| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: genblinds.c,v 2.9 2003/02/22 02:07:23 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* genblind2.c - make some curved or flat venetian blinds.
|
| 6 |
*
|
| 7 |
* Jean-Louis Scartezzini and Greg Ward
|
| 8 |
*
|
| 9 |
* parameters:
|
| 10 |
* depth - depth of blinds
|
| 11 |
* width - width of slats
|
| 12 |
* height - height of blinds
|
| 13 |
* nslats - number of slats
|
| 14 |
* angle - blind incidence angle ( in degrees )
|
| 15 |
* rcurv - curvature radius of slats (up:>0;down:<0;flat:=0)
|
| 16 |
*/
|
| 17 |
|
| 18 |
#include <stdio.h>
|
| 19 |
#include <stdlib.h>
|
| 20 |
#include <math.h>
|
| 21 |
#include <string.h>
|
| 22 |
|
| 23 |
#define PI 3.14159265358979323846
|
| 24 |
#define DELTA 10. /* MINIMAL SUSTAINED ANGLE IN DEGREES */
|
| 25 |
|
| 26 |
double baseflat[4][3], baseblind[4][3][180];
|
| 27 |
double A[3],X[3];
|
| 28 |
char *material, *name;
|
| 29 |
double height;
|
| 30 |
int nslats, nsurf;
|
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
makeflat(w,d,a)
|
| 35 |
double w, d, a;
|
| 36 |
{
|
| 37 |
double h;
|
| 38 |
|
| 39 |
h = d*sin(a);
|
| 40 |
d *= cos(a);
|
| 41 |
baseflat[0][0] = 0.0;
|
| 42 |
baseflat[0][1] = 0.0;
|
| 43 |
baseflat[0][2] = 0.0;
|
| 44 |
baseflat[1][0] = 0.0;
|
| 45 |
baseflat[1][1] = w;
|
| 46 |
baseflat[1][2] = 0.0;
|
| 47 |
baseflat[2][0] = d;
|
| 48 |
baseflat[2][1] = w;
|
| 49 |
baseflat[2][2] = h;
|
| 50 |
baseflat[3][0] = d;
|
| 51 |
baseflat[3][1] = 0.0;
|
| 52 |
baseflat[3][2] = h;
|
| 53 |
|
| 54 |
}
|
| 55 |
|
| 56 |
|
| 57 |
printslat(n) /* print slat # n */
|
| 58 |
int n;
|
| 59 |
{
|
| 60 |
register int i, k;
|
| 61 |
|
| 62 |
for (k=0; k < nsurf; k++) {
|
| 63 |
printf("\n%s polygon %s.%d.%d\n", material, name, n, k);
|
| 64 |
printf("0\n0\n12\n");
|
| 65 |
for (i = 0; i < 4; i++)
|
| 66 |
printf("\t%18.12g\t%18.12g\t%18.12g\n",
|
| 67 |
baseblind[i][0][k],
|
| 68 |
baseblind[i][1][k],
|
| 69 |
baseblind[i][2][k] + height*(n-.5)/nslats);
|
| 70 |
}
|
| 71 |
}
|
| 72 |
|
| 73 |
|
| 74 |
printhead(ac, av) /* print command header */
|
| 75 |
register int ac;
|
| 76 |
register char **av;
|
| 77 |
{
|
| 78 |
putchar('#');
|
| 79 |
while (ac--) {
|
| 80 |
putchar(' ');
|
| 81 |
fputs(*av++, stdout);
|
| 82 |
}
|
| 83 |
putchar('\n');
|
| 84 |
}
|
| 85 |
|
| 86 |
|
| 87 |
main(argc, argv)
|
| 88 |
int argc;
|
| 89 |
char *argv[];
|
| 90 |
{
|
| 91 |
double width, delem, depth, rcurv = 0.0, angle;
|
| 92 |
double beta, gamma, theta, chi;
|
| 93 |
int i, j, k, l;
|
| 94 |
|
| 95 |
|
| 96 |
if (argc != 8 && argc != 10)
|
| 97 |
goto userr;
|
| 98 |
material = argv[1];
|
| 99 |
name = argv[2];
|
| 100 |
depth = atof(argv[3]);
|
| 101 |
width = atof(argv[4]);
|
| 102 |
height = atof(argv[5]);
|
| 103 |
nslats = atoi(argv[6]);
|
| 104 |
angle = atof(argv[7]);
|
| 105 |
if (argc == 10)
|
| 106 |
if (!strcmp(argv[8], "-r"))
|
| 107 |
rcurv = atof(argv[9]);
|
| 108 |
else if (!strcmp(argv[8], "+r"))
|
| 109 |
rcurv = -atof(argv[9]);
|
| 110 |
else
|
| 111 |
goto userr;
|
| 112 |
|
| 113 |
/* CURVED BLIND CALCULATION */
|
| 114 |
|
| 115 |
if (rcurv != 0) {
|
| 116 |
|
| 117 |
/* BLINDS SUSTAINED ANGLE */
|
| 118 |
|
| 119 |
theta = 2*asin(depth/(2*fabs(rcurv)));
|
| 120 |
|
| 121 |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */
|
| 122 |
|
| 123 |
nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1;
|
| 124 |
|
| 125 |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */
|
| 126 |
|
| 127 |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.));
|
| 128 |
|
| 129 |
beta = (PI-theta)/2.;
|
| 130 |
gamma = beta -((PI/180.)*angle);
|
| 131 |
|
| 132 |
|
| 133 |
|
| 134 |
if (rcurv < 0) {
|
| 135 |
A[0]=fabs(rcurv)*cos(gamma);
|
| 136 |
A[0] *= -1;
|
| 137 |
A[1]=0.;
|
| 138 |
A[2]=fabs(rcurv)*sin(gamma);
|
| 139 |
}
|
| 140 |
if (rcurv > 0) {
|
| 141 |
A[0]=fabs(rcurv)*cos(gamma+theta);
|
| 142 |
A[1]=0.;
|
| 143 |
A[2]=fabs(rcurv)*sin(gamma+theta);
|
| 144 |
A[2] *= -1;
|
| 145 |
}
|
| 146 |
|
| 147 |
for (k=0; k < nsurf; k++) {
|
| 148 |
if (rcurv < 0) {
|
| 149 |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA));
|
| 150 |
}
|
| 151 |
if (rcurv > 0) {
|
| 152 |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)*
|
| 153 |
((180.-DELTA)/2.);
|
| 154 |
}
|
| 155 |
makeflat(width, delem, chi);
|
| 156 |
if (rcurv < 0.) {
|
| 157 |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0];
|
| 158 |
X[1]=0.;
|
| 159 |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2];
|
| 160 |
}
|
| 161 |
if (rcurv > 0.) {
|
| 162 |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0];
|
| 163 |
X[1]=0.;
|
| 164 |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2];
|
| 165 |
}
|
| 166 |
|
| 167 |
for (i=0; i < 4; i++) {
|
| 168 |
for (j=0; j < 3; j++) {
|
| 169 |
baseblind[i][j][k] = baseflat[i][j]+X[j];
|
| 170 |
}
|
| 171 |
}
|
| 172 |
}
|
| 173 |
}
|
| 174 |
|
| 175 |
/* FLAT BLINDS CALCULATION */
|
| 176 |
|
| 177 |
if (rcurv == 0.) {
|
| 178 |
|
| 179 |
nsurf=1;
|
| 180 |
makeflat(width,depth,angle*(PI/180.));
|
| 181 |
for (i=0; i < 4; i++) {
|
| 182 |
for (j=0; j < 3; j++) {
|
| 183 |
baseblind[i][j][0] = baseflat[i][j];
|
| 184 |
}
|
| 185 |
}
|
| 186 |
}
|
| 187 |
|
| 188 |
printhead(argc, argv);
|
| 189 |
|
| 190 |
|
| 191 |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */
|
| 192 |
|
| 193 |
for (l = 1; l <= nslats; l++)
|
| 194 |
printslat(l);
|
| 195 |
exit(0);
|
| 196 |
userr:
|
| 197 |
fprintf(stderr,
|
| 198 |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n",
|
| 199 |
argv[0]);
|
| 200 |
exit(1);
|
| 201 |
}
|
| 202 |
|
| 203 |
|
| 204 |
|