ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/pabopto2xml.c
Revision: 2.3
Committed: Fri Aug 24 22:08:50 2012 UTC (11 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.2: +86 -76 lines
Log Message:
Added optimization for better fitting results

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: pabopto2xml.c,v 2.2 2012/08/24 20:55:28 greg Exp $";
3 #endif
4 /*
5 * Convert PAB-Opto measurements to XML format using tensor tree representation
6 * Employs Bonneel et al. Earth Mover's Distance interpolant.
7 *
8 * G.Ward
9 */
10
11 #define _USE_MATH_DEFINES
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <ctype.h>
16 #include <math.h>
17 #include "bsdf.h"
18
19 #ifndef GRIDRES
20 #define GRIDRES 200 /* max. grid resolution per side */
21 #endif
22
23 #define RSCA 2.7 /* radius scaling factor (empirical) */
24
25 #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
26 #define ANG2R(r) (int)((r)*((1<<16)/M_PI))
27
28 typedef struct {
29 float vsum; /* BSDF sum */
30 unsigned short nval; /* number of values in sum */
31 unsigned short crad; /* radius (coded angle) */
32 } GRIDVAL; /* grid value */
33
34 typedef struct {
35 float bsdf; /* lobe value at peak */
36 unsigned short crad; /* radius (coded angle) */
37 unsigned char gx, gy; /* grid position */
38 } RBFVAL; /* radial basis function value */
39
40 typedef struct s_rbflist {
41 struct s_rbflist *next; /* next in our RBF list */
42 FVECT invec; /* incident vector direction */
43 int nrbf; /* number of RBFs */
44 RBFVAL rbfa[1]; /* RBF array (extends struct) */
45 } RBFLIST; /* RBF representation of BSDF @ 1 incidence */
46
47 /* our loaded grid for this incident angle */
48 static double theta_in_deg, phi_in_deg;
49 static GRIDVAL bsdf_grid[GRIDRES][GRIDRES];
50
51 /* processed incident BSDF measurements */
52 static RBFLIST *bsdf_list = NULL;
53
54 /* Compute outgoing vector from grid position */
55 static void
56 vec_from_pos(FVECT vec, int xpos, int ypos)
57 {
58 double uv[2];
59 double r2;
60
61 SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5));
62 /* uniform hemispherical projection */
63 r2 = uv[0]*uv[0] + uv[1]*uv[1];
64 vec[0] = vec[1] = sqrt(2. - r2);
65 vec[0] *= uv[0];
66 vec[1] *= uv[1];
67 vec[2] = 1. - r2;
68 }
69
70 /* Compute grid position from normalized outgoing vector */
71 static void
72 pos_from_vec(int pos[2], const FVECT vec)
73 {
74 double sq[2]; /* uniform hemispherical projection */
75 double norm = 1./sqrt(1. + vec[2]);
76
77 SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
78
79 pos[0] = (int)(sq[0]*GRIDRES);
80 pos[1] = (int)(sq[1]*GRIDRES);
81 }
82
83 /* Evaluate RBF for BSDF at the given normalized outgoing direction */
84 static double
85 eval_rbfrep(const RBFLIST *rp, const FVECT outvec)
86 {
87 double res = .0;
88 const RBFVAL *rbfp;
89 FVECT odir;
90 double sig2;
91 int n;
92
93 rbfp = rp->rbfa;
94 for (n = rp->nrbf; n--; rbfp++) {
95 vec_from_pos(odir, rbfp->gx, rbfp->gy);
96 sig2 = R2ANG(rbfp->crad);
97 sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
98 if (sig2 > -19.)
99 res += rbfp->bsdf * exp(sig2);
100 }
101 return(res);
102 }
103
104 /* Count up filled nodes and build RBF representation from current grid */
105 static RBFLIST *
106 make_rbfrep(void)
107 {
108 int niter = 4;
109 int nn;
110 RBFLIST *newnode;
111 int i, j;
112
113 nn = 0; /* count selected bins */
114 for (i = 0; i < GRIDRES; i++)
115 for (j = 0; j < GRIDRES; j++)
116 nn += (bsdf_grid[i][j].nval > 0);
117 /* allocate RBF array */
118 newnode = (RBFLIST *)malloc(sizeof(RBFLIST) + sizeof(RBFVAL)*(nn-1));
119 if (newnode == NULL) {
120 fputs("Out of memory in make_rbfrep\n", stderr);
121 exit(1);
122 }
123 newnode->next = NULL;
124 newnode->invec[2] = sin(M_PI/180.*theta_in_deg);
125 newnode->invec[0] = cos(M_PI/180.*phi_in_deg)*newnode->invec[2];
126 newnode->invec[1] = sin(M_PI/180.*phi_in_deg)*newnode->invec[2];
127 newnode->invec[2] = sqrt(1. - newnode->invec[2]*newnode->invec[2]);
128 newnode->nrbf = nn;
129 nn = 0; /* fill RBF array */
130 for (i = 0; i < GRIDRES; i++)
131 for (j = 0; j < GRIDRES; j++)
132 if (bsdf_grid[i][j].nval) {
133 newnode->rbfa[nn].bsdf =
134 bsdf_grid[i][j].vsum /=
135 (double)bsdf_grid[i][j].nval;
136 bsdf_grid[i][j].nval = 1;
137 newnode->rbfa[nn].crad = RSCA*bsdf_grid[i][j].crad + .5;
138 newnode->rbfa[nn].gx = i;
139 newnode->rbfa[nn].gy = j;
140 ++nn;
141 }
142 /* iterate for better convergence */
143 while (niter--) {
144 nn = 0;
145 for (i = 0; i < GRIDRES; i++)
146 for (j = 0; j < GRIDRES; j++)
147 if (bsdf_grid[i][j].nval) {
148 FVECT odir;
149 vec_from_pos(odir, i, j);
150 newnode->rbfa[nn++].bsdf *=
151 bsdf_grid[i][j].vsum /
152 eval_rbfrep(newnode, odir);
153 }
154 }
155 newnode->next = bsdf_list;
156 return(bsdf_list = newnode);
157 }
158
159 /* Load a set of measurements corresponding to a particular incident angle */
160 static int
161 load_bsdf_meas(const char *fname)
162 {
163 FILE *fp = fopen(fname, "r");
164 int inp_is_DSF = -1;
165 double theta_out, phi_out, val;
166 char buf[2048];
167 int n, c;
168
169 if (fp == NULL) {
170 fputs(fname, stderr);
171 fputs(": cannot open\n", stderr);
172 return(0);
173 }
174 memset(bsdf_grid, 0, sizeof(bsdf_grid));
175 /* read header information */
176 while ((c = getc(fp)) == '#' || c == EOF) {
177 if (fgets(buf, sizeof(buf), fp) == NULL) {
178 fputs(fname, stderr);
179 fputs(": unexpected EOF\n", stderr);
180 fclose(fp);
181 return(0);
182 }
183 if (!strcmp(buf, "format: theta phi DSF\n")) {
184 inp_is_DSF = 1;
185 continue;
186 }
187 if (!strcmp(buf, "format: theta phi BSDF\n")) {
188 inp_is_DSF = 0;
189 continue;
190 }
191 if (sscanf(buf, "intheta %lf", &theta_in_deg) == 1)
192 continue;
193 if (sscanf(buf, "inphi %lf", &phi_in_deg) == 1)
194 continue;
195 if (sscanf(buf, "incident_angle %lf %lf",
196 &theta_in_deg, &phi_in_deg) == 2)
197 continue;
198 }
199 if (inp_is_DSF < 0) {
200 fputs(fname, stderr);
201 fputs(": unknown format\n", stderr);
202 fclose(fp);
203 return(0);
204 }
205 ungetc(c, fp); /* read actual data */
206 while (fscanf(fp, "%lf %lf %lf\n", &theta_out, &phi_out, &val) == 3) {
207 FVECT ovec;
208 int pos[2];
209
210 ovec[2] = sin(M_PI/180.*theta_out);
211 ovec[0] = cos(M_PI/180.*phi_out) * ovec[2];
212 ovec[1] = sin(M_PI/180.*phi_out) * ovec[2];
213 ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
214
215 if (inp_is_DSF)
216 val /= ovec[2]; /* convert from DSF to BSDF */
217
218 pos_from_vec(pos, ovec);
219
220 bsdf_grid[pos[0]][pos[1]].vsum += val;
221 bsdf_grid[pos[0]][pos[1]].nval++;
222 }
223 n = 0;
224 while ((c = getc(fp)) != EOF)
225 n += !isspace(c);
226 if (n)
227 fprintf(stderr,
228 "%s: warning: %d unexpected characters past EOD\n",
229 fname, n);
230 fclose(fp);
231 return(1);
232 }
233
234 /* Compute radii for non-empty bins */
235 /* (distance to furthest empty bin for which non-empty bin is the closest) */
236 static void
237 compute_radii(void)
238 {
239 unsigned short fill_grid[GRIDRES][GRIDRES];
240 FVECT ovec0, ovec1;
241 double ang2, lastang2;
242 int r2, lastr2;
243 int r, i, j, jn, ii, jj, inear, jnear;
244
245 r = GRIDRES/2; /* proceed in zig-zag */
246 for (i = 0; i < GRIDRES; i++)
247 for (jn = 0; jn < GRIDRES; jn++) {
248 j = (i&1) ? jn : GRIDRES-1-jn;
249 if (bsdf_grid[i][j].nval) /* find empty grid pos. */
250 continue;
251 vec_from_pos(ovec0, i, j);
252 inear = jnear = -1; /* find nearest non-empty */
253 lastang2 = M_PI*M_PI;
254 for (ii = i-r; ii <= i+r; ii++) {
255 if (ii < 0) continue;
256 if (ii >= GRIDRES) break;
257 for (jj = j-r; jj <= j+r; jj++) {
258 if (jj < 0) continue;
259 if (jj >= GRIDRES) break;
260 if (!bsdf_grid[ii][jj].nval)
261 continue;
262 vec_from_pos(ovec1, ii, jj);
263 ang2 = 2. - 2.*DOT(ovec0,ovec1);
264 if (ang2 >= lastang2)
265 continue;
266 lastang2 = ang2;
267 inear = ii; jnear = jj;
268 }
269 }
270 if (inear < 0) {
271 fputs("Could not find non-empty neighbor!\n", stderr);
272 exit(1);
273 }
274 ang2 = sqrt(lastang2);
275 r = ANG2R(ang2); /* record if > previous */
276 if (r > bsdf_grid[inear][jnear].crad)
277 bsdf_grid[inear][jnear].crad = r;
278 /* next search radius */
279 r = ang2*(2.*GRIDRES/M_PI) + 1;
280 }
281 /* fill in neighbors */
282 memset(fill_grid, 0, sizeof(fill_grid));
283 for (i = 0; i < GRIDRES; i++)
284 for (j = 0; j < GRIDRES; j++) {
285 if (!bsdf_grid[i][j].nval)
286 continue; /* no value -- skip */
287 if (bsdf_grid[i][j].crad)
288 continue; /* has distance already */
289 r = GRIDRES/20;
290 lastr2 = 2*r*r + 1;
291 for (ii = i-r; ii <= i+r; ii++) {
292 if (ii < 0) continue;
293 if (ii >= GRIDRES) break;
294 for (jj = j-r; jj <= j+r; jj++) {
295 if (jj < 0) continue;
296 if (jj >= GRIDRES) break;
297 if (!bsdf_grid[ii][jj].crad)
298 continue;
299 /* OK to use approx. closest */
300 r2 = (ii-i)*(ii-i) + (jj-j)*(jj-j);
301 if (r2 >= lastr2)
302 continue;
303 fill_grid[i][j] = bsdf_grid[ii][jj].crad;
304 lastr2 = r2;
305 }
306 }
307 }
308 /* copy back filled entries */
309 for (i = 0; i < GRIDRES; i++)
310 for (j = 0; j < GRIDRES; j++)
311 if (fill_grid[i][j])
312 bsdf_grid[i][j].crad = fill_grid[i][j];
313 }
314
315 /* Cull points for more uniform distribution */
316 static void
317 cull_values(void)
318 {
319 FVECT ovec0, ovec1;
320 double maxang, maxang2;
321 int i, j, ii, jj, r;
322 /* simple greedy algorithm */
323 for (i = 0; i < GRIDRES; i++)
324 for (j = 0; j < GRIDRES; j++) {
325 if (!bsdf_grid[i][j].nval)
326 continue;
327 if (!bsdf_grid[i][j].crad)
328 continue; /* shouldn't happen */
329 vec_from_pos(ovec0, i, j);
330 maxang = 2.*R2ANG(bsdf_grid[i][j].crad);
331 if (maxang > ovec0[2]) /* clamp near horizon */
332 maxang = ovec0[2];
333 r = maxang*(2.*GRIDRES/M_PI) + 1;
334 maxang2 = maxang*maxang;
335 for (ii = i-r; ii <= i+r; ii++) {
336 if (ii < 0) continue;
337 if (ii >= GRIDRES) break;
338 for (jj = j-r; jj <= j+r; jj++) {
339 if (jj < 0) continue;
340 if (jj >= GRIDRES) break;
341 if (!bsdf_grid[ii][jj].nval)
342 continue;
343 if ((ii == i) & (jj == j))
344 continue; /* don't get self-absorbed */
345 vec_from_pos(ovec1, ii, jj);
346 if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
347 continue;
348 /* absorb sum */
349 bsdf_grid[i][j].vsum += bsdf_grid[ii][jj].vsum;
350 bsdf_grid[i][j].nval += bsdf_grid[ii][jj].nval;
351 /* keep value, though */
352 bsdf_grid[ii][jj].vsum /= (double)bsdf_grid[ii][jj].nval;
353 bsdf_grid[ii][jj].nval = 0;
354 }
355 }
356 }
357 }
358
359
360 #if 1
361 /* Test main produces a Radiance model from the given input file */
362 int
363 main(int argc, char *argv[])
364 {
365 char buf[128];
366 FILE *pfp;
367 double bsdf;
368 FVECT dir;
369 int i, j, n;
370
371 if (argc != 2) {
372 fprintf(stderr, "Usage: %s input.dat > output.rad\n", argv[0]);
373 return(1);
374 }
375 if (!load_bsdf_meas(argv[1]))
376 return(1);
377
378 compute_radii();
379 cull_values();
380 make_rbfrep();
381 /* produce spheres at meas. */
382 puts("void plastic yellow\n0\n0\n5 .6 .4 .01 .04 .08\n");
383 puts("void plastic pink\n0\n0\n5 .5 .05 .9 .04 .08\n");
384 n = 0;
385 for (i = 0; i < GRIDRES; i++)
386 for (j = 0; j < GRIDRES; j++)
387 if (bsdf_grid[i][j].vsum > .0f) {
388 bsdf = bsdf_grid[i][j].vsum;
389 vec_from_pos(dir, i, j);
390 if (bsdf_grid[i][j].nval) {
391 printf("pink cone c%04d\n0\n0\n8\n", ++n);
392 printf("\t%.6g %.6g %.6g\n",
393 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
394 printf("\t%.6g %.6g %.6g\n",
395 dir[0]*(bsdf+.005), dir[1]*(bsdf+.005),
396 dir[2]*(bsdf+.005));
397 puts("\t.003\t0\n");
398 } else {
399 vec_from_pos(dir, i, j);
400 printf("yellow sphere s%04d\n0\n0\n", ++n);
401 printf("4 %.6g %.6g %.6g .0015\n\n",
402 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
403 }
404 }
405 /* output continuous surface */
406 puts("void trans tgreen\n0\n0\n7 .7 1 .7 .04 .04 .9 .9\n");
407 fflush(stdout);
408 sprintf(buf, "gensurf tgreen bsdf - - - %d %d", GRIDRES, GRIDRES);
409 pfp = popen(buf, "w");
410 if (pfp == NULL) {
411 fputs(buf, stderr);
412 fputs(": cannot start command\n", stderr);
413 return(1);
414 }
415 for (i = 0; i < GRIDRES; i++)
416 for (j = 0; j < GRIDRES; j++) {
417 vec_from_pos(dir, i, j);
418 bsdf = eval_rbfrep(bsdf_list, dir);
419 fprintf(pfp, "%.8e %.8e %.8e\n",
420 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
421 }
422 return(pclose(pfp)==0 ? 0 : 1);
423 }
424 #endif