| 1 | 
#ifndef lint | 
| 2 | 
static const char       RCSid[] = "$Id: genblinds.c,v 2.10 2003/06/08 12:03:09 schorsch Exp $"; | 
| 3 | 
#endif | 
| 4 | 
/* | 
| 5 | 
 *  genblind2.c - make some curved or flat venetian blinds. | 
| 6 | 
 * | 
| 7 | 
 *      Jean-Louis Scartezzini and Greg Ward | 
| 8 | 
 *  | 
| 9 | 
 *  parameters:  | 
| 10 | 
 *              depth  -  depth of blinds | 
| 11 | 
 *              width  -  width of slats | 
| 12 | 
 *              height -  height of blinds | 
| 13 | 
 *              nslats -  number of slats | 
| 14 | 
 *              angle  -  blind incidence angle ( in degrees ) | 
| 15 | 
 *              rcurv  -  curvature radius of slats (up:>0;down:<0;flat:=0) | 
| 16 | 
 */ | 
| 17 | 
 | 
| 18 | 
#include  <stdio.h> | 
| 19 | 
#include <stdlib.h> | 
| 20 | 
#include  <math.h> | 
| 21 | 
#include  <string.h> | 
| 22 | 
 | 
| 23 | 
#define  PI             3.14159265358979323846 | 
| 24 | 
#define  DELTA          10.  /*  MINIMAL SUSTAINED ANGLE IN DEGREES */ | 
| 25 | 
 | 
| 26 | 
double  baseflat[4][3], baseblind[4][3][180]; | 
| 27 | 
double  A[3],X[3]; | 
| 28 | 
char  *material, *name; | 
| 29 | 
double  height; | 
| 30 | 
int  nslats,  nsurf; | 
| 31 | 
 | 
| 32 | 
 | 
| 33 | 
static void makeflat(double w, double d, double a); | 
| 34 | 
static void printslat(int n); | 
| 35 | 
static void printhead(register int  ac, register char  **av); | 
| 36 | 
 | 
| 37 | 
 | 
| 38 | 
void | 
| 39 | 
makeflat( | 
| 40 | 
        double w, | 
| 41 | 
        double d, | 
| 42 | 
        double a | 
| 43 | 
) | 
| 44 | 
{ | 
| 45 | 
        double  h; | 
| 46 | 
 | 
| 47 | 
        h = d*sin(a); | 
| 48 | 
        d *= cos(a); | 
| 49 | 
        baseflat[0][0] = 0.0; | 
| 50 | 
        baseflat[0][1] = 0.0; | 
| 51 | 
        baseflat[0][2] = 0.0; | 
| 52 | 
        baseflat[1][0] = 0.0; | 
| 53 | 
        baseflat[1][1] = w; | 
| 54 | 
        baseflat[1][2] = 0.0; | 
| 55 | 
        baseflat[2][0] = d; | 
| 56 | 
        baseflat[2][1] = w; | 
| 57 | 
        baseflat[2][2] = h; | 
| 58 | 
        baseflat[3][0] = d; | 
| 59 | 
        baseflat[3][1] = 0.0; | 
| 60 | 
        baseflat[3][2] = h; | 
| 61 | 
 | 
| 62 | 
} | 
| 63 | 
 | 
| 64 | 
 | 
| 65 | 
void | 
| 66 | 
printslat(                      /* print slat # n */ | 
| 67 | 
        int  n | 
| 68 | 
) | 
| 69 | 
{ | 
| 70 | 
        register int  i, k; | 
| 71 | 
 | 
| 72 | 
        for (k=0; k < nsurf; k++)  { | 
| 73 | 
                printf("\n%s polygon %s.%d.%d\n", material, name, n, k); | 
| 74 | 
                printf("0\n0\n12\n"); | 
| 75 | 
                for (i = 0; i < 4; i++) | 
| 76 | 
                        printf("\t%18.12g\t%18.12g\t%18.12g\n", | 
| 77 | 
                                baseblind[i][0][k], | 
| 78 | 
                                baseblind[i][1][k], | 
| 79 | 
                                baseblind[i][2][k] + height*(n-.5)/nslats); | 
| 80 | 
        }                | 
| 81 | 
} | 
| 82 | 
 | 
| 83 | 
 | 
| 84 | 
void | 
| 85 | 
printhead(              /* print command header */ | 
| 86 | 
        register int  ac, | 
| 87 | 
        register char  **av | 
| 88 | 
) | 
| 89 | 
{ | 
| 90 | 
        putchar('#'); | 
| 91 | 
        while (ac--) { | 
| 92 | 
                putchar(' '); | 
| 93 | 
                fputs(*av++, stdout); | 
| 94 | 
        } | 
| 95 | 
        putchar('\n'); | 
| 96 | 
} | 
| 97 | 
 | 
| 98 | 
 | 
| 99 | 
int | 
| 100 | 
main( | 
| 101 | 
        int  argc, | 
| 102 | 
        char  *argv[] | 
| 103 | 
) | 
| 104 | 
{ | 
| 105 | 
    double  width, delem, depth, rcurv = 0.0, angle; | 
| 106 | 
    double  beta, gamma, theta, chi = 0; | 
| 107 | 
    int     i, j, k, l; | 
| 108 | 
 | 
| 109 | 
 | 
| 110 | 
    if (argc != 8 && argc != 10) | 
| 111 | 
        goto userr; | 
| 112 | 
    material = argv[1]; | 
| 113 | 
    name = argv[2]; | 
| 114 | 
    depth = atof(argv[3]); | 
| 115 | 
    width = atof(argv[4]); | 
| 116 | 
    height = atof(argv[5]); | 
| 117 | 
    nslats  = atoi(argv[6]); | 
| 118 | 
    angle = atof(argv[7]); | 
| 119 | 
    if (argc == 10) | 
| 120 | 
        if (!strcmp(argv[8], "-r")) | 
| 121 | 
            rcurv = atof(argv[9]); | 
| 122 | 
        else if (!strcmp(argv[8], "+r")) | 
| 123 | 
            rcurv = -atof(argv[9]); | 
| 124 | 
        else | 
| 125 | 
            goto userr; | 
| 126 | 
 | 
| 127 | 
    /* CURVED BLIND CALCULATION */ | 
| 128 | 
 | 
| 129 | 
    if (rcurv != 0) { | 
| 130 | 
 | 
| 131 | 
        /* BLINDS SUSTAINED ANGLE */ | 
| 132 | 
 | 
| 133 | 
        theta = 2*asin(depth/(2*fabs(rcurv))); | 
| 134 | 
 | 
| 135 | 
        /* HOW MANY ELEMENTARY SURFACES SHOULD BE CALCULATED ? */ | 
| 136 | 
 | 
| 137 | 
        nsurf = (int)(theta / ((PI/180.)*DELTA)) + 1; | 
| 138 | 
 | 
| 139 | 
        /* WHAT IS THE DEPTH OF THE ELEMENTARY SURFACES ? */ | 
| 140 | 
 | 
| 141 | 
        delem = 2*fabs(rcurv)*sin((PI/180.)*(DELTA/2.)); | 
| 142 | 
 | 
| 143 | 
        beta = (PI-theta)/2.; | 
| 144 | 
        gamma = beta -((PI/180.)*angle); | 
| 145 | 
 | 
| 146 | 
 | 
| 147 | 
 | 
| 148 | 
        if (rcurv < 0) { | 
| 149 | 
            A[0]=fabs(rcurv)*cos(gamma); | 
| 150 | 
            A[0] *= -1; | 
| 151 | 
            A[1]=0.; | 
| 152 | 
            A[2]=fabs(rcurv)*sin(gamma); | 
| 153 | 
        } | 
| 154 | 
        if (rcurv > 0) { | 
| 155 | 
            A[0]=fabs(rcurv)*cos(gamma+theta); | 
| 156 | 
            A[1]=0.; | 
| 157 | 
            A[2]=fabs(rcurv)*sin(gamma+theta); | 
| 158 | 
            A[2] *= -1; | 
| 159 | 
        } | 
| 160 | 
 | 
| 161 | 
        for (k=0; k < nsurf; k++) { | 
| 162 | 
            if (rcurv < 0) { | 
| 163 | 
                chi=(PI/180.)*((180.-DELTA)/2.) - (gamma+(k*(PI/180.)*DELTA)); | 
| 164 | 
            } | 
| 165 | 
            if (rcurv > 0) { | 
| 166 | 
                chi=(PI-(gamma+theta)+(k*(PI/180.)*DELTA))-(PI/180.)*    | 
| 167 | 
                    ((180.-DELTA)/2.); | 
| 168 | 
            } | 
| 169 | 
            makeflat(width, delem, chi); | 
| 170 | 
            if (rcurv < 0.) { | 
| 171 | 
                X[0]=(-fabs(rcurv))*cos(gamma+(k*(PI/180.)*DELTA))-A[0]; | 
| 172 | 
                X[1]=0.; | 
| 173 | 
                X[2]=fabs(rcurv)*sin(gamma+(k*(PI/180.)*DELTA))-A[2]; | 
| 174 | 
            } | 
| 175 | 
            if (rcurv > 0.) { | 
| 176 | 
                X[0]=fabs(rcurv)*cos(gamma+theta-(k*(PI/180.)*DELTA))-A[0]; | 
| 177 | 
                X[1]=0.; | 
| 178 | 
                X[2]=(-fabs(rcurv))*sin(gamma+theta-(k*(PI/180.)*DELTA))-A[2]; | 
| 179 | 
            } | 
| 180 | 
 | 
| 181 | 
            for (i=0; i < 4; i++)  { | 
| 182 | 
                for (j=0; j < 3; j++) { | 
| 183 | 
                    baseblind[i][j][k] = baseflat[i][j]+X[j]; | 
| 184 | 
                }  | 
| 185 | 
            }    | 
| 186 | 
        } | 
| 187 | 
    } | 
| 188 | 
 | 
| 189 | 
    /* FLAT BLINDS CALCULATION */ | 
| 190 | 
 | 
| 191 | 
    if (rcurv == 0.) { | 
| 192 | 
 | 
| 193 | 
        nsurf=1; | 
| 194 | 
        makeflat(width,depth,angle*(PI/180.)); | 
| 195 | 
        for (i=0; i < 4; i++) { | 
| 196 | 
            for (j=0; j < 3; j++) { | 
| 197 | 
                baseblind[i][j][0] = baseflat[i][j]; | 
| 198 | 
            } | 
| 199 | 
        } | 
| 200 | 
    } | 
| 201 | 
 | 
| 202 | 
    printhead(argc, argv); | 
| 203 | 
 | 
| 204 | 
 | 
| 205 | 
    /* REPEAT THE BASIC CURVED OR FLAT SLAT TO GET THE OVERALL BLIND */ | 
| 206 | 
 | 
| 207 | 
    for (l = 1; l <= nslats; l++) | 
| 208 | 
        printslat(l); | 
| 209 | 
    exit(0); | 
| 210 | 
userr: | 
| 211 | 
    fprintf(stderr, | 
| 212 | 
            "Usage: %s mat name depth width height nslats angle [-r|+r rcurv]\n", | 
| 213 | 
            argv[0]); | 
| 214 | 
    exit(1); | 
| 215 | 
} | 
| 216 | 
 | 
| 217 | 
 | 
| 218 | 
 |