1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: genblinds.c,v 2.10 2003/06/08 12:03:09 schorsch Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* genblind2.c - make some curved or flat venetian blinds. |
6 |
* |
7 |
* Jean-Louis Scartezzini and Greg Ward |
8 |
* |
9 |
* parameters: |
10 |
* depth - depth of blinds |
11 |
* width - width of slats |
12 |
* height - height of blinds |
13 |
* nslats - number of slats |
14 |
* angle - blind incidence angle ( in degrees ) |
15 |
* rcurv - curvature radius of slats (up:>0;down:<0;flat:=0) |
16 |
*/ |
17 |
|
18 |
#include <stdio.h> |
19 |
#include <stdlib.h> |
20 |
#include <math.h> |
21 |
#include <string.h> |
22 |
|
23 |
#define PI 3.14159265358979323846 |
24 |
#define DELTA 10. /* MINIMAL SUSTAINED ANGLE IN DEGREES */ |
25 |
|
26 |
double baseflat[4][3], baseblind[4][3][180]; |
27 |
double A[3],X[3]; |
28 |
char *material, *name; |
29 |
double height; |
30 |
int nslats, nsurf; |
31 |
|
32 |
|
33 |
static void makeflat(double w, double d, double a); |
34 |
static void printslat(int n); |
35 |
static void printhead(register int ac, register char **av); |
36 |
|
37 |
|
38 |
void |
39 |
makeflat( |
40 |
double w, |
41 |
double d, |
42 |
double a |
43 |
) |
44 |
{ |
45 |
double h; |
46 |
|
47 |
h = d*sin(a); |
48 |
d *= cos(a); |
49 |
baseflat[0][0] = 0.0; |
50 |
baseflat[0][1] = 0.0; |
51 |
baseflat[0][2] = 0.0; |
52 |
baseflat[1][0] = 0.0; |
53 |
baseflat[1][1] = w; |
54 |
baseflat[1][2] = 0.0; |
55 |
baseflat[2][0] = d; |
56 |
baseflat[2][1] = w; |
57 |
baseflat[2][2] = h; |
58 |
baseflat[3][0] = d; |
59 |
baseflat[3][1] = 0.0; |
60 |
baseflat[3][2] = h; |
61 |
|
62 |
} |
63 |
|
64 |
|
65 |
void |
66 |
printslat( /* print slat # n */ |
67 |
int n |
68 |
) |
69 |
{ |
70 |
register int i, k; |
71 |
|
72 |
for (k=0; k < nsurf; k++) { |
73 |
printf("\n%s polygon %s.%d.%d\n", material, name, n, k); |
74 |
printf("0\n0\n12\n"); |
75 |
for (i = 0; i < 4; i++) |
76 |
printf("\t%18.12g\t%18.12g\t%18.12g\n", |
77 |
baseblind[i][0][k], |
78 |
baseblind[i][1][k], |
79 |
baseblind[i][2][k] + height*(n-.5)/nslats); |
80 |
} |
81 |
} |
82 |
|
83 |
|
84 |
void |
85 |
printhead( /* print command header */ |
86 |
register int ac, |
87 |
register char **av |
88 |
) |
89 |
{ |
90 |
putchar('#'); |
91 |
while (ac--) { |
92 |
putchar(' '); |
93 |
fputs(*av++, stdout); |
94 |
} |
95 |
putchar('\n'); |
96 |
} |
97 |
|
98 |
|
99 |
int |
100 |
main( |
101 |
int argc, |
102 |
char *argv[] |
103 |
) |
104 |
{ |
105 |
double width, delem, depth, rcurv = 0.0, angle; |
106 |
double beta, gamma, theta, chi = 0; |
107 |
int i, j, k, l; |
108 |
|
109 |
|
110 |
if (argc != 8 && argc != 10) |
111 |
goto userr; |
112 |
material = argv[1]; |
113 |
name = argv[2]; |
114 |
depth = atof(argv[3]); |
115 |
width = atof(argv[4]); |
116 |
height = atof(argv[5]); |
117 |
nslats = atoi(argv[6]); |
118 |
angle = atof(argv[7]); |
119 |
if (argc == 10) |
120 |
if (!strcmp(argv[8], "-r")) |
121 |
rcurv = atof(argv[9]); |
122 |
else if (!strcmp(argv[8], "+r")) |
123 |
rcurv = -atof(argv[9]); |
124 |
else |
125 |
goto userr; |
126 |
|
127 |
/* CURVED BLIND CALCULATION */ |
128 |
|
129 |
if (rcurv != 0) { |
130 |
|
131 |
/* BLINDS SUSTAINED ANGLE */ |
132 |
|
133 |
theta = 2*asin(depth/(2*fabs(rcurv))); |
134 |
|
135 |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
136 |
|
137 |
nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1; |
138 |
|
139 |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
140 |
|
141 |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
142 |
|
143 |
beta = (PI-theta)/2.; |
144 |
gamma = beta -((PI/180.)*angle); |
145 |
|
146 |
|
147 |
|
148 |
if (rcurv < 0) { |
149 |
A[0]=fabs(rcurv)*cos(gamma); |
150 |
A[0] *= -1; |
151 |
A[1]=0.; |
152 |
A[2]=fabs(rcurv)*sin(gamma); |
153 |
} |
154 |
if (rcurv > 0) { |
155 |
A[0]=fabs(rcurv)*cos(gamma+theta); |
156 |
A[1]=0.; |
157 |
A[2]=fabs(rcurv)*sin(gamma+theta); |
158 |
A[2] *= -1; |
159 |
} |
160 |
|
161 |
for (k=0; k < nsurf; k++) { |
162 |
if (rcurv < 0) { |
163 |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
164 |
} |
165 |
if (rcurv > 0) { |
166 |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
167 |
((180.-DELTA)/2.); |
168 |
} |
169 |
makeflat(width, delem, chi); |
170 |
if (rcurv < 0.) { |
171 |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
172 |
X[1]=0.; |
173 |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
174 |
} |
175 |
if (rcurv > 0.) { |
176 |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
177 |
X[1]=0.; |
178 |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
179 |
} |
180 |
|
181 |
for (i=0; i < 4; i++) { |
182 |
for (j=0; j < 3; j++) { |
183 |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
184 |
} |
185 |
} |
186 |
} |
187 |
} |
188 |
|
189 |
/* FLAT BLINDS CALCULATION */ |
190 |
|
191 |
if (rcurv == 0.) { |
192 |
|
193 |
nsurf=1; |
194 |
makeflat(width,depth,angle*(PI/180.)); |
195 |
for (i=0; i < 4; i++) { |
196 |
for (j=0; j < 3; j++) { |
197 |
baseblind[i][j][0] = baseflat[i][j]; |
198 |
} |
199 |
} |
200 |
} |
201 |
|
202 |
printhead(argc, argv); |
203 |
|
204 |
|
205 |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
206 |
|
207 |
for (l = 1; l <= nslats; l++) |
208 |
printslat(l); |
209 |
exit(0); |
210 |
userr: |
211 |
fprintf(stderr, |
212 |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
213 |
argv[0]); |
214 |
exit(1); |
215 |
} |
216 |
|
217 |
|
218 |
|