30 |
|
int nslats, nsurf; |
31 |
|
|
32 |
|
|
33 |
+ |
static void makeflat(double w, double d, double a); |
34 |
+ |
static void printslat(int n); |
35 |
+ |
static void printhead(register int ac, register char **av); |
36 |
|
|
37 |
< |
makeflat(w,d,a) |
38 |
< |
double w, d, a; |
37 |
> |
|
38 |
> |
void |
39 |
> |
makeflat( |
40 |
> |
double w, |
41 |
> |
double d, |
42 |
> |
double a |
43 |
> |
) |
44 |
|
{ |
45 |
|
double h; |
46 |
|
|
62 |
|
} |
63 |
|
|
64 |
|
|
65 |
< |
printslat(n) /* print slat # n */ |
66 |
< |
int n; |
65 |
> |
void |
66 |
> |
printslat( /* print slat # n */ |
67 |
> |
int n |
68 |
> |
) |
69 |
|
{ |
70 |
|
register int i, k; |
71 |
|
|
81 |
|
} |
82 |
|
|
83 |
|
|
84 |
< |
printhead(ac, av) /* print command header */ |
85 |
< |
register int ac; |
86 |
< |
register char **av; |
84 |
> |
void |
85 |
> |
printhead( /* print command header */ |
86 |
> |
register int ac, |
87 |
> |
register char **av |
88 |
> |
) |
89 |
|
{ |
90 |
|
putchar('#'); |
91 |
|
while (ac--) { |
96 |
|
} |
97 |
|
|
98 |
|
|
99 |
< |
main(argc, argv) |
100 |
< |
int argc; |
101 |
< |
char *argv[]; |
99 |
> |
int |
100 |
> |
main( |
101 |
> |
int argc, |
102 |
> |
char *argv[] |
103 |
> |
) |
104 |
|
{ |
105 |
< |
double width, delem, depth, rcurv = 0.0, angle; |
106 |
< |
double beta, gamma, theta, chi; |
107 |
< |
int i, j, k, l; |
105 |
> |
double width, delem, depth, rcurv = 0.0, mydelta, angle; |
106 |
> |
double beta, gamma, theta, chi = 0; |
107 |
> |
int i, j, k, l; |
108 |
|
|
109 |
|
|
110 |
< |
if (argc != 8 && argc != 10) |
111 |
< |
goto userr; |
112 |
< |
material = argv[1]; |
113 |
< |
name = argv[2]; |
114 |
< |
depth = atof(argv[3]); |
115 |
< |
width = atof(argv[4]); |
116 |
< |
height = atof(argv[5]); |
117 |
< |
nslats = atoi(argv[6]); |
118 |
< |
angle = atof(argv[7]); |
119 |
< |
if (argc == 10) |
120 |
< |
if (!strcmp(argv[8], "-r")) |
121 |
< |
rcurv = atof(argv[9]); |
122 |
< |
else if (!strcmp(argv[8], "+r")) |
123 |
< |
rcurv = -atof(argv[9]); |
124 |
< |
else |
125 |
< |
goto userr; |
110 |
> |
if (argc != 8 && argc != 10) |
111 |
> |
goto userr; |
112 |
> |
material = argv[1]; |
113 |
> |
name = argv[2]; |
114 |
> |
depth = atof(argv[3]); |
115 |
> |
width = atof(argv[4]); |
116 |
> |
height = atof(argv[5]); |
117 |
> |
nslats = atoi(argv[6]); |
118 |
> |
angle = atof(argv[7]); |
119 |
> |
if (argc == 10) { |
120 |
> |
if (!strcmp(argv[8], "-r")) |
121 |
> |
rcurv = atof(argv[9]); |
122 |
> |
else if (!strcmp(argv[8], "+r")) |
123 |
> |
rcurv = -atof(argv[9]); |
124 |
> |
else |
125 |
> |
goto userr; |
126 |
> |
} |
127 |
> |
/* CURVED BLIND CALCULATION */ |
128 |
|
|
129 |
< |
/* CURVED BLIND CALCULATION */ |
129 |
> |
if (rcurv != 0.) { |
130 |
|
|
115 |
– |
if (rcurv != 0) { |
116 |
– |
|
131 |
|
/* BLINDS SUSTAINED ANGLE */ |
132 |
|
|
133 |
< |
theta = 2*asin(depth/(2*fabs(rcurv))); |
133 |
> |
theta = 2.*asin(depth/(2.*fabs(rcurv))); |
134 |
|
|
135 |
< |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
135 |
> |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
136 |
|
|
137 |
< |
nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1; |
137 |
> |
nsurf = (int)(theta / ((PI/180.)*DELTA) + 0.99999); |
138 |
> |
|
139 |
> |
mydelta = (180./PI) * theta / nsurf; |
140 |
|
|
141 |
|
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
142 |
|
|
143 |
< |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
143 |
> |
delem = 2.*fabs(rcurv)*sin((PI/180.)*(mydelta/2.)); |
144 |
|
|
145 |
|
beta = (PI-theta)/2.; |
146 |
|
gamma = beta -((PI/180.)*angle); |
148 |
|
|
149 |
|
|
150 |
|
if (rcurv < 0) { |
151 |
< |
A[0]=fabs(rcurv)*cos(gamma); |
152 |
< |
A[0] *= -1; |
153 |
< |
A[1]=0.; |
154 |
< |
A[2]=fabs(rcurv)*sin(gamma); |
151 |
> |
A[0]=fabs(rcurv)*cos(gamma); |
152 |
> |
A[0] *= -1.; |
153 |
> |
A[1]=0.; |
154 |
> |
A[2]=fabs(rcurv)*sin(gamma); |
155 |
|
} |
156 |
|
if (rcurv > 0) { |
157 |
< |
A[0]=fabs(rcurv)*cos(gamma+theta); |
158 |
< |
A[1]=0.; |
159 |
< |
A[2]=fabs(rcurv)*sin(gamma+theta); |
160 |
< |
A[2] *= -1; |
157 |
> |
A[0]=fabs(rcurv)*cos(gamma+theta); |
158 |
> |
A[1]=0.; |
159 |
> |
A[2]=fabs(rcurv)*sin(gamma+theta); |
160 |
> |
A[2] *= -1.; |
161 |
|
} |
162 |
|
|
163 |
|
for (k=0; k < nsurf; k++) { |
164 |
< |
if (rcurv < 0) { |
165 |
< |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
166 |
< |
} |
167 |
< |
if (rcurv > 0) { |
168 |
< |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
169 |
< |
((180.-DELTA)/2.); |
170 |
< |
} |
171 |
< |
makeflat(width, delem, chi); |
172 |
< |
if (rcurv < 0.) { |
173 |
< |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
164 |
> |
if (rcurv < 0) { |
165 |
> |
chi=(PI/180.)*((180.-mydelta)/2.) - (gamma+(k*(PI/180.)*mydelta)); |
166 |
> |
} |
167 |
> |
if (rcurv > 0) { |
168 |
> |
chi=(PI-(gamma+theta)+(k*(PI/180.)*mydelta))-(PI/180.)* |
169 |
> |
((180.-mydelta)/2.); |
170 |
> |
} |
171 |
> |
makeflat(width, delem, chi); |
172 |
> |
if (rcurv < 0.) { |
173 |
> |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*mydelta))-A[0]; |
174 |
|
X[1]=0.; |
175 |
< |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
176 |
< |
} |
177 |
< |
if (rcurv > 0.) { |
178 |
< |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
175 |
> |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*mydelta))-A[2]; |
176 |
> |
} |
177 |
> |
if (rcurv > 0.) { |
178 |
> |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*mydelta))-A[0]; |
179 |
|
X[1]=0.; |
180 |
< |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
181 |
< |
} |
180 |
> |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*mydelta))-A[2]; |
181 |
> |
} |
182 |
|
|
183 |
< |
for (i=0; i < 4; i++) { |
184 |
< |
for (j=0; j < 3; j++) { |
185 |
< |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
186 |
< |
} |
187 |
< |
} |
172 |
< |
} |
183 |
> |
for (i=0; i < 4; i++) { |
184 |
> |
for (j=0; j < 3; j++) { |
185 |
> |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
186 |
> |
} |
187 |
> |
} |
188 |
|
} |
189 |
+ |
} |
190 |
|
|
191 |
< |
/* FLAT BLINDS CALCULATION */ |
176 |
< |
|
177 |
< |
if (rcurv == 0.) { |
191 |
> |
/* FLAT BLINDS CALCULATION */ |
192 |
|
|
193 |
< |
nsurf=1; |
194 |
< |
makeflat(width,depth,angle*(PI/180.)); |
195 |
< |
for (i=0; i < 4; i++) { |
196 |
< |
for (j=0; j < 3; j++) { |
197 |
< |
baseblind[i][j][0] = baseflat[i][j]; |
198 |
< |
} |
199 |
< |
} |
193 |
> |
else { |
194 |
> |
|
195 |
> |
nsurf=1; |
196 |
> |
makeflat(width,depth,angle*(PI/180.)); |
197 |
> |
for (i=0; i < 4; i++) { |
198 |
> |
for (j=0; j < 3; j++) { |
199 |
> |
baseblind[i][j][0] = baseflat[i][j]; |
200 |
> |
} |
201 |
|
} |
202 |
< |
|
188 |
< |
printhead(argc, argv); |
202 |
> |
} |
203 |
|
|
204 |
+ |
printhead(argc, argv); |
205 |
|
|
191 |
– |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
206 |
|
|
207 |
< |
for (l = 1; l <= nslats; l++) |
208 |
< |
printslat(l); |
209 |
< |
exit(0); |
207 |
> |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
208 |
> |
|
209 |
> |
for (l = 1; l <= nslats; l++) |
210 |
> |
printslat(l); |
211 |
> |
exit(0); |
212 |
|
userr: |
213 |
< |
fprintf(stderr, |
214 |
< |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
215 |
< |
argv[0]); |
216 |
< |
exit(1); |
213 |
> |
fprintf(stderr, |
214 |
> |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
215 |
> |
argv[0]); |
216 |
> |
exit(1); |
217 |
|
} |
218 |
|
|
219 |
|
|