| 102 |
|
char *argv[] |
| 103 |
|
) |
| 104 |
|
{ |
| 105 |
< |
double width, delem, depth, rcurv = 0.0, angle; |
| 105 |
> |
double width, delem, depth, rcurv = 0.0, mydelta, angle; |
| 106 |
|
double beta, gamma, theta, chi = 0; |
| 107 |
|
int i, j, k, l; |
| 108 |
|
|
| 126 |
|
|
| 127 |
|
/* CURVED BLIND CALCULATION */ |
| 128 |
|
|
| 129 |
< |
if (rcurv != 0) { |
| 129 |
> |
if (rcurv != 0.) { |
| 130 |
|
|
| 131 |
|
/* BLINDS SUSTAINED ANGLE */ |
| 132 |
|
|
| 133 |
< |
theta = 2*asin(depth/(2*fabs(rcurv))); |
| 133 |
> |
theta = 2.*asin(depth/(2.*fabs(rcurv))); |
| 134 |
|
|
| 135 |
|
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
| 136 |
|
|
| 137 |
< |
nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1; |
| 137 |
> |
nsurf = (int)(theta / ((PI/180.)*DELTA) + 0.99999); |
| 138 |
> |
|
| 139 |
> |
mydelta = (180./PI) * theta / nsurf; |
| 140 |
|
|
| 141 |
|
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
| 142 |
|
|
| 143 |
< |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
| 143 |
> |
delem = 2.*fabs(rcurv)*sin((PI/180.)*(mydelta/2.)); |
| 144 |
|
|
| 145 |
|
beta = (PI-theta)/2.; |
| 146 |
|
gamma = beta -((PI/180.)*angle); |
| 149 |
|
|
| 150 |
|
if (rcurv < 0) { |
| 151 |
|
A[0]=fabs(rcurv)*cos(gamma); |
| 152 |
< |
A[0] *= -1; |
| 152 |
> |
A[0] *= -1.; |
| 153 |
|
A[1]=0.; |
| 154 |
|
A[2]=fabs(rcurv)*sin(gamma); |
| 155 |
|
} |
| 157 |
|
A[0]=fabs(rcurv)*cos(gamma+theta); |
| 158 |
|
A[1]=0.; |
| 159 |
|
A[2]=fabs(rcurv)*sin(gamma+theta); |
| 160 |
< |
A[2] *= -1; |
| 160 |
> |
A[2] *= -1.; |
| 161 |
|
} |
| 162 |
|
|
| 163 |
|
for (k=0; k < nsurf; k++) { |
| 164 |
|
if (rcurv < 0) { |
| 165 |
< |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
| 165 |
> |
chi=(PI/180.)*((180.-mydelta)/2.) - (gamma+(k*(PI/180.)*mydelta)); |
| 166 |
|
} |
| 167 |
|
if (rcurv > 0) { |
| 168 |
< |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
| 169 |
< |
((180.-DELTA)/2.); |
| 168 |
> |
chi=(PI-(gamma+theta)+(k*(PI/180.)*mydelta))-(PI/180.)* |
| 169 |
> |
((180.-mydelta)/2.); |
| 170 |
|
} |
| 171 |
|
makeflat(width, delem, chi); |
| 172 |
|
if (rcurv < 0.) { |
| 173 |
< |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
| 173 |
> |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*mydelta))-A[0]; |
| 174 |
|
X[1]=0.; |
| 175 |
< |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
| 175 |
> |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*mydelta))-A[2]; |
| 176 |
|
} |
| 177 |
|
if (rcurv > 0.) { |
| 178 |
< |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
| 178 |
> |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*mydelta))-A[0]; |
| 179 |
|
X[1]=0.; |
| 180 |
< |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
| 180 |
> |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*mydelta))-A[2]; |
| 181 |
|
} |
| 182 |
|
|
| 183 |
|
for (i=0; i < 4; i++) { |
| 190 |
|
|
| 191 |
|
/* FLAT BLINDS CALCULATION */ |
| 192 |
|
|
| 193 |
< |
if (rcurv == 0.) { |
| 193 |
> |
else { |
| 194 |
|
|
| 195 |
|
nsurf=1; |
| 196 |
|
makeflat(width,depth,angle*(PI/180.)); |