1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: genblinds.c,v 2.9 2003/02/22 02:07:23 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* genblind2.c - make some curved or flat venetian blinds. |
6 |
* |
7 |
* Jean-Louis Scartezzini and Greg Ward |
8 |
* |
9 |
* parameters: |
10 |
* depth - depth of blinds |
11 |
* width - width of slats |
12 |
* height - height of blinds |
13 |
* nslats - number of slats |
14 |
* angle - blind incidence angle ( in degrees ) |
15 |
* rcurv - curvature radius of slats (up:>0;down:<0;flat:=0) |
16 |
*/ |
17 |
|
18 |
#include <stdio.h> |
19 |
#include <stdlib.h> |
20 |
#include <math.h> |
21 |
#include <string.h> |
22 |
|
23 |
#define PI 3.14159265358979323846 |
24 |
#define DELTA 10. /* MINIMAL SUSTAINED ANGLE IN DEGREES */ |
25 |
|
26 |
double baseflat[4][3], baseblind[4][3][180]; |
27 |
double A[3],X[3]; |
28 |
char *material, *name; |
29 |
double height; |
30 |
int nslats, nsurf; |
31 |
|
32 |
|
33 |
|
34 |
makeflat(w,d,a) |
35 |
double w, d, a; |
36 |
{ |
37 |
double h; |
38 |
|
39 |
h = d*sin(a); |
40 |
d *= cos(a); |
41 |
baseflat[0][0] = 0.0; |
42 |
baseflat[0][1] = 0.0; |
43 |
baseflat[0][2] = 0.0; |
44 |
baseflat[1][0] = 0.0; |
45 |
baseflat[1][1] = w; |
46 |
baseflat[1][2] = 0.0; |
47 |
baseflat[2][0] = d; |
48 |
baseflat[2][1] = w; |
49 |
baseflat[2][2] = h; |
50 |
baseflat[3][0] = d; |
51 |
baseflat[3][1] = 0.0; |
52 |
baseflat[3][2] = h; |
53 |
|
54 |
} |
55 |
|
56 |
|
57 |
printslat(n) /* print slat # n */ |
58 |
int n; |
59 |
{ |
60 |
register int i, k; |
61 |
|
62 |
for (k=0; k < nsurf; k++) { |
63 |
printf("\n%s polygon %s.%d.%d\n", material, name, n, k); |
64 |
printf("0\n0\n12\n"); |
65 |
for (i = 0; i < 4; i++) |
66 |
printf("\t%18.12g\t%18.12g\t%18.12g\n", |
67 |
baseblind[i][0][k], |
68 |
baseblind[i][1][k], |
69 |
baseblind[i][2][k] + height*(n-.5)/nslats); |
70 |
} |
71 |
} |
72 |
|
73 |
|
74 |
printhead(ac, av) /* print command header */ |
75 |
register int ac; |
76 |
register char **av; |
77 |
{ |
78 |
putchar('#'); |
79 |
while (ac--) { |
80 |
putchar(' '); |
81 |
fputs(*av++, stdout); |
82 |
} |
83 |
putchar('\n'); |
84 |
} |
85 |
|
86 |
|
87 |
main(argc, argv) |
88 |
int argc; |
89 |
char *argv[]; |
90 |
{ |
91 |
double width, delem, depth, rcurv = 0.0, angle; |
92 |
double beta, gamma, theta, chi; |
93 |
int i, j, k, l; |
94 |
|
95 |
|
96 |
if (argc != 8 && argc != 10) |
97 |
goto userr; |
98 |
material = argv[1]; |
99 |
name = argv[2]; |
100 |
depth = atof(argv[3]); |
101 |
width = atof(argv[4]); |
102 |
height = atof(argv[5]); |
103 |
nslats = atoi(argv[6]); |
104 |
angle = atof(argv[7]); |
105 |
if (argc == 10) |
106 |
if (!strcmp(argv[8], "-r")) |
107 |
rcurv = atof(argv[9]); |
108 |
else if (!strcmp(argv[8], "+r")) |
109 |
rcurv = -atof(argv[9]); |
110 |
else |
111 |
goto userr; |
112 |
|
113 |
/* CURVED BLIND CALCULATION */ |
114 |
|
115 |
if (rcurv != 0) { |
116 |
|
117 |
/* BLINDS SUSTAINED ANGLE */ |
118 |
|
119 |
theta = 2*asin(depth/(2*fabs(rcurv))); |
120 |
|
121 |
/* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ |
122 |
|
123 |
nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1; |
124 |
|
125 |
/* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ |
126 |
|
127 |
delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); |
128 |
|
129 |
beta = (PI-theta)/2.; |
130 |
gamma = beta -((PI/180.)*angle); |
131 |
|
132 |
|
133 |
|
134 |
if (rcurv < 0) { |
135 |
A[0]=fabs(rcurv)*cos(gamma); |
136 |
A[0] *= -1; |
137 |
A[1]=0.; |
138 |
A[2]=fabs(rcurv)*sin(gamma); |
139 |
} |
140 |
if (rcurv > 0) { |
141 |
A[0]=fabs(rcurv)*cos(gamma+theta); |
142 |
A[1]=0.; |
143 |
A[2]=fabs(rcurv)*sin(gamma+theta); |
144 |
A[2] *= -1; |
145 |
} |
146 |
|
147 |
for (k=0; k < nsurf; k++) { |
148 |
if (rcurv < 0) { |
149 |
chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); |
150 |
} |
151 |
if (rcurv > 0) { |
152 |
chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)* |
153 |
((180.-DELTA)/2.); |
154 |
} |
155 |
makeflat(width, delem, chi); |
156 |
if (rcurv < 0.) { |
157 |
X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; |
158 |
X[1]=0.; |
159 |
X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; |
160 |
} |
161 |
if (rcurv > 0.) { |
162 |
X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; |
163 |
X[1]=0.; |
164 |
X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; |
165 |
} |
166 |
|
167 |
for (i=0; i < 4; i++) { |
168 |
for (j=0; j < 3; j++) { |
169 |
baseblind[i][j][k] = baseflat[i][j]+X[j]; |
170 |
} |
171 |
} |
172 |
} |
173 |
} |
174 |
|
175 |
/* FLAT BLINDS CALCULATION */ |
176 |
|
177 |
if (rcurv == 0.) { |
178 |
|
179 |
nsurf=1; |
180 |
makeflat(width,depth,angle*(PI/180.)); |
181 |
for (i=0; i < 4; i++) { |
182 |
for (j=0; j < 3; j++) { |
183 |
baseblind[i][j][0] = baseflat[i][j]; |
184 |
} |
185 |
} |
186 |
} |
187 |
|
188 |
printhead(argc, argv); |
189 |
|
190 |
|
191 |
/* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ |
192 |
|
193 |
for (l = 1; l <= nslats; l++) |
194 |
printslat(l); |
195 |
exit(0); |
196 |
userr: |
197 |
fprintf(stderr, |
198 |
"Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", |
199 |
argv[0]); |
200 |
exit(1); |
201 |
} |
202 |
|
203 |
|
204 |
|