprintf(stderr,"Out of memory error in function main");
302 greg 2.9 return 1;
303 greg 2.1 }
304    
305     printhead(argc, argv);
306     computesky();
307 greg 2.12
308     if(*(c_perez+1)>0)
309     {
310     fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));
311     print_error_sky();
312     exit(1);
313     }
314    
315 greg 2.1 printsky();
316 greg 2.9 return 0;
317 greg 2.1 }
318    
319    
320 greg 2.12
321    
322    
323    
324    
325    
326     void computesky()
327 greg 2.1 {
328    
329 greg 2.6 int j;
330 greg 2.12
331     float *lv_mod; /* 145 luminance values */
332 greg 2.9 float *theta_o, *phi_o;
333 greg 2.1 double dzeta, gamma;
334     double normfactor;
335 greg 2.12 double erbs_s0, erbs_kt;
336 greg 2.1
337    
338     /* compute solar direction */
339 greg 2.12
340 greg 2.1 if (month) { /* from date and time */
341     int jd;
342     double sd, st;
343    
344     jd = jdate(month, day); /* Julian date */
345     sd = sdec(jd); /* solar declination */
346     if (tsolar) /* solar time */
347     st = hour;
348     else
349     st = hour + stadj(jd);
350 greg 2.12
351    
352     if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) {
353     print_error_sky();
354     exit(1);
355     }
356    
357    
358     if(timeinterval) {
359    
360     if(timeinterval<0) {
361     fprintf(stderr, "time interval negative\n");
362     exit(1);
363     }
364    
365     if(fabs(solar_sunrise(month,day)-st)<timeinterval/60) {
366    
367     fprintf(stderr, "Solar position corrected at %d %d %.3f\n",month,day,hour);
368     st= (st+timeinterval/120+solar_sunrise(month,day))/2;
369     }
370    
371     if(fabs(solar_sunset(month,day)-st)<timeinterval/60) {
372     fprintf(stderr, "Solar position corrected at %d %d %.3f\n",month,day,hour);
373     st= (st-timeinterval/120+solar_sunset(month,day))/2;
374     }
375     }
376    
377    
378 greg 2.1 altitude = salt(sd, st);
379     azimuth = sazi(sd, st);
380    
381     daynumber = (double)jdate(month, day);
382 greg 2.12
383 greg 2.1 }
384 greg 2.9
385    
386 greg 2.12
387    
388     /* if loop for the -l option. W.Sprenger (01/2013) */
389     /*
390 greg 2.9 if (altitude*180/M_PI < sunaltitude_border) {
391    
392 greg 2.12 if (suppress_warnings==0) {
393     fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border);
394     }
395 greg 2.9 print_error_sky();
396 greg 2.12 exit(1);
397 greg 2.9 }
398 greg 2.12 */
399    
400 greg 2.9
401     if (!cloudy && altitude > 87.*M_PI/180.) {
402    
403     if (suppress_warnings==0) {
404     fprintf(stderr,
405 greg 2.1 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
406     progname);
407 greg 2.9 }
408     altitude = 87.*M_PI/180.;
409 greg 2.1 }
410 greg 2.9
411 greg 2.1 sundir[0] = -sin(azimuth)*cos(altitude);
412     sundir[1] = -cos(azimuth)*cos(altitude);
413     sundir[2] = sin(altitude);
414    
415    
416     /* calculation for the new functions */
417 greg 2.9 sunzenith = 90 - altitude*180/M_PI;
418 greg 2.1
419    
420    
421 greg 2.9 /* compute the inputs for the calculation of the light distribution over the sky*/
422 greg 2.12 if (input==0) /* P */
423 greg 2.1 {
424     check_parametrization();
425 greg 2.9 diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
426 greg 2.1 directirradiance = direct_irradiance_from_sky_clearness();
427     check_irradiances();
428    
429     if (output==0 || output==2)
430     {
431 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
432 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
433     check_illuminances();
434     }
435     }
436    
437    
438 greg 2.12 else if (input==1) /* W */
439 greg 2.1 {
440     check_irradiances();
441     skybrightness = sky_brightness();
442     skyclearness = sky_clearness();
443     check_parametrization();
444    
445     if (output==0 || output==2)
446     {
447 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
448 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
449     check_illuminances();
450     }
451    
452     }
453    
454    
455 greg 2.12 else if (input==2) /* L */
456 greg 2.1 {
457     check_illuminances();
458     illu_to_irra_index();
459     check_parametrization();
460     }
461    
462    
463 greg 2.12 else if (input==3) /* G */
464 greg 2.1 {
465     if (altitude<=0)
466     {
467 greg 2.9 if (suppress_warnings==0)
468     fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n");
469     directirradiance = 0;
470     diffuseirradiance = 0;
471     } else {
472 greg 2.12
473     directirradiance=directirradiance/sin(altitude);
474 greg 2.1 }
475 greg 2.12
476 greg 2.1 check_irradiances();
477     skybrightness = sky_brightness();
478     skyclearness = sky_clearness();
479     check_parametrization();
480    
481     if (output==0 || output==2)
482     {
483 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
484 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
485     check_illuminances();
486     }
487    
488     }
489    
490 greg 2.12
491     else if (input==4) /* E */ /* Implementation of the Erbs model. W.Sprenger (04/13) */
492     {
493    
494     if (altitude<=0)
495     {
496     if (suppress_warnings==0 && globalirradiance > 50)
497     fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n");
498     globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0;
499    
500     } else {
501    
502     erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude);
503    
504     if (globalirradiance>erbs_s0)
505     {
506     if (suppress_warnings==0)
507     fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n");
508    
509     globalirradiance=erbs_s0*0.999;
510     }
511    
512     erbs_kt=globalirradiance/erbs_s0;
513    
514     if (erbs_kt<=0.22) diffuseirradiance=globalirradiance*(1-0.09*erbs_kt);
515     else if (erbs_kt<=0.8) diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4));
516     else if (erbs_kt<1) diffuseirradiance=globalirradiance*(0.165);
517    
518     directirradiance=globalirradiance-diffuseirradiance;
519    
520     printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance);
521     printf("# WARNING: the -E option is only recommended for a rough estimation!");
522    
523     directirradiance=directirradiance/sin(altitude);
524    
525     }
526    
527     check_irradiances();
528     skybrightness = sky_brightness();
529     skyclearness = sky_clearness();
530     check_parametrization();
531    
532     if (output==0 || output==2)
533     {
534     diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
535     directilluminance = directirradiance*direct_n_effi_PEREZ();
536     check_illuminances();
537     }
538    
539     }
540    
541    
542    
543 greg 2.1
544 greg 2.12 else {fprintf(stderr,"error at the input arguments"); exit(1);}
545 greg 2.1
546    
547    
548 greg 2.9 /* normalization factor for the relative sky luminance distribution, diffuse part*/
549 greg 2.12
550 greg 2.1 if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
551     {
552     fprintf(stderr,"Out of memory in function main");
553     exit(1);
554     }
555    
556     /* read the angles */
557 greg 2.9 theta_o = defangle_theta;
558     phi_o = defangle_phi;
559 greg 2.12
560 greg 2.1
561 greg 2.9 /* parameters for the perez model */
562 greg 2.1 coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
563    
564 greg 2.12
565    
566    
567    
568 greg 2.9 /*calculation of the modelled luminance */
569 greg 2.1 for (j=0;j<145;j++)
570     {
571     theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
572 greg 2.12
573 greg 2.1 *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
574 greg 2.12
575     /* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */
576 greg 2.1 }
577 greg 2.12
578 greg 2.1 /* integration of luminance for the normalization factor, diffuse part of the sky*/
579 greg 2.12
580 greg 2.1 diffnormalization = integ_lv(lv_mod, theta_o);
581    
582    
583    
584 greg 2.9 /*normalization coefficient in lumen or in watt*/
585 greg 2.1 if (output==0)
586     {
587 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
588 greg 2.1 }
589     else if (output==1)
590     {
591 greg 2.9 diffnormalization = diffuseirradiance/diffnormalization;
592 greg 2.1 }
593     else if (output==2)
594     {
595 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization;
596 greg 2.1 }
597    
598 greg 2.9 else {fprintf(stderr,"Wrong output specification.\n"); exit(1);}
599 greg 2.1
600    
601    
602    
603 greg 2.9 /* calculation for the solar source */
604 greg 2.1 if (output==0)
605 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
606 greg 2.1
607     else if (output==1)
608 greg 2.9 solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
609 greg 2.1
610     else
611 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
612 greg 2.1
613    
614    
615    
616     /* Compute the ground radiance */
617     zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
618     zenithbr*=diffnormalization;
619 greg 2.9
620 greg 2.1 if (skyclearness==1)
621     normfactor = 0.777778;
622    
623     if (skyclearness>=6)
624     {
625 greg 2.9 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
626     normfactor = normsc()/F2/M_PI;
627 greg 2.1 }
628    
629     if ( (skyclearness>1) && (skyclearness<6) )
630     {
631     S_INTER=1;
632 greg 2.9 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
633     normfactor = normsc()/F2/M_PI;
634 greg 2.1 }
635    
636     groundbr = zenithbr*normfactor;
637    
638     if (dosun&&(skyclearness>1))
639 greg 2.9 groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
640 greg 2.1
641     groundbr *= gprefl;
642    
643    
644    
645     return;
646     }
647    
648    
649    
650    
651 greg 2.9 void print_error_sky()
652     {
653     sundir[0] = -sin(azimuth)*cos(altitude);
654     sundir[1] = -cos(azimuth)*cos(altitude);
655     sundir[2] = sin(altitude);
656    
657     printf("\nvoid brightfunc skyfunc\n");
658     printf("2 skybright perezlum.cal\n");
659     printf("0\n");
660     printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]);
661     }
662    
663 greg 2.1
664    
665 greg 2.12
666    
667    
668    
669     double solar_sunset(int month,int day)
670     {
671     float W;
672     extern double s_latitude;
673     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
674     return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
675     }
676    
677    
678     double solar_sunrise(int month,int day)
679     {
680     float W;
681     extern double s_latitude;
682     W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
683     return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
684     }
685    
686    
687    
688    
689    
690    
691    
692    
693    
694    
695    
696 greg 2.9 void printsky() /* print out sky */
697 greg 2.1 {
698     if (dosun&&(skyclearness>1))
699 greg 2.9 {
700 greg 2.1 printf("\nvoid light solar\n");
701     printf("0\n0\n");
702     printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
703     printf("\nsolar source sun\n");
704     printf("0\n0\n");
705     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
706 greg 2.9 } else if (dosun) {
707 greg 2.1 printf("\nvoid light solar\n");
708     printf("0\n0\n");
709     printf("3 0.0 0.0 0.0\n");
710     printf("\nsolar source sun\n");
711     printf("0\n0\n");
712     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
713 greg 2.9 }
714 greg 2.1
715 greg 2.12
716 greg 2.1 printf("\nvoid brightfunc skyfunc\n");
717     printf("2 skybright perezlum.cal\n");
718     printf("0\n");
719     printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
720 greg 2.9 *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
721     sundir[0], sundir[1], sundir[2]);
722 greg 2.12
723 greg 2.1 }
724    
725    
726 greg 2.9 void printdefaults() /* print default values */
727 greg 2.1 {
728     printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
729     if (zenithbr > 0.0)
730     printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
731     else
732     printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
733 greg 2.9 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
734     printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
735     printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
736 greg 2.1 }
737    
738    
739 greg 2.9 void userror(char* msg) /* print usage error and quit */
740 greg 2.1 {
741     if (msg != NULL)
742 greg 2.12 fprintf(stderr, "%s: Use error - %s\n\n", progname, msg);
743     fprintf(stderr, "Usage: %s month day hour [...]\n", progname);
744     fprintf(stderr, " or: %s -ang altitude azimuth [...]\n", progname);
745     fprintf(stderr, " followed by: -P epsilon delta [options]\n");
746     fprintf(stderr, " or: [-W|-L|-G] direct_value diffuse_value [options]\n");
747     fprintf(stderr, " or: -E global_irradiance [options]\n\n");
748     fprintf(stderr, " Description:\n");
749 greg 2.1 fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
750     fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
751     fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
752     fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
753 greg 2.12 fprintf(stderr, " -E global-horizontal-irradiance (W/m^2)\n\n");
754     fprintf(stderr, " Output specification with option:\n");
755 greg 2.1 fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
756 greg 2.12 fprintf(stderr, " gendaylit version 2.3 (2013/08/08) \n\n");
757 greg 2.1 exit(1);
758     }
759    
760    
761    
762 greg 2.9 double normsc() /* compute normalization factor (E0*F2/L0) */
763 greg 2.1 {
764     static double nfc[2][5] = {
765     /* clear sky approx. */
766     {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
767     /* intermediate sky approx. */
768     {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
769     };
770     register double *nf;
771     double x, nsc;
772     register int i;
773     /* polynomial approximation */
774     nf = nfc[S_INTER];
775 greg 2.9 x = (altitude - M_PI/4.0)/(M_PI/4.0);
776 greg 2.1 nsc = nf[i=4];
777     while (i--)
778     nsc = nsc*x + nf[i];
779    
780     return(nsc);
781     }
782    
783    
784    
785 greg 2.9 void printhead(int ac, char** av) /* print command header */
786 greg 2.1 {
787     putchar('#');
788     while (ac--) {
789     putchar(' ');
790     fputs(*av++, stdout);
791     }
792     putchar('\n');
793     }
794    
795    
796    
797    
798     /* Perez models */
799    
800     /* Perez global horizontal luminous efficacy model */
801     double glob_h_effi_PEREZ()
802     {
803    
804     double value;
805     double category_bounds[10], a[10], b[10], c[10], d[10];
806     int category_total_number, category_number, i;
807 greg 2.12
808     check_parametrization();
809    
810    
811     /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
812     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */
813    
814    
815 greg 2.1 /* initialize category bounds (clearness index bounds) */
816    
817     category_total_number = 8;
818    
819     category_bounds[1] = 1;
820     category_bounds[2] = 1.065;
821     category_bounds[3] = 1.230;
822     category_bounds[4] = 1.500;
823     category_bounds[5] = 1.950;
824     category_bounds[6] = 2.800;
825     category_bounds[7] = 4.500;
826     category_bounds[8] = 6.200;
827     category_bounds[9] = 12.01;
828    
829    
830     /* initialize model coefficients */
831     a[1] = 96.63;
832     a[2] = 107.54;
833     a[3] = 98.73;
834     a[4] = 92.72;
835     a[5] = 86.73;
836     a[6] = 88.34;
837     a[7] = 78.63;
838     a[8] = 99.65;
839    
840     b[1] = -0.47;
841     b[2] = 0.79;
842     b[3] = 0.70;
843     b[4] = 0.56;
844     b[5] = 0.98;
845     b[6] = 1.39;
846     b[7] = 1.47;
847     b[8] = 1.86;
848    
849     c[1] = 11.50;
850     c[2] = 1.79;
851     c[3] = 4.40;
852     c[4] = 8.36;
853     c[5] = 7.10;
854     c[6] = 6.06;
855     c[7] = 4.93;
856     c[8] = -4.46;
857    
858     d[1] = -9.16;
859     d[2] = -1.19;
860     d[3] = -6.95;
861     d[4] = -8.31;
862     d[5] = -10.94;
863     d[6] = -7.60;
864     d[7] = -11.37;
865     d[8] = -3.15;
866    
867    
868    
869    
870     for (i=1; i<=category_total_number; i++)
871     {
872     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
873     category_number = i;
874     }
875    
876     value = a[category_number] + b[category_number]*atm_preci_water +
877 greg 2.9 c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
878 greg 2.1
879     return(value);
880     }
881    
882    
883     /* global horizontal diffuse efficacy model, according to PEREZ */
884     double glob_h_diffuse_effi_PEREZ()
885     {
886     double value;
887     double category_bounds[10], a[10], b[10], c[10], d[10];
888     int category_total_number, category_number, i;
889    
890 greg 2.12
891    
892    
893     check_parametrization();
894 greg 2.1
895 greg 2.12
896     /*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
897     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
898    
899    
900 greg 2.1
901     /* initialize category bounds (clearness index bounds) */
902    
903     category_total_number = 8;
904    
905 greg 2.12 //XXX: category_bounds > 0.1
906 greg 2.1 category_bounds[1] = 1;
907     category_bounds[2] = 1.065;
908     category_bounds[3] = 1.230;
909     category_bounds[4] = 1.500;
910     category_bounds[5] = 1.950;
911     category_bounds[6] = 2.800;
912     category_bounds[7] = 4.500;
913     category_bounds[8] = 6.200;
914     category_bounds[9] = 12.01;
915    
916    
917     /* initialize model coefficients */
918     a[1] = 97.24;
919     a[2] = 107.22;
920     a[3] = 104.97;
921     a[4] = 102.39;
922     a[5] = 100.71;
923     a[6] = 106.42;
924     a[7] = 141.88;
925     a[8] = 152.23;
926    
927     b[1] = -0.46;
928     b[2] = 1.15;
929     b[3] = 2.96;
930     b[4] = 5.59;
931     b[5] = 5.94;
932     b[6] = 3.83;
933     b[7] = 1.90;
934     b[8] = 0.35;
935    
936     c[1] = 12.00;
937     c[2] = 0.59;
938     c[3] = -5.53;
939     c[4] = -13.95;
940     c[5] = -22.75;
941     c[6] = -36.15;
942     c[7] = -53.24;
943     c[8] = -45.27;
944    
945     d[1] = -8.91;
946     d[2] = -3.95;
947     d[3] = -8.77;
948     d[4] = -13.90;
949     d[5] = -23.74;
950     d[6] = -28.83;
951     d[7] = -14.03;
952     d[8] = -7.98;
953    
954    
955    
956    
957 greg 2.9 category_number = -1;
958 greg 2.1 for (i=1; i<=category_total_number; i++)
959     {
960     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
961     category_number = i;
962     }
963    
964 greg 2.9 if (category_number == -1) {
965     if (suppress_warnings==0)
966 greg 2.12 fprintf(stderr, "ERROR: Model parameters out of range, skyclearness = %lf \n", skyclearness);
967 greg 2.9 print_error_sky();
968     exit(1);
969     }
970    
971    
972     value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
973 greg 2.1 d[category_number]*log(skybrightness);
974    
975     return(value);
976 greg 2.12
977 greg 2.1 }
978    
979    
980 greg 2.12
981 greg 2.1 /* direct normal efficacy model, according to PEREZ */
982    
983     double direct_n_effi_PEREZ()
984    
985     {
986     double value;
987     double category_bounds[10], a[10], b[10], c[10], d[10];
988     int category_total_number, category_number, i;
989    
990    
991 greg 2.9 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
992     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");
993 greg 2.1
994    
995     /* initialize category bounds (clearness index bounds) */
996    
997     category_total_number = 8;
998    
999     category_bounds[1] = 1;
1000     category_bounds[2] = 1.065;
1001     category_bounds[3] = 1.230;
1002     category_bounds[4] = 1.500;
1003     category_bounds[5] = 1.950;
1004     category_bounds[6] = 2.800;
1005     category_bounds[7] = 4.500;
1006     category_bounds[8] = 6.200;
1007     category_bounds[9] = 12.1;
1008    
1009    
1010     /* initialize model coefficients */
1011     a[1] = 57.20;
1012     a[2] = 98.99;
1013     a[3] = 109.83;
1014     a[4] = 110.34;
1015     a[5] = 106.36;
1016     a[6] = 107.19;
1017     a[7] = 105.75;
1018     a[8] = 101.18;
1019    
1020     b[1] = -4.55;
1021     b[2] = -3.46;
1022     b[3] = -4.90;
1023     b[4] = -5.84;
1024     b[5] = -3.97;
1025     b[6] = -1.25;
1026     b[7] = 0.77;
1027     b[8] = 1.58;
1028    
1029     c[1] = -2.98;
1030     c[2] = -1.21;
1031     c[3] = -1.71;
1032     c[4] = -1.99;
1033     c[5] = -1.75;
1034     c[6] = -1.51;
1035     c[7] = -1.26;
1036     c[8] = -1.10;
1037    
1038     d[1] = 117.12;
1039     d[2] = 12.38;
1040     d[3] = -8.81;
1041     d[4] = -4.56;
1042     d[5] = -6.16;
1043     d[6] = -26.73;
1044     d[7] = -34.44;
1045     d[8] = -8.29;
1046    
1047    
1048    
1049     for (i=1; i<=category_total_number; i++)
1050     {
1051     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
1052     category_number = i;
1053     }
1054    
1055 greg 2.9 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
1056 greg 2.1
1057     if (value < 0) value = 0;
1058    
1059     return(value);
1060     }
1061    
1062    
1063     /*check the range of epsilon and delta indexes of the perez parametrization*/
1064     void check_parametrization()
1065     {
1066 greg 2.9 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
1067 greg 2.1 {
1068 greg 2.9
1069     /* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
1070     if (skyclearness<skyclearinf){
1071 greg 2.12 if (suppress_warnings==0)
1072     /* fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
1073 greg 2.9 skyclearness=skyclearinf;
1074     }
1075     if (skyclearness>skyclearsup){
1076 greg 2.12 if (suppress_warnings==0)
1077     /* fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
1078 greg 2.9 skyclearness=skyclearsup-0.1;
1079     }
1080     if (skybrightness<skybriginf){
1081 greg 2.12 if (suppress_warnings==0)
1082     /* fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
1083 greg 2.9 skybrightness=skybriginf;
1084     }
1085     if (skybrightness>skybrigsup){
1086 greg 2.12 if (suppress_warnings==0)
1087     /* fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
1088 greg 2.9 skybrightness=skybrigsup;
1089 greg 2.1 }
1090 greg 2.9
1091     return; }
1092 greg 2.1 else return;
1093     }
1094    
1095    
1096 greg 2.9 /* validity of the direct and diffuse components */
1097 greg 2.1 void check_illuminances()
1098     {
1099 greg 2.9 if (directilluminance < 0) {
1100     fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n");
1101     directilluminance = 0.0;
1102     }
1103     if (diffuseilluminance < 0) {
1104     fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n");
1105     diffuseilluminance = 0.0;
1106     }
1107     if (directilluminance > solar_constant_l*1000.0) {
1108     fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n");
1109     exit(1);
1110 greg 2.1 }
1111     }
1112    
1113    
1114     void check_irradiances()
1115     {
1116 greg 2.9 if (directirradiance < 0) {
1117     fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n");
1118     directirradiance = 0.0;
1119     }
1120     if (diffuseirradiance < 0) {
1121     fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n");
1122     diffuseirradiance = 0.0;
1123     }
1124     if (directirradiance > solar_constant_e) {
1125     fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n");
1126     exit(1);
1127     }
1128 greg 2.1 }
1129    
1130    
1131    
1132     /* Perez sky's brightness */
1133     double sky_brightness()
1134     {
1135     double value;
1136    
1137 greg 2.9 value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
1138 greg 2.1
1139     return(value);
1140     }
1141    
1142    
1143     /* Perez sky's clearness */
1144     double sky_clearness()
1145     {
1146 greg 2.9 double value;
1147 greg 2.1
1148 greg 2.9 value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
1149 greg 2.1
1150 greg 2.9 return(value);
1151 greg 2.1 }
1152    
1153    
1154    
1155     /* diffus horizontal irradiance from Perez sky's brightness */
1156 greg 2.9 double diffuse_irradiance_from_sky_brightness()
1157 greg 2.1 {
1158     double value;
1159    
1160     value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
1161    
1162     return(value);
1163     }
1164    
1165    
1166     /* direct normal irradiance from Perez sky's clearness */
1167     double direct_irradiance_from_sky_clearness()
1168     {
1169     double value;
1170    
1171 greg 2.9 value = diffuse_irradiance_from_sky_brightness();
1172     value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
1173 greg 2.1
1174     return(value);
1175     }
1176    
1177    
1178 greg 2.12
1179    
1180 greg 2.9 void illu_to_irra_index()
1181 greg 2.1 {
1182 greg 2.9 double test1=0.1, test2=0.1, d_eff;
1183 greg 2.1 int counter=0;
1184    
1185 greg 2.9 diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000);
1186 greg 2.1 directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
1187     skyclearness = sky_clearness();
1188     skybrightness = sky_brightness();
1189 greg 2.9 check_parametrization();
1190 greg 2.12
1191    
1192 greg 2.9 while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1193 greg 2.12 || (!(skyclearness<skyclearinf || skyclearness>skyclearsup))
1194     || (!(skybrightness<skybriginf || skybrightness>skybrigsup)) )
1195     && !(counter==9) )
1196 greg 2.1 {
1197 greg 2.12
1198 greg 2.9 test1=diffuseirradiance;
1199 greg 2.1 test2=directirradiance;
1200     counter++;
1201    
1202 greg 2.9 diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1203     d_eff = direct_n_effi_PEREZ();
1204 greg 2.12
1205    
1206 greg 2.9 if (d_eff < 0.1)
1207     directirradiance = 0;
1208 greg 2.12 else
1209 greg 2.9 directirradiance = directilluminance/d_eff;
1210 greg 2.1
1211     skybrightness = sky_brightness();
1212     skyclearness = sky_clearness();
1213 greg 2.9 check_parametrization();
1214    
1215 greg 2.12 /*fprintf(stderr,"skyclearness = %lf, skybrightness = %lf, directirradiance = %lf, diffuseirradiance = %lf\n",skyclearness, skybrightness, directirradiance, diffuseirradiance);*/
1216    
1217 greg 2.1 }
1218    
1219    
1220     return;
1221     }
1222    
1223 greg 2.9 static int get_numlin(float epsilon)
1224 greg 2.1 {
1225 greg 2.9 if (epsilon < 1.065)
1226     return 0;
1227     else if (epsilon < 1.230)
1228     return 1;
1229     else if (epsilon < 1.500)
1230     return 2;
1231     else if (epsilon < 1.950)
1232     return 3;
1233     else if (epsilon < 2.800)
1234     return 4;
1235     else if (epsilon < 4.500)
1236     return 5;
1237     else if (epsilon < 6.200)
1238     return 6;
1239     return 7;
1240 greg 2.1 }
1241    
1242     /* sky luminance perez model */
1243 greg 2.9 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1244 greg 2.1 {
1245 greg 2.12
1246 greg 2.1 float x[5][4];
1247     int i,j,num_lin;
1248     double c_perez[5];
1249    
1250     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1251     {
1252 greg 2.9 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n");
1253 greg 2.1 exit(1);
1254     }
1255    
1256     /* correction de modele de Perez solar energy ...*/
1257     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1258     {
1259     if ( Delta < 0.2 ) Delta = 0.2;
1260     }
1261 greg 2.12
1262    
1263 greg 2.9 num_lin = get_numlin(epsilon);
1264 greg 2.12
1265 greg 2.1 for (i=0;i<5;i++)
1266     for (j=0;j<4;j++)
1267     {
1268     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1269 greg 2.12 /* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
1270 greg 2.1 }
1271    
1272    
1273     if (num_lin)
1274     {
1275     for (i=0;i<5;i++)
1276     c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1277     }
1278     else
1279     {
1280     c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1281     c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1282     c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1283     c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1284     c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1285     }
1286    
1287    
1288     return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
1289     (1 + c_perez[2]*exp(c_perez[3]*gamma) +
1290     c_perez[4]*cos(gamma)*cos(gamma) );
1291     }
1292    
1293    
1294    
1295     /* coefficients for the sky luminance perez model */
1296 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[])
1297 greg 2.1 {
1298     float x[5][4];
1299     int i,j,num_lin;
1300    
1301     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1302     {
1303     fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1304     exit(1);
1305     }
1306    
1307     /* correction du modele de Perez solar energy ...*/
1308     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1309     {
1310     if ( Delta < 0.2 ) Delta = 0.2;
1311     }
1312 greg 2.12
1313    
1314 greg 2.9 num_lin = get_numlin(epsilon);
1315    
1316 greg 2.12 /*fprintf(stderr,"numlin %d\n", num_lin);*/
1317 greg 2.1
1318     for (i=0;i<5;i++)
1319     for (j=0;j<4;j++)
1320     {
1321     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1322     /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1323     }
1324    
1325    
1326     if (num_lin)
1327     {
1328     for (i=0;i<5;i++)
1329     *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1330    
1331     }
1332     else
1333     {
1334     *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1335     *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1336     *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1337     *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1338     *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1339    
1340    
1341     }
1342    
1343    
1344     return;
1345     }
1346    
1347    
1348 greg 2.12
1349 greg 2.1 /* degrees into radians */
1350     double radians(double degres)
1351     {
1352 greg 2.9 return degres*M_PI/180.0;
1353 greg 2.1 }
1354    
1355 greg 2.12
1356 greg 2.1 /* radian into degrees */
1357     double degres(double radians)
1358     {
1359 greg 2.9 return radians/M_PI*180.0;
1360 greg 2.1 }
1361    
1362 greg 2.12
1363 greg 2.1 /* calculation of the angles dzeta and gamma */
1364     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1365     {
1366     *dzeta = theta; /* dzeta = phi */
1367     if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
1368     *gamma = 0;
1369     else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1370     {
1371     printf("error in calculation of gamma (angle between point and sun");
1372     exit(3);
1373     }
1374     else
1375     *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
1376     }
1377    
1378    
1379    
1380     double integ_lv(float *lv,float *theta)
1381     {
1382     int i;
1383     double buffer=0.0;
1384 greg 2.12
1385 greg 2.1 for (i=0;i<145;i++)
1386 greg 2.12 {
1387 greg 2.1 buffer += (*(lv+i))*cos(radians(*(theta+i)));
1388 greg 2.12 }
1389    
1390 greg 2.9 return buffer*2*M_PI/144;
1391 greg 2.1 }
1392    
1393    
1394    
1395     /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
1396    
1397     double get_eccentricity()
1398     {
1399     double day_angle;
1400     double E0;
1401    
1402 greg 2.9 day_angle = 2*M_PI*(daynumber - 1)/365;
1403 greg 2.1 E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
1404     0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1405    
1406     return (E0);
1407     }
1408    
1409    
1410     /* enter sunzenith angle (degrees) return relative air mass (double) */
1411     double air_mass()
1412     {
1413     double m;
1414     if (sunzenith>90)
1415     {
1416 greg 2.9 fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n");
1417 greg 2.1 exit(1);
1418     }
1419 greg 2.9 m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1420 greg 2.1 return(m);
1421     }
1422    
1423    
1424