ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/pabopto2xml.c
Revision: 2.12
Committed: Thu Sep 20 01:23:36 2012 UTC (11 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +176 -5 lines
Log Message:
Nearing completion -- needs prologue, epilogue and testing

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: pabopto2xml.c,v 2.11 2012/09/19 22:03:37 greg Exp $";
3 #endif
4 /*
5 * Convert PAB-Opto measurements to XML format using tensor tree representation
6 * Employs Bonneel et al. Earth Mover's Distance interpolant.
7 *
8 * G.Ward
9 */
10
11 #define _USE_MATH_DEFINES
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <ctype.h>
16 #include <math.h>
17 #include "bsdf.h"
18
19 #define DEBUG 1
20
21 #ifndef GRIDRES
22 #define GRIDRES 200 /* grid resolution per side */
23 #endif
24
25 #define RSCA 2.7 /* radius scaling factor (empirical) */
26
27 /* convert to/from coded radians */
28 #define ANG2R(r) (int)((r)*((1<<16)/M_PI))
29 #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
30
31 typedef struct {
32 float vsum; /* DSF sum */
33 unsigned short nval; /* number of values in sum */
34 unsigned short crad; /* radius (coded angle) */
35 } GRIDVAL; /* grid value */
36
37 typedef struct {
38 float peak; /* lobe value at peak */
39 unsigned short crad; /* radius (coded angle) */
40 unsigned char gx, gy; /* grid position */
41 } RBFVAL; /* radial basis function value */
42
43 struct s_rbfnode; /* forward declaration of RBF struct */
44
45 typedef struct s_migration {
46 struct s_migration *next; /* next in global edge list */
47 struct s_rbfnode *rbfv[2]; /* from,to vertex */
48 struct s_migration *enxt[2]; /* next from,to sibling */
49 float mtx[1]; /* matrix (extends struct) */
50 } MIGRATION; /* migration link (winged edge structure) */
51
52 typedef struct s_rbfnode {
53 struct s_rbfnode *next; /* next in global RBF list */
54 MIGRATION *ejl; /* edge list for this vertex */
55 FVECT invec; /* incident vector direction */
56 double vtotal; /* volume for normalization */
57 int nrbf; /* number of RBFs */
58 RBFVAL rbfa[1]; /* RBF array (extends struct) */
59 } RBFNODE; /* RBF representation of DSF @ 1 incidence */
60
61 /* our loaded grid for this incident angle */
62 static double theta_in_deg, phi_in_deg;
63 static GRIDVAL dsf_grid[GRIDRES][GRIDRES];
64
65 /* all incident angles in-plane so far? */
66 static int single_plane_incident = -1;
67
68 /* input/output orientations */
69 static int input_orient = 0;
70 static int output_orient = 0;
71
72 /* processed incident DSF measurements */
73 static RBFNODE *dsf_list = NULL;
74
75 /* RBF-linking matrices (edges) */
76 static MIGRATION *mig_list = NULL;
77
78 /* migration edges drawn in raster fashion */
79 static MIGRATION *mig_grid[GRIDRES][GRIDRES];
80
81 #define mtx_nrows(m) ((m)->rbfv[0]->nrbf)
82 #define mtx_ncols(m) ((m)->rbfv[1]->nrbf)
83 #define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j))
84 #define is_src(rbf,m) ((rbf) == (m)->rbfv[0])
85 #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1])
86 #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)]
87 #define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)]
88
89 #define round(v) (int)((v) + .5 - ((v) < -.5))
90
91 char *progname;
92 /* percentage to cull (<0 to turn off) */
93 int pctcull = 90;
94 /* sampling order */
95 int samp_order = 0;
96
97 /* Compute volume associated with Gaussian lobe */
98 static double
99 rbf_volume(const RBFVAL *rbfp)
100 {
101 double rad = R2ANG(rbfp->crad);
102
103 return((2.*M_PI) * rbfp->peak * rad*rad);
104 }
105
106 /* Compute outgoing vector from grid position */
107 static void
108 ovec_from_pos(FVECT vec, int xpos, int ypos)
109 {
110 double uv[2];
111 double r2;
112
113 SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5));
114 /* uniform hemispherical projection */
115 r2 = uv[0]*uv[0] + uv[1]*uv[1];
116 vec[0] = vec[1] = sqrt(2. - r2);
117 vec[0] *= uv[0];
118 vec[1] *= uv[1];
119 vec[2] = output_orient*(1. - r2);
120 }
121
122 /* Compute grid position from normalized input/output vector */
123 static void
124 pos_from_vec(int pos[2], const FVECT vec)
125 {
126 double sq[2]; /* uniform hemispherical projection */
127 double norm = 1./sqrt(1. + fabs(vec[2]));
128
129 SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
130
131 pos[0] = (int)(sq[0]*GRIDRES);
132 pos[1] = (int)(sq[1]*GRIDRES);
133 }
134
135 /* Evaluate RBF for DSF at the given normalized outgoing direction */
136 static double
137 eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
138 {
139 double res = .0;
140 const RBFVAL *rbfp;
141 FVECT odir;
142 double sig2;
143 int n;
144
145 if (rp == NULL)
146 return(.0);
147 rbfp = rp->rbfa;
148 for (n = rp->nrbf; n--; rbfp++) {
149 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
150 sig2 = R2ANG(rbfp->crad);
151 sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
152 if (sig2 > -19.)
153 res += rbfp->peak * exp(sig2);
154 }
155 return(res);
156 }
157
158 /* Insert a new directional scattering function in our global list */
159 static void
160 insert_dsf(RBFNODE *newrbf)
161 {
162 RBFNODE *rbf, *rbf_last;
163
164 /* keep in ascending theta order */
165 for (rbf_last = NULL, rbf = dsf_list;
166 single_plane_incident & (rbf != NULL);
167 rbf_last = rbf, rbf = rbf->next)
168 if (input_orient*rbf->invec[2] < input_orient*newrbf->invec[2])
169 break;
170 if (rbf_last == NULL) {
171 newrbf->next = dsf_list;
172 dsf_list = newrbf;
173 return;
174 }
175 newrbf->next = rbf;
176 rbf_last->next = newrbf;
177 }
178
179 /* Count up filled nodes and build RBF representation from current grid */
180 static RBFNODE *
181 make_rbfrep(void)
182 {
183 int niter = 16;
184 int minrad = ANG2R(pow(2., 1.-samp_order));
185 double lastVar, thisVar = 100.;
186 int nn;
187 RBFNODE *newnode;
188 int i, j;
189
190 nn = 0; /* count selected bins */
191 for (i = 0; i < GRIDRES; i++)
192 for (j = 0; j < GRIDRES; j++)
193 nn += dsf_grid[i][j].nval;
194 /* allocate RBF array */
195 newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
196 if (newnode == NULL) {
197 fputs("Out of memory in make_rbfrep()\n", stderr);
198 exit(1);
199 }
200 newnode->next = NULL;
201 newnode->ejl = NULL;
202 newnode->invec[2] = sin(M_PI/180.*theta_in_deg);
203 newnode->invec[0] = cos(M_PI/180.*phi_in_deg)*newnode->invec[2];
204 newnode->invec[1] = sin(M_PI/180.*phi_in_deg)*newnode->invec[2];
205 newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
206 newnode->vtotal = 0;
207 newnode->nrbf = nn;
208 nn = 0; /* fill RBF array */
209 for (i = 0; i < GRIDRES; i++)
210 for (j = 0; j < GRIDRES; j++)
211 if (dsf_grid[i][j].nval) {
212 newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
213 newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5;
214 newnode->rbfa[nn].gx = i;
215 newnode->rbfa[nn].gy = j;
216 if (newnode->rbfa[nn].crad < minrad)
217 minrad = newnode->rbfa[nn].crad;
218 ++nn;
219 }
220 /* iterate to improve interpolation accuracy */
221 do {
222 double dsum = .0, dsum2 = .0;
223 nn = 0;
224 for (i = 0; i < GRIDRES; i++)
225 for (j = 0; j < GRIDRES; j++)
226 if (dsf_grid[i][j].nval) {
227 FVECT odir;
228 double corr;
229 ovec_from_pos(odir, i, j);
230 newnode->rbfa[nn++].peak *= corr =
231 dsf_grid[i][j].vsum /
232 eval_rbfrep(newnode, odir);
233 dsum += corr - 1.;
234 dsum2 += (corr-1.)*(corr-1.);
235 }
236 lastVar = thisVar;
237 thisVar = dsum2/(double)nn;
238 #ifdef DEBUG
239 fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
240 100.*dsum/(double)nn,
241 100.*sqrt(thisVar));
242 #endif
243 } while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
244
245 nn = 0; /* compute sum for normalization */
246 while (nn < newnode->nrbf)
247 newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
248
249 insert_dsf(newnode);
250 /* adjust sampling resolution */
251 samp_order = log(2./R2ANG(minrad))/log(2.) + .5;
252
253 return(newnode);
254 }
255
256 /* Load a set of measurements corresponding to a particular incident angle */
257 static int
258 load_pabopto_meas(const char *fname)
259 {
260 FILE *fp = fopen(fname, "r");
261 int inp_is_DSF = -1;
262 double new_phi, theta_out, phi_out, val;
263 char buf[2048];
264 int n, c;
265
266 if (fp == NULL) {
267 fputs(fname, stderr);
268 fputs(": cannot open\n", stderr);
269 return(0);
270 }
271 memset(dsf_grid, 0, sizeof(dsf_grid));
272 #ifdef DEBUG
273 fprintf(stderr, "Loading measurement file '%s'...\n", fname);
274 #endif
275 /* read header information */
276 while ((c = getc(fp)) == '#' || c == EOF) {
277 if (fgets(buf, sizeof(buf), fp) == NULL) {
278 fputs(fname, stderr);
279 fputs(": unexpected EOF\n", stderr);
280 fclose(fp);
281 return(0);
282 }
283 if (!strcmp(buf, "format: theta phi DSF\n")) {
284 inp_is_DSF = 1;
285 continue;
286 }
287 if (!strcmp(buf, "format: theta phi BSDF\n")) {
288 inp_is_DSF = 0;
289 continue;
290 }
291 if (sscanf(buf, "intheta %lf", &theta_in_deg) == 1)
292 continue;
293 if (sscanf(buf, "inphi %lf", &new_phi) == 1)
294 continue;
295 if (sscanf(buf, "incident_angle %lf %lf",
296 &theta_in_deg, &new_phi) == 2)
297 continue;
298 }
299 if (inp_is_DSF < 0) {
300 fputs(fname, stderr);
301 fputs(": unknown format\n", stderr);
302 fclose(fp);
303 return(0);
304 }
305 if (!input_orient) /* check input orientation */
306 input_orient = 1 - 2*(theta_in_deg > 90.);
307 else if (input_orient > 0 ^ theta_in_deg < 90.) {
308 fputs("Cannot handle input angles on both sides of surface\n",
309 stderr);
310 exit(1);
311 }
312 if (single_plane_incident > 0) /* check if still in plane */
313 single_plane_incident = (round(new_phi) == round(phi_in_deg));
314 else if (single_plane_incident < 0)
315 single_plane_incident = 1;
316 phi_in_deg = new_phi;
317 ungetc(c, fp); /* read actual data */
318 while (fscanf(fp, "%lf %lf %lf\n", &theta_out, &phi_out, &val) == 3) {
319 FVECT ovec;
320 int pos[2];
321
322 if (!output_orient) /* check output orientation */
323 output_orient = 1 - 2*(theta_out > 90.);
324 else if (output_orient > 0 ^ theta_out < 90.) {
325 fputs("Cannot handle output angles on both sides of surface\n",
326 stderr);
327 exit(1);
328 }
329 ovec[2] = sin(M_PI/180.*theta_out);
330 ovec[0] = cos(M_PI/180.*phi_out) * ovec[2];
331 ovec[1] = sin(M_PI/180.*phi_out) * ovec[2];
332 ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
333
334 if (!inp_is_DSF)
335 val *= ovec[2]; /* convert from BSDF to DSF */
336
337 pos_from_vec(pos, ovec);
338
339 dsf_grid[pos[0]][pos[1]].vsum += val;
340 dsf_grid[pos[0]][pos[1]].nval++;
341 }
342 n = 0;
343 while ((c = getc(fp)) != EOF)
344 n += !isspace(c);
345 if (n)
346 fprintf(stderr,
347 "%s: warning: %d unexpected characters past EOD\n",
348 fname, n);
349 fclose(fp);
350 return(1);
351 }
352
353 /* Compute radii for non-empty bins */
354 /* (distance to furthest empty bin for which non-empty bin is the closest) */
355 static void
356 compute_radii(void)
357 {
358 unsigned int fill_grid[GRIDRES][GRIDRES];
359 unsigned short fill_cnt[GRIDRES][GRIDRES];
360 FVECT ovec0, ovec1;
361 double ang2, lastang2;
362 int r, i, j, jn, ii, jj, inear, jnear;
363
364 r = GRIDRES/2; /* proceed in zig-zag */
365 for (i = 0; i < GRIDRES; i++)
366 for (jn = 0; jn < GRIDRES; jn++) {
367 j = (i&1) ? jn : GRIDRES-1-jn;
368 if (dsf_grid[i][j].nval) /* find empty grid pos. */
369 continue;
370 ovec_from_pos(ovec0, i, j);
371 inear = jnear = -1; /* find nearest non-empty */
372 lastang2 = M_PI*M_PI;
373 for (ii = i-r; ii <= i+r; ii++) {
374 if (ii < 0) continue;
375 if (ii >= GRIDRES) break;
376 for (jj = j-r; jj <= j+r; jj++) {
377 if (jj < 0) continue;
378 if (jj >= GRIDRES) break;
379 if (!dsf_grid[ii][jj].nval)
380 continue;
381 ovec_from_pos(ovec1, ii, jj);
382 ang2 = 2. - 2.*DOT(ovec0,ovec1);
383 if (ang2 >= lastang2)
384 continue;
385 lastang2 = ang2;
386 inear = ii; jnear = jj;
387 }
388 }
389 if (inear < 0) {
390 fputs("Could not find non-empty neighbor!\n", stderr);
391 exit(1);
392 }
393 ang2 = sqrt(lastang2);
394 r = ANG2R(ang2); /* record if > previous */
395 if (r > dsf_grid[inear][jnear].crad)
396 dsf_grid[inear][jnear].crad = r;
397 /* next search radius */
398 r = ang2*(2.*GRIDRES/M_PI) + 3;
399 }
400 /* blur radii over hemisphere */
401 memset(fill_grid, 0, sizeof(fill_grid));
402 memset(fill_cnt, 0, sizeof(fill_cnt));
403 for (i = 0; i < GRIDRES; i++)
404 for (j = 0; j < GRIDRES; j++) {
405 if (!dsf_grid[i][j].crad)
406 continue; /* missing distance */
407 r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
408 for (ii = i-r; ii <= i+r; ii++) {
409 if (ii < 0) continue;
410 if (ii >= GRIDRES) break;
411 for (jj = j-r; jj <= j+r; jj++) {
412 if (jj < 0) continue;
413 if (jj >= GRIDRES) break;
414 if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
415 continue;
416 fill_grid[ii][jj] += dsf_grid[i][j].crad;
417 fill_cnt[ii][jj]++;
418 }
419 }
420 }
421 /* copy back blurred radii */
422 for (i = 0; i < GRIDRES; i++)
423 for (j = 0; j < GRIDRES; j++)
424 if (fill_cnt[i][j])
425 dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
426 }
427
428 /* Cull points for more uniform distribution, leave all nval 0 or 1 */
429 static void
430 cull_values(void)
431 {
432 FVECT ovec0, ovec1;
433 double maxang, maxang2;
434 int i, j, ii, jj, r;
435 /* simple greedy algorithm */
436 for (i = 0; i < GRIDRES; i++)
437 for (j = 0; j < GRIDRES; j++) {
438 if (!dsf_grid[i][j].nval)
439 continue;
440 if (!dsf_grid[i][j].crad)
441 continue; /* shouldn't happen */
442 ovec_from_pos(ovec0, i, j);
443 maxang = 2.*R2ANG(dsf_grid[i][j].crad);
444 if (maxang > ovec0[2]) /* clamp near horizon */
445 maxang = ovec0[2];
446 r = maxang*(2.*GRIDRES/M_PI) + 1;
447 maxang2 = maxang*maxang;
448 for (ii = i-r; ii <= i+r; ii++) {
449 if (ii < 0) continue;
450 if (ii >= GRIDRES) break;
451 for (jj = j-r; jj <= j+r; jj++) {
452 if (jj < 0) continue;
453 if (jj >= GRIDRES) break;
454 if (!dsf_grid[ii][jj].nval)
455 continue;
456 if ((ii == i) & (jj == j))
457 continue; /* don't get self-absorbed */
458 ovec_from_pos(ovec1, ii, jj);
459 if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
460 continue;
461 /* absorb sum */
462 dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
463 dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
464 /* keep value, though */
465 dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
466 dsf_grid[ii][jj].nval = 0;
467 }
468 }
469 }
470 /* final averaging pass */
471 for (i = 0; i < GRIDRES; i++)
472 for (j = 0; j < GRIDRES; j++)
473 if (dsf_grid[i][j].nval > 1) {
474 dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
475 dsf_grid[i][j].nval = 1;
476 }
477 }
478
479 /* Compute (and allocate) migration price matrix for optimization */
480 static float *
481 price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf)
482 {
483 float *pmtx = (float *)malloc(sizeof(float) *
484 from_rbf->nrbf * to_rbf->nrbf);
485 FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf);
486 int i, j;
487
488 if ((pmtx == NULL) | (vto == NULL)) {
489 fputs("Out of memory in migration_costs()\n", stderr);
490 exit(1);
491 }
492 for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */
493 ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy);
494
495 for (i = from_rbf->nrbf; i--; ) {
496 const double from_ang = R2ANG(from_rbf->rbfa[i].crad);
497 FVECT vfrom;
498 ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy);
499 for (j = to_rbf->nrbf; j--; )
500 pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) +
501 fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang);
502 }
503 free(vto);
504 return(pmtx);
505 }
506
507 /* Comparison routine needed for sorting price row */
508 static const float *price_arr;
509 static int
510 msrt_cmp(const void *p1, const void *p2)
511 {
512 float c1 = price_arr[*(const int *)p1];
513 float c2 = price_arr[*(const int *)p2];
514
515 if (c1 > c2) return(1);
516 if (c1 < c2) return(-1);
517 return(0);
518 }
519
520 /* Compute minimum (optimistic) cost for moving the given source material */
521 static double
522 min_cost(double amt2move, const double *avail, const float *price, int n)
523 {
524 static int *price_sort = NULL;
525 static int n_alloc = 0;
526 double total_cost = 0;
527 int i;
528
529 if (amt2move <= FTINY) /* pre-emptive check */
530 return(0.);
531 if (n > n_alloc) { /* (re)allocate sort array */
532 if (n_alloc) free(price_sort);
533 price_sort = (int *)malloc(sizeof(int)*n);
534 if (price_sort == NULL) {
535 fputs("Out of memory in min_cost()\n", stderr);
536 exit(1);
537 }
538 n_alloc = n;
539 }
540 for (i = n; i--; )
541 price_sort[i] = i;
542 price_arr = price;
543 qsort(price_sort, n, sizeof(int), &msrt_cmp);
544 /* move cheapest first */
545 for (i = 0; i < n && amt2move > FTINY; i++) {
546 int d = price_sort[i];
547 double amt = (amt2move < avail[d]) ? amt2move : avail[d];
548
549 total_cost += amt * price[d];
550 amt2move -= amt;
551 }
552 return(total_cost);
553 }
554
555 /* Take a step in migration by choosing optimal bucket to transfer */
556 static double
557 migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx)
558 {
559 static double *src_cost = NULL;
560 int n_alloc = 0;
561 const double maxamt = 2./(mtx_nrows(mig)*mtx_ncols(mig));
562 double amt = 0;
563 struct {
564 int s, d; /* source and destination */
565 double price; /* price estimate per amount moved */
566 double amt; /* amount we can move */
567 } cur, best;
568 int i;
569
570 if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */
571 if (n_alloc)
572 free(src_cost);
573 src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig));
574 if (src_cost == NULL) {
575 fputs("Out of memory in migration_step()\n", stderr);
576 exit(1);
577 }
578 n_alloc = mtx_nrows(mig);
579 }
580 for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */
581 src_cost[i] = min_cost(src_rem[i], dst_rem,
582 pmtx+i*mtx_ncols(mig), mtx_ncols(mig));
583
584 /* find best source & dest. */
585 best.s = best.d = -1; best.price = FHUGE; best.amt = 0;
586 for (cur.s = mtx_nrows(mig); cur.s--; ) {
587 const float *price = pmtx + cur.s*mtx_ncols(mig);
588 double cost_others = 0;
589 if (src_rem[cur.s] <= FTINY)
590 continue;
591 cur.d = -1; /* examine cheapest dest. */
592 for (i = mtx_ncols(mig); i--; )
593 if (dst_rem[i] > FTINY &&
594 (cur.d < 0 || price[i] < price[cur.d]))
595 cur.d = i;
596 if (cur.d < 0)
597 return(.0);
598 if ((cur.price = price[cur.d]) >= best.price)
599 continue; /* no point checking further */
600 cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ?
601 src_rem[cur.s] : dst_rem[cur.d];
602 if (cur.amt > maxamt) cur.amt = maxamt;
603 dst_rem[cur.d] -= cur.amt; /* add up differential costs */
604 for (i = mtx_nrows(mig); i--; ) {
605 if (i == cur.s) continue;
606 cost_others += min_cost(src_rem[i], dst_rem, price, mtx_ncols(mig))
607 - src_cost[i];
608 }
609 dst_rem[cur.d] += cur.amt; /* undo trial move */
610 cur.price += cost_others/cur.amt; /* adjust effective price */
611 if (cur.price < best.price) /* are we better than best? */
612 best = cur;
613 }
614 if ((best.s < 0) | (best.d < 0))
615 return(.0);
616 /* make the actual move */
617 mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt;
618 src_rem[best.s] -= best.amt;
619 dst_rem[best.d] -= best.amt;
620 return(best.amt);
621 }
622
623 /* Compute (and insert) migration along directed edge */
624 static MIGRATION *
625 make_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
626 {
627 const double end_thresh = 0.02/(from_rbf->nrbf*to_rbf->nrbf);
628 float *pmtx = price_routes(from_rbf, to_rbf);
629 MIGRATION *newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
630 sizeof(float) *
631 (from_rbf->nrbf*to_rbf->nrbf - 1));
632 double *src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf);
633 double *dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf);
634 double total_rem = 1.;
635 int i;
636
637 if ((newmig == NULL) | (src_rem == NULL) | (dst_rem == NULL)) {
638 fputs("Out of memory in make_migration()\n", stderr);
639 exit(1);
640 }
641 #ifdef DEBUG
642 {
643 double theta, phi;
644 theta = acos(from_rbf->invec[2])*(180./M_PI);
645 phi = atan2(from_rbf->invec[1],from_rbf->invec[0])*(180./M_PI);
646 fprintf(stderr, "Building path from (theta,phi) (%d,%d) to ",
647 round(theta), round(phi));
648 theta = acos(to_rbf->invec[2])*(180./M_PI);
649 phi = atan2(to_rbf->invec[1],to_rbf->invec[0])*(180./M_PI);
650 fprintf(stderr, "(%d,%d)\n", round(theta), round(phi));
651 }
652 #endif
653 newmig->next = NULL;
654 newmig->rbfv[0] = from_rbf;
655 newmig->rbfv[1] = to_rbf;
656 newmig->enxt[0] = newmig->enxt[1] = NULL;
657 memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf);
658 /* starting quantities */
659 for (i = from_rbf->nrbf; i--; )
660 src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal;
661 for (i = to_rbf->nrbf; i--; )
662 dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal;
663 /* move a bit at a time */
664 while (total_rem > end_thresh)
665 total_rem -= migration_step(newmig, src_rem, dst_rem, pmtx);
666
667 free(pmtx); /* free working arrays */
668 free(src_rem);
669 free(dst_rem);
670 for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
671 float nf = rbf_volume(&from_rbf->rbfa[i]);
672 int j;
673 if (nf <= FTINY) continue;
674 nf = from_rbf->vtotal / nf;
675 for (j = to_rbf->nrbf; j--; )
676 newmig->mtx[mtx_ndx(newmig,i,j)] *= nf;
677 }
678 /* insert in edge lists */
679 newmig->enxt[0] = from_rbf->ejl;
680 from_rbf->ejl = newmig;
681 newmig->enxt[1] = to_rbf->ejl;
682 to_rbf->ejl = newmig;
683 newmig->next = mig_list;
684 return(mig_list = newmig);
685 }
686
687 /* Get triangle surface orientation (unnormalized) */
688 static void
689 tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
690 {
691 FVECT v2minus1, v3minus2;
692
693 VSUB(v2minus1, v2, v1);
694 VSUB(v3minus2, v3, v2);
695 VCROSS(vres, v2minus1, v3minus2);
696 }
697
698 /* Determine if vertex order is reversed (inward normal) */
699 static int
700 is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
701 {
702 FVECT tor;
703
704 tri_orient(tor, v1, v2, v3);
705
706 return(DOT(tor, v2) < 0.);
707 }
708
709 /* Find vertices completing triangles on either side of the given edge */
710 static int
711 get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
712 {
713 const MIGRATION *ej, *ej2;
714 RBFNODE *tv;
715
716 rbfv[0] = rbfv[1] = NULL;
717 for (ej = mig->rbfv[0]->ejl; ej != NULL;
718 ej = nextedge(mig->rbfv[0],ej)) {
719 if (ej == mig)
720 continue;
721 tv = opp_rbf(mig->rbfv[0],ej);
722 for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
723 if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
724 rbfv[is_rev_tri(mig->rbfv[0]->invec,
725 mig->rbfv[1]->invec,
726 tv->invec)] = tv;
727 break;
728 }
729 }
730 return((rbfv[0] != NULL) + (rbfv[1] != NULL));
731 }
732
733 /* Find context hull vertex to complete triangle (oriented call) */
734 static RBFNODE *
735 find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
736 {
737 FVECT vmid, vor;
738 RBFNODE *rbf, *rbfbest = NULL;
739 double dprod2, bestdprod2 = 0.5;
740
741 VADD(vmid, rbf0->invec, rbf1->invec);
742 if (normalize(vmid) == 0)
743 return(NULL);
744 /* XXX exhaustive search */
745 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
746 if ((rbf == rbf0) | (rbf == rbf1))
747 continue;
748 tri_orient(vor, rbf0->invec, rbf1->invec, rbf->invec);
749 dprod2 = DOT(vor, vmid);
750 if (dprod2 <= FTINY)
751 continue; /* wrong orientation */
752 dprod2 *= dprod2 / DOT(vor,vor);
753 if (dprod2 > bestdprod2) { /* more convex than prev? */
754 rbfbest = rbf;
755 bestdprod2 = dprod2;
756 }
757 }
758 return(rbf);
759 }
760
761 /* Create new migration edge and grow mesh recursively around it */
762 static void
763 mesh_from_edge(RBFNODE *rbf0, RBFNODE *rbf1)
764 {
765 MIGRATION *newej;
766 RBFNODE *tvert[2];
767
768 if (rbf0 < rbf1) /* avoid migration loops */
769 newej = make_migration(rbf0, rbf1);
770 else
771 newej = make_migration(rbf1, rbf0);
772 /* triangle on either side? */
773 get_triangles(tvert, newej);
774 if (tvert[0] == NULL) { /* recurse on new right edge */
775 tvert[0] = find_chull_vert(newej->rbfv[0], newej->rbfv[1]);
776 if (tvert[0] != NULL) {
777 mesh_from_edge(rbf0, tvert[0]);
778 mesh_from_edge(rbf1, tvert[0]);
779 }
780 }
781 if (tvert[1] == NULL) { /* recurse on new left edge */
782 tvert[1] = find_chull_vert(newej->rbfv[1], newej->rbfv[0]);
783 if (tvert[1] != NULL) {
784 mesh_from_edge(rbf0, tvert[1]);
785 mesh_from_edge(rbf1, tvert[1]);
786 }
787 }
788 }
789
790 /* Draw edge list into mig_grid array */
791 static void
792 draw_edges()
793 {
794 int nnull = 0, ntot = 0;
795 MIGRATION *ej;
796 int p0[2], p1[2];
797
798 /* memset(mig_grid, 0, sizeof(mig_grid)); */
799 for (ej = mig_list; ej != NULL; ej = ej->next) {
800 ++ntot;
801 pos_from_vec(p0, ej->rbfv[0]->invec);
802 pos_from_vec(p1, ej->rbfv[1]->invec);
803 if ((p0[0] == p1[0]) & (p0[1] == p1[1])) {
804 ++nnull;
805 mig_grid[p0[0]][p0[1]] = ej;
806 continue;
807 }
808 if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) {
809 const int xstep = 2*(p1[0] > p0[0]) - 1;
810 const double ystep = (double)((p1[1]-p0[1])*xstep) /
811 (double)(p1[0]-p0[0]);
812 int x;
813 double y;
814 for (x = p0[0], y = p0[1]+.5; x != p1[0];
815 x += xstep, y += ystep)
816 mig_grid[x][(int)y] = ej;
817 mig_grid[x][(int)y] = ej;
818 } else {
819 const int ystep = 2*(p1[1] > p0[1]) - 1;
820 const double xstep = (double)((p1[0]-p0[0])*ystep) /
821 (double)(p1[1]-p0[1]);
822 int y;
823 double x;
824 for (y = p0[1], x = p0[0]+.5; y != p1[1];
825 y += ystep, x += xstep)
826 mig_grid[(int)x][y] = ej;
827 mig_grid[(int)x][y] = ej;
828 }
829 }
830 if (nnull)
831 fprintf(stderr, "Warning: %d of %d edges are null\n",
832 nnull, ntot);
833 }
834
835 /* Build our triangle mesh from recorded RBFs */
836 static void
837 build_mesh()
838 {
839 double best2 = M_PI*M_PI;
840 RBFNODE *rbf, *rbf_near = NULL;
841 /* check if isotropic */
842 if (single_plane_incident) {
843 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
844 if (rbf->next != NULL)
845 make_migration(rbf, rbf->next);
846 return;
847 }
848 /* find RBF nearest to head */
849 if (dsf_list == NULL)
850 return;
851 for (rbf = dsf_list->next; rbf != NULL; rbf = rbf->next) {
852 double dist2 = 2. - 2.*DOT(dsf_list->invec,rbf->invec);
853 if (dist2 < best2) {
854 rbf_near = rbf;
855 best2 = dist2;
856 }
857 }
858 if (rbf_near == NULL) {
859 fputs("Cannot find nearest point for first edge\n", stderr);
860 exit(1);
861 }
862 /* build mesh from this edge */
863 mesh_from_edge(dsf_list, rbf_near);
864 /* draw edge list into grid */
865 draw_edges();
866 }
867
868 /* Identify enclosing triangle for this position (flood fill raster check) */
869 static int
870 identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8],
871 int px, int py)
872 {
873 const int btest = 1<<(py&07);
874
875 if (vmap[px][py>>3] & btest) /* already visited here? */
876 return(1);
877 /* else mark it */
878 vmap[px][py>>3] |= btest;
879
880 if (mig_grid[px][py] != NULL) { /* are we on an edge? */
881 int i;
882 for (i = 0; i < 3; i++) {
883 if (miga[i] == mig_grid[px][py])
884 return(1);
885 if (miga[i] != NULL)
886 continue;
887 miga[i] = mig_grid[px][py];
888 return(1);
889 }
890 return(0); /* outside triangle! */
891 }
892 /* check neighbors (flood) */
893 if (px > 0 && !identify_tri(miga, vmap, px-1, py))
894 return(0);
895 if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py))
896 return(0);
897 if (py > 0 && !identify_tri(miga, vmap, px, py-1))
898 return(0);
899 if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1))
900 return(0);
901 return(1); /* this neighborhood done */
902 }
903
904 /* Find edge(s) for interpolating the given incident vector */
905 static int
906 get_interp(MIGRATION *miga[3], const FVECT invec)
907 {
908 miga[0] = miga[1] = miga[2] = NULL;
909 if (single_plane_incident) { /* isotropic BSDF? */
910 RBFNODE *rbf; /* find edge we're on */
911 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
912 if (input_orient*rbf->invec[2] < input_orient*invec[2])
913 break;
914 if (rbf->next != NULL &&
915 input_orient*rbf->next->invec[2] <
916 input_orient*invec[2]) {
917 for (miga[0] = rbf->ejl; miga[0] != NULL;
918 miga[0] = nextedge(rbf,miga[0]))
919 if (opp_rbf(rbf,miga[0]) == rbf->next)
920 return(1);
921 break;
922 }
923 }
924 return(0); /* outside range! */
925 }
926 { /* else use triangle mesh */
927 unsigned char floodmap[GRIDRES][(GRIDRES+7)/8];
928 int pstart[2];
929
930 pos_from_vec(pstart, invec);
931 memset(floodmap, 0, sizeof(floodmap));
932 /* call flooding function */
933 if (!identify_tri(miga, floodmap, pstart[0], pstart[1]))
934 return(0); /* outside mesh */
935 if ((miga[0] == NULL) | (miga[2] == NULL))
936 return(0); /* should never happen */
937 if (miga[1] == NULL)
938 return(1); /* on edge */
939 return(3); /* else in triangle */
940 }
941 }
942
943 /* Advect and allocate new RBF along edge */
944 static RBFNODE *
945 e_advect_rbf(const MIGRATION *mig, const FVECT invec)
946 {
947 RBFNODE *rbf;
948 int n, i, j;
949 double t, full_dist;
950 /* get relative position */
951 t = acos(DOT(invec, mig->rbfv[0]->invec));
952 if (t < M_PI/GRIDRES) { /* near first DSF */
953 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
954 rbf = (RBFNODE *)malloc(n);
955 if (rbf == NULL)
956 goto memerr;
957 memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
958 return(rbf);
959 }
960 full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
961 if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */
962 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
963 rbf = (RBFNODE *)malloc(n);
964 if (rbf == NULL)
965 goto memerr;
966 memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
967 return(rbf);
968 }
969 t /= full_dist;
970 n = 0; /* count migrating particles */
971 for (i = 0; i < mtx_nrows(mig); i++)
972 for (j = 0; j < mtx_ncols(mig); j++)
973 n += (mig->mtx[mtx_ndx(mig,i,j)] > FTINY);
974 #ifdef DEBUG
975 fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
976 mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
977 #endif
978 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
979 if (rbf == NULL)
980 goto memerr;
981 rbf->next = NULL; rbf->ejl = NULL;
982 VCOPY(rbf->invec, invec);
983 rbf->nrbf = n;
984 rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
985 n = 0; /* advect RBF lobes */
986 for (i = 0; i < mtx_nrows(mig); i++) {
987 const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
988 const float peak0 = rbf0i->peak;
989 const double rad0 = R2ANG(rbf0i->crad);
990 FVECT v0;
991 float mv;
992 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
993 for (j = 0; j < mtx_ncols(mig); j++)
994 if ((mv = mig->mtx[mtx_ndx(mig,i,j)]) > FTINY) {
995 const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
996 double rad1 = R2ANG(rbf1j->crad);
997 FVECT v;
998 int pos[2];
999 rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal;
1000 rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) +
1001 rad1*rad1*t));
1002 ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
1003 geodesic(v, v0, v, t, GEOD_REL);
1004 pos_from_vec(pos, v);
1005 rbf->rbfa[n].gx = pos[0];
1006 rbf->rbfa[n].gy = pos[1];
1007 ++n;
1008 }
1009 }
1010 rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
1011 return(rbf);
1012 memerr:
1013 fputs("Out of memory in e_advect_rbf()\n", stderr);
1014 exit(1);
1015 return(NULL); /* pro forma return */
1016 }
1017
1018 /* Insert vertex in ordered list */
1019 static void
1020 insert_vert(RBFNODE **vlist, RBFNODE *v)
1021 {
1022 int i, j;
1023
1024 for (i = 0; vlist[i] != NULL; i++) {
1025 if (v == vlist[i])
1026 return;
1027 if (v < vlist[i])
1028 break;
1029 }
1030 for (j = i; vlist[j] != NULL; j++)
1031 ;
1032 while (j > i) {
1033 vlist[j] = vlist[j-1];
1034 --j;
1035 }
1036 vlist[i] = v;
1037 }
1038
1039 /* Sort triangle edges in standard order */
1040 static void
1041 order_triangle(MIGRATION *miga[3])
1042 {
1043 RBFNODE *vert[4];
1044 MIGRATION *ord[3];
1045 int i;
1046 /* order vertices, first */
1047 memset(vert, 0, sizeof(vert));
1048 for (i = 0; i < 3; i++) {
1049 insert_vert(vert, miga[i]->rbfv[0]);
1050 insert_vert(vert, miga[i]->rbfv[1]);
1051 }
1052 /* identify edge 0 */
1053 for (i = 0; i < 3; i++)
1054 if (miga[i]->rbfv[0] == vert[0] &&
1055 miga[i]->rbfv[1] == vert[1]) {
1056 ord[0] = miga[i];
1057 break;
1058 }
1059 /* identify edge 1 */
1060 for (i = 0; i < 3; i++)
1061 if (miga[i]->rbfv[0] == vert[1] &&
1062 miga[i]->rbfv[1] == vert[2]) {
1063 ord[1] = miga[i];
1064 break;
1065 }
1066 /* identify edge 2 */
1067 for (i = 0; i < 3; i++)
1068 if (miga[i]->rbfv[0] == vert[0] &&
1069 miga[i]->rbfv[1] == vert[2]) {
1070 ord[2] = miga[i];
1071 break;
1072 }
1073 miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
1074 }
1075
1076 /* Partially advect between recorded incident angles and allocate new RBF */
1077 static RBFNODE *
1078 advect_rbf(const FVECT invec)
1079 {
1080 MIGRATION *miga[3];
1081 RBFNODE *rbf;
1082 float mbfact, mcfact;
1083 int n, i, j, k;
1084 FVECT v0, v1, v2;
1085 double s, t;
1086
1087 if (!get_interp(miga, invec)) /* can't interpolate? */
1088 return(NULL);
1089 if (miga[1] == NULL) /* along edge? */
1090 return(e_advect_rbf(miga[0], invec));
1091 /* put in standard order */
1092 order_triangle(miga);
1093 #ifdef DEBUG
1094 if (miga[0]->rbfv[0] != miga[2]->rbfv[0] |
1095 miga[0]->rbfv[1] != miga[1]->rbfv[0] |
1096 miga[1]->rbfv[1] != miga[2]->rbfv[1]) {
1097 fputs("Triangle vertex screw-up!\n", stderr);
1098 exit(1);
1099 }
1100 #endif
1101 /* figure out position */
1102 fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
1103 normalize(v0);
1104 fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
1105 normalize(v2);
1106 fcross(v1, invec, miga[1]->rbfv[1]->invec);
1107 normalize(v1);
1108 s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
1109 geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
1110 s, GEOD_REL);
1111 t = acos(DOT(v1,invec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
1112 n = 0; /* count migrating particles */
1113 for (i = 0; i < mtx_nrows(miga[0]); i++)
1114 for (j = 0; j < mtx_ncols(miga[0]); j++)
1115 for (k = (miga[0]->mtx[mtx_ndx(miga[0],i,j)] > FTINY) *
1116 mtx_ncols(miga[2]); k--; )
1117 n += (miga[2]->mtx[mtx_ndx(miga[2],i,k)] > FTINY &&
1118 miga[1]->mtx[mtx_ndx(miga[1],j,k)] > FTINY);
1119 #ifdef DEBUG
1120 fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
1121 miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
1122 miga[2]->rbfv[1]->nrbf, n);
1123 #endif
1124 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
1125 if (rbf == NULL) {
1126 fputs("Out of memory in advect_rbf()\n", stderr);
1127 exit(1);
1128 }
1129 rbf->next = NULL; rbf->ejl = NULL;
1130 VCOPY(rbf->invec, invec);
1131 rbf->nrbf = n;
1132 n = 0; /* compute RBF lobes */
1133 mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
1134 (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
1135 mcfact = (1.-s) *
1136 (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
1137 for (i = 0; i < mtx_nrows(miga[0]); i++) {
1138 const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
1139 const float w0i = rbf0i->peak;
1140 const double rad0i = R2ANG(rbf0i->crad);
1141 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
1142 for (j = 0; j < mtx_ncols(miga[0]); j++) {
1143 const float ma = miga[0]->mtx[mtx_ndx(miga[0],i,j)];
1144 const RBFVAL *rbf1j;
1145 double rad1j, srad2;
1146 if (ma <= FTINY)
1147 continue;
1148 rbf1j = &miga[0]->rbfv[1]->rbfa[j];
1149 rad1j = R2ANG(rbf1j->crad);
1150 srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j;
1151 ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
1152 geodesic(v1, v0, v1, s, GEOD_REL);
1153 for (k = 0; k < mtx_ncols(miga[2]); k++) {
1154 float mb = miga[1]->mtx[mtx_ndx(miga[1],j,k)];
1155 float mc = miga[2]->mtx[mtx_ndx(miga[2],i,k)];
1156 const RBFVAL *rbf2k;
1157 double rad2k;
1158 FVECT vout;
1159 int pos[2];
1160 if ((mb <= FTINY) | (mc <= FTINY))
1161 continue;
1162 rbf2k = &miga[2]->rbfv[1]->rbfa[k];
1163 rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact);
1164 rad2k = R2ANG(rbf2k->crad);
1165 rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k));
1166 ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
1167 geodesic(vout, v1, v2, t, GEOD_REL);
1168 pos_from_vec(pos, vout);
1169 rbf->rbfa[n].gx = pos[0];
1170 rbf->rbfa[n].gy = pos[1];
1171 ++n;
1172 }
1173 }
1174 }
1175 rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
1176 return(rbf);
1177 }
1178
1179 /* Interpolate and output isotropic BSDF data */
1180 static void
1181 interp_isotropic()
1182 {
1183 const int sqres = 1<<samp_order;
1184 FILE *ofp = NULL;
1185 char cmd[128];
1186 int ix, ox, oy;
1187 FVECT ivec, ovec;
1188 double bsdf;
1189
1190 if (pctcull >= 0) { /* begin output */
1191 sprintf(cmd, "rttree_reduce -h -a -fd -r 3 -t %d -g %d",
1192 pctcull, samp_order);
1193 fflush(stdout);
1194 ofp = popen(cmd, "w");
1195 if (ofp == NULL) {
1196 fputs("Cannot create pipe for rttree_reduce\n", stderr);
1197 exit(1);
1198 }
1199 } else
1200 fputs("{\n", stdout);
1201 /* run through directions */
1202 for (ix = 0; ix < sqres/2; ix++) {
1203 RBFNODE *rbf;
1204 SDsquare2disk(ivec, (ix+.5)/sqres, .5);
1205 ivec[2] = input_orient *
1206 sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]);
1207 rbf = advect_rbf(ivec);
1208 for (ox = 0; ox < sqres; ox++)
1209 for (oy = 0; oy < sqres; oy++) {
1210 SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres);
1211 ovec[2] = output_orient *
1212 sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]);
1213 bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]);
1214 if (pctcull >= 0)
1215 fwrite(&bsdf, sizeof(bsdf), 1, ofp);
1216 else
1217 printf("\t%.3e\n", bsdf);
1218 }
1219 free(rbf);
1220 }
1221 if (pctcull >= 0) { /* finish output */
1222 if (pclose(ofp)) {
1223 fprintf(stderr, "Error running '%s'\n", cmd);
1224 exit(1);
1225 }
1226 } else {
1227 for (ix = sqres*sqres*sqres/2; ix--; )
1228 fputs("\t0\n", stdout);
1229 fputs("}\n", stdout);
1230 }
1231 }
1232
1233 /* Interpolate and output anisotropic BSDF data */
1234 static void
1235 interp_anisotropic()
1236 {
1237 const int sqres = 1<<samp_order;
1238 FILE *ofp = NULL;
1239 char cmd[128];
1240 int ix, iy, ox, oy;
1241 FVECT ivec, ovec;
1242 double bsdf;
1243
1244 if (pctcull >= 0) { /* begin output */
1245 sprintf(cmd, "rttree_reduce -h -a -fd -r 4 -t %d -g %d",
1246 pctcull, samp_order);
1247 fflush(stdout);
1248 ofp = popen(cmd, "w");
1249 if (ofp == NULL) {
1250 fputs("Cannot create pipe for rttree_reduce\n", stderr);
1251 exit(1);
1252 }
1253 } else
1254 fputs("{\n", stdout);
1255 /* run through directions */
1256 for (ix = 0; ix < sqres; ix++)
1257 for (iy = 0; iy < sqres; iy++) {
1258 RBFNODE *rbf;
1259 SDsquare2disk(ivec, (ix+.5)/sqres, (iy+.5)/sqres);
1260 ivec[2] = input_orient *
1261 sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]);
1262 rbf = advect_rbf(ivec);
1263 for (ox = 0; ox < sqres; ox++)
1264 for (oy = 0; oy < sqres; oy++) {
1265 SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres);
1266 ovec[2] = output_orient *
1267 sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]);
1268 bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]);
1269 if (pctcull >= 0)
1270 fwrite(&bsdf, sizeof(bsdf), 1, ofp);
1271 else
1272 printf("\t%.3e\n", bsdf);
1273 }
1274 free(rbf);
1275 }
1276 if (pctcull >= 0) { /* finish output */
1277 if (pclose(ofp)) {
1278 fprintf(stderr, "Error running '%s'\n", cmd);
1279 exit(1);
1280 }
1281 } else
1282 fputs("}\n", stdout);
1283 }
1284
1285 #if 1
1286 /* Read in BSDF files and interpolate as tensor tree representation */
1287 int
1288 main(int argc, char *argv[])
1289 {
1290 RBFNODE *rbf;
1291 double bsdf;
1292 int i;
1293
1294 progname = argv[0];
1295 if (argc > 2 && !strcmp(argv[1], "-t")) {
1296 pctcull = atoi(argv[2]);
1297 argv += 2; argc -= 2;
1298 }
1299 if (argc < 3) {
1300 fprintf(stderr,
1301 "Usage: %s [-t pctcull] meas1.dat meas2.dat .. > bsdf.xml\n",
1302 progname);
1303 return(1);
1304 }
1305 for (i = 1; i < argc; i++) { /* compile measurements */
1306 if (!load_pabopto_meas(argv[i]))
1307 return(1);
1308 compute_radii();
1309 cull_values();
1310 make_rbfrep();
1311 }
1312 build_mesh(); /* create interpolation */
1313 /* xml_prologue(); /* start XML output */
1314 if (single_plane_incident) /* resample dist. */
1315 interp_isotropic();
1316 else
1317 interp_anisotropic();
1318 /* xml_epilogue(); /* finish XML output */
1319 return(0);
1320 }
1321 #else
1322 /* Test main produces a Radiance model from the given input file */
1323 int
1324 main(int argc, char *argv[])
1325 {
1326 char buf[128];
1327 FILE *pfp;
1328 double bsdf;
1329 FVECT dir;
1330 int i, j, n;
1331
1332 if (argc != 2) {
1333 fprintf(stderr, "Usage: %s input.dat > output.rad\n", argv[0]);
1334 return(1);
1335 }
1336 if (!load_pabopto_meas(argv[1]))
1337 return(1);
1338
1339 compute_radii();
1340 cull_values();
1341 make_rbfrep();
1342 /* produce spheres at meas. */
1343 puts("void plastic yellow\n0\n0\n5 .6 .4 .01 .04 .08\n");
1344 puts("void plastic pink\n0\n0\n5 .5 .05 .9 .04 .08\n");
1345 n = 0;
1346 for (i = 0; i < GRIDRES; i++)
1347 for (j = 0; j < GRIDRES; j++)
1348 if (dsf_grid[i][j].vsum > .0f) {
1349 ovec_from_pos(dir, i, j);
1350 bsdf = dsf_grid[i][j].vsum / dir[2];
1351 if (dsf_grid[i][j].nval) {
1352 printf("pink cone c%04d\n0\n0\n8\n", ++n);
1353 printf("\t%.6g %.6g %.6g\n",
1354 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1355 printf("\t%.6g %.6g %.6g\n",
1356 dir[0]*(bsdf+.005), dir[1]*(bsdf+.005),
1357 dir[2]*(bsdf+.005));
1358 puts("\t.003\t0\n");
1359 } else {
1360 ovec_from_pos(dir, i, j);
1361 printf("yellow sphere s%04d\n0\n0\n", ++n);
1362 printf("4 %.6g %.6g %.6g .0015\n\n",
1363 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1364 }
1365 }
1366 /* output continuous surface */
1367 puts("void trans tgreen\n0\n0\n7 .7 1 .7 .04 .04 .9 .9\n");
1368 fflush(stdout);
1369 sprintf(buf, "gensurf tgreen bsdf - - - %d %d", GRIDRES-1, GRIDRES-1);
1370 pfp = popen(buf, "w");
1371 if (pfp == NULL) {
1372 fputs(buf, stderr);
1373 fputs(": cannot start command\n", stderr);
1374 return(1);
1375 }
1376 for (i = 0; i < GRIDRES; i++)
1377 for (j = 0; j < GRIDRES; j++) {
1378 ovec_from_pos(dir, i, j);
1379 bsdf = eval_rbfrep(dsf_list, dir) / dir[2];
1380 fprintf(pfp, "%.8e %.8e %.8e\n",
1381 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1382 }
1383 return(pclose(pfp)==0 ? 0 : 1);
1384 }
1385 #endif