| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.8 |
static const char RCSid[] = "$Id: pabopto2xml.c,v 2.7 2012/09/02 15:33:15 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Convert PAB-Opto measurements to XML format using tensor tree representation
|
| 6 |
|
|
* Employs Bonneel et al. Earth Mover's Distance interpolant.
|
| 7 |
|
|
*
|
| 8 |
|
|
* G.Ward
|
| 9 |
|
|
*/
|
| 10 |
|
|
|
| 11 |
|
|
#define _USE_MATH_DEFINES
|
| 12 |
|
|
#include <stdio.h>
|
| 13 |
|
|
#include <stdlib.h>
|
| 14 |
|
|
#include <string.h>
|
| 15 |
|
|
#include <ctype.h>
|
| 16 |
|
|
#include <math.h>
|
| 17 |
|
|
#include "bsdf.h"
|
| 18 |
|
|
|
| 19 |
|
|
#ifndef GRIDRES
|
| 20 |
|
|
#define GRIDRES 200 /* max. grid resolution per side */
|
| 21 |
|
|
#endif
|
| 22 |
|
|
|
| 23 |
greg |
2.3 |
#define RSCA 2.7 /* radius scaling factor (empirical) */
|
| 24 |
greg |
2.2 |
|
| 25 |
greg |
2.6 |
/* convert to/from coded radians */
|
| 26 |
|
|
#define ANG2R(r) (int)((r)*((1<<16)/M_PI))
|
| 27 |
greg |
2.2 |
#define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
|
| 28 |
greg |
2.1 |
|
| 29 |
|
|
typedef struct {
|
| 30 |
greg |
2.5 |
float vsum; /* DSF sum */
|
| 31 |
greg |
2.1 |
unsigned short nval; /* number of values in sum */
|
| 32 |
greg |
2.2 |
unsigned short crad; /* radius (coded angle) */
|
| 33 |
greg |
2.1 |
} GRIDVAL; /* grid value */
|
| 34 |
|
|
|
| 35 |
|
|
typedef struct {
|
| 36 |
greg |
2.5 |
float peak; /* lobe value at peak */
|
| 37 |
greg |
2.2 |
unsigned short crad; /* radius (coded angle) */
|
| 38 |
greg |
2.1 |
unsigned char gx, gy; /* grid position */
|
| 39 |
|
|
} RBFVAL; /* radial basis function value */
|
| 40 |
|
|
|
| 41 |
greg |
2.7 |
struct s_rbfnode; /* forward declaration of RBF struct */
|
| 42 |
|
|
|
| 43 |
|
|
typedef struct s_migration {
|
| 44 |
|
|
struct s_migration *next; /* next in global edge list */
|
| 45 |
|
|
struct s_rbfnode *rbfv[2]; /* from,to vertex */
|
| 46 |
|
|
struct s_migration *enxt[2]; /* next from,to sibling */
|
| 47 |
|
|
float mtx[1]; /* matrix (extends struct) */
|
| 48 |
|
|
} MIGRATION; /* migration link (winged edge structure) */
|
| 49 |
|
|
|
| 50 |
|
|
typedef struct s_rbfnode {
|
| 51 |
|
|
struct s_rbfnode *next; /* next in global RBF list */
|
| 52 |
|
|
MIGRATION *ejl; /* edge list for this vertex */
|
| 53 |
greg |
2.1 |
FVECT invec; /* incident vector direction */
|
| 54 |
greg |
2.8 |
double vtotal; /* volume for normalization */
|
| 55 |
greg |
2.1 |
int nrbf; /* number of RBFs */
|
| 56 |
|
|
RBFVAL rbfa[1]; /* RBF array (extends struct) */
|
| 57 |
greg |
2.5 |
} RBFLIST; /* RBF representation of DSF @ 1 incidence */
|
| 58 |
greg |
2.1 |
|
| 59 |
|
|
/* our loaded grid for this incident angle */
|
| 60 |
|
|
static double theta_in_deg, phi_in_deg;
|
| 61 |
greg |
2.5 |
static GRIDVAL dsf_grid[GRIDRES][GRIDRES];
|
| 62 |
greg |
2.1 |
|
| 63 |
greg |
2.5 |
/* processed incident DSF measurements */
|
| 64 |
greg |
2.7 |
static RBFLIST *dsf_list = NULL;
|
| 65 |
|
|
|
| 66 |
greg |
2.8 |
/* RBF-linking matrices (edges) */
|
| 67 |
greg |
2.7 |
static MIGRATION *mig_list = NULL;
|
| 68 |
|
|
|
| 69 |
greg |
2.8 |
#define mtx_nrows(m) ((m)->rbfv[0]->nrbf)
|
| 70 |
|
|
#define mtx_ncols(m) ((m)->rbfv[1]->nrbf)
|
| 71 |
|
|
#define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j))
|
| 72 |
|
|
#define is_src(rbf,m) ((rbf) == (m)->rbfv[0])
|
| 73 |
|
|
#define is_dest(rbf,m) ((rbf) == (m)->rbfv[1])
|
| 74 |
|
|
#define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)]
|
| 75 |
|
|
|
| 76 |
|
|
/* Compute volume associated with Gaussian lobe */
|
| 77 |
|
|
static double
|
| 78 |
|
|
rbf_volume(const RBFVAL *rbfp)
|
| 79 |
|
|
{
|
| 80 |
|
|
double rad = R2ANG(rbfp->crad);
|
| 81 |
|
|
|
| 82 |
|
|
return((2.*M_PI) * rbfp->peak * rad*rad);
|
| 83 |
|
|
}
|
| 84 |
greg |
2.1 |
|
| 85 |
greg |
2.3 |
/* Compute outgoing vector from grid position */
|
| 86 |
|
|
static void
|
| 87 |
|
|
vec_from_pos(FVECT vec, int xpos, int ypos)
|
| 88 |
greg |
2.1 |
{
|
| 89 |
greg |
2.3 |
double uv[2];
|
| 90 |
|
|
double r2;
|
| 91 |
|
|
|
| 92 |
|
|
SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5));
|
| 93 |
|
|
/* uniform hemispherical projection */
|
| 94 |
|
|
r2 = uv[0]*uv[0] + uv[1]*uv[1];
|
| 95 |
|
|
vec[0] = vec[1] = sqrt(2. - r2);
|
| 96 |
|
|
vec[0] *= uv[0];
|
| 97 |
|
|
vec[1] *= uv[1];
|
| 98 |
|
|
vec[2] = 1. - r2;
|
| 99 |
greg |
2.1 |
}
|
| 100 |
|
|
|
| 101 |
|
|
/* Compute grid position from normalized outgoing vector */
|
| 102 |
|
|
static void
|
| 103 |
|
|
pos_from_vec(int pos[2], const FVECT vec)
|
| 104 |
|
|
{
|
| 105 |
|
|
double sq[2]; /* uniform hemispherical projection */
|
| 106 |
|
|
double norm = 1./sqrt(1. + vec[2]);
|
| 107 |
|
|
|
| 108 |
|
|
SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
|
| 109 |
|
|
|
| 110 |
|
|
pos[0] = (int)(sq[0]*GRIDRES);
|
| 111 |
|
|
pos[1] = (int)(sq[1]*GRIDRES);
|
| 112 |
|
|
}
|
| 113 |
|
|
|
| 114 |
greg |
2.5 |
/* Evaluate RBF for DSF at the given normalized outgoing direction */
|
| 115 |
greg |
2.1 |
static double
|
| 116 |
|
|
eval_rbfrep(const RBFLIST *rp, const FVECT outvec)
|
| 117 |
|
|
{
|
| 118 |
|
|
double res = .0;
|
| 119 |
|
|
const RBFVAL *rbfp;
|
| 120 |
|
|
FVECT odir;
|
| 121 |
|
|
double sig2;
|
| 122 |
|
|
int n;
|
| 123 |
|
|
|
| 124 |
|
|
rbfp = rp->rbfa;
|
| 125 |
|
|
for (n = rp->nrbf; n--; rbfp++) {
|
| 126 |
|
|
vec_from_pos(odir, rbfp->gx, rbfp->gy);
|
| 127 |
greg |
2.2 |
sig2 = R2ANG(rbfp->crad);
|
| 128 |
|
|
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
|
| 129 |
greg |
2.1 |
if (sig2 > -19.)
|
| 130 |
greg |
2.5 |
res += rbfp->peak * exp(sig2);
|
| 131 |
greg |
2.1 |
}
|
| 132 |
|
|
return(res);
|
| 133 |
|
|
}
|
| 134 |
|
|
|
| 135 |
greg |
2.3 |
/* Count up filled nodes and build RBF representation from current grid */
|
| 136 |
|
|
static RBFLIST *
|
| 137 |
|
|
make_rbfrep(void)
|
| 138 |
|
|
{
|
| 139 |
greg |
2.6 |
int niter = 16;
|
| 140 |
|
|
double lastVar, thisVar = 100.;
|
| 141 |
greg |
2.3 |
int nn;
|
| 142 |
|
|
RBFLIST *newnode;
|
| 143 |
|
|
int i, j;
|
| 144 |
|
|
|
| 145 |
|
|
nn = 0; /* count selected bins */
|
| 146 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 147 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 148 |
greg |
2.6 |
nn += dsf_grid[i][j].nval;
|
| 149 |
greg |
2.3 |
/* allocate RBF array */
|
| 150 |
|
|
newnode = (RBFLIST *)malloc(sizeof(RBFLIST) + sizeof(RBFVAL)*(nn-1));
|
| 151 |
|
|
if (newnode == NULL) {
|
| 152 |
greg |
2.8 |
fputs("Out of memory in make_rbfrep()\n", stderr);
|
| 153 |
greg |
2.3 |
exit(1);
|
| 154 |
|
|
}
|
| 155 |
|
|
newnode->next = NULL;
|
| 156 |
greg |
2.7 |
newnode->ejl = NULL;
|
| 157 |
greg |
2.3 |
newnode->invec[2] = sin(M_PI/180.*theta_in_deg);
|
| 158 |
|
|
newnode->invec[0] = cos(M_PI/180.*phi_in_deg)*newnode->invec[2];
|
| 159 |
|
|
newnode->invec[1] = sin(M_PI/180.*phi_in_deg)*newnode->invec[2];
|
| 160 |
|
|
newnode->invec[2] = sqrt(1. - newnode->invec[2]*newnode->invec[2]);
|
| 161 |
greg |
2.8 |
newnode->vtotal = 0;
|
| 162 |
greg |
2.3 |
newnode->nrbf = nn;
|
| 163 |
|
|
nn = 0; /* fill RBF array */
|
| 164 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 165 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 166 |
greg |
2.5 |
if (dsf_grid[i][j].nval) {
|
| 167 |
greg |
2.6 |
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
|
| 168 |
greg |
2.5 |
newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5;
|
| 169 |
greg |
2.3 |
newnode->rbfa[nn].gx = i;
|
| 170 |
|
|
newnode->rbfa[nn].gy = j;
|
| 171 |
|
|
++nn;
|
| 172 |
|
|
}
|
| 173 |
greg |
2.6 |
/* iterate to improve interpolation accuracy */
|
| 174 |
|
|
do {
|
| 175 |
greg |
2.4 |
double dsum = .0, dsum2 = .0;
|
| 176 |
greg |
2.3 |
nn = 0;
|
| 177 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 178 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 179 |
greg |
2.5 |
if (dsf_grid[i][j].nval) {
|
| 180 |
greg |
2.3 |
FVECT odir;
|
| 181 |
greg |
2.6 |
double corr;
|
| 182 |
greg |
2.3 |
vec_from_pos(odir, i, j);
|
| 183 |
greg |
2.6 |
newnode->rbfa[nn++].peak *= corr =
|
| 184 |
greg |
2.5 |
dsf_grid[i][j].vsum /
|
| 185 |
greg |
2.3 |
eval_rbfrep(newnode, odir);
|
| 186 |
greg |
2.4 |
dsum += corr - 1.;
|
| 187 |
|
|
dsum2 += (corr-1.)*(corr-1.);
|
| 188 |
greg |
2.3 |
}
|
| 189 |
greg |
2.6 |
lastVar = thisVar;
|
| 190 |
|
|
thisVar = dsum2/(double)nn;
|
| 191 |
greg |
2.4 |
/*
|
| 192 |
|
|
fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
|
| 193 |
|
|
100.*dsum/(double)nn,
|
| 194 |
greg |
2.6 |
100.*sqrt(thisVar));
|
| 195 |
greg |
2.4 |
*/
|
| 196 |
greg |
2.6 |
} while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
|
| 197 |
|
|
|
| 198 |
greg |
2.8 |
nn = 0; /* compute sum for normalization */
|
| 199 |
|
|
while (nn < newnode->nrbf)
|
| 200 |
|
|
newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
|
| 201 |
|
|
|
| 202 |
greg |
2.5 |
newnode->next = dsf_list;
|
| 203 |
|
|
return(dsf_list = newnode);
|
| 204 |
greg |
2.3 |
}
|
| 205 |
|
|
|
| 206 |
greg |
2.1 |
/* Load a set of measurements corresponding to a particular incident angle */
|
| 207 |
|
|
static int
|
| 208 |
|
|
load_bsdf_meas(const char *fname)
|
| 209 |
|
|
{
|
| 210 |
|
|
FILE *fp = fopen(fname, "r");
|
| 211 |
|
|
int inp_is_DSF = -1;
|
| 212 |
|
|
double theta_out, phi_out, val;
|
| 213 |
|
|
char buf[2048];
|
| 214 |
|
|
int n, c;
|
| 215 |
|
|
|
| 216 |
|
|
if (fp == NULL) {
|
| 217 |
|
|
fputs(fname, stderr);
|
| 218 |
|
|
fputs(": cannot open\n", stderr);
|
| 219 |
|
|
return(0);
|
| 220 |
|
|
}
|
| 221 |
greg |
2.5 |
memset(dsf_grid, 0, sizeof(dsf_grid));
|
| 222 |
greg |
2.1 |
/* read header information */
|
| 223 |
|
|
while ((c = getc(fp)) == '#' || c == EOF) {
|
| 224 |
|
|
if (fgets(buf, sizeof(buf), fp) == NULL) {
|
| 225 |
|
|
fputs(fname, stderr);
|
| 226 |
|
|
fputs(": unexpected EOF\n", stderr);
|
| 227 |
|
|
fclose(fp);
|
| 228 |
|
|
return(0);
|
| 229 |
|
|
}
|
| 230 |
|
|
if (!strcmp(buf, "format: theta phi DSF\n")) {
|
| 231 |
|
|
inp_is_DSF = 1;
|
| 232 |
|
|
continue;
|
| 233 |
|
|
}
|
| 234 |
|
|
if (!strcmp(buf, "format: theta phi BSDF\n")) {
|
| 235 |
|
|
inp_is_DSF = 0;
|
| 236 |
|
|
continue;
|
| 237 |
|
|
}
|
| 238 |
|
|
if (sscanf(buf, "intheta %lf", &theta_in_deg) == 1)
|
| 239 |
|
|
continue;
|
| 240 |
|
|
if (sscanf(buf, "inphi %lf", &phi_in_deg) == 1)
|
| 241 |
|
|
continue;
|
| 242 |
|
|
if (sscanf(buf, "incident_angle %lf %lf",
|
| 243 |
|
|
&theta_in_deg, &phi_in_deg) == 2)
|
| 244 |
|
|
continue;
|
| 245 |
|
|
}
|
| 246 |
|
|
if (inp_is_DSF < 0) {
|
| 247 |
|
|
fputs(fname, stderr);
|
| 248 |
|
|
fputs(": unknown format\n", stderr);
|
| 249 |
|
|
fclose(fp);
|
| 250 |
|
|
return(0);
|
| 251 |
|
|
}
|
| 252 |
|
|
ungetc(c, fp); /* read actual data */
|
| 253 |
|
|
while (fscanf(fp, "%lf %lf %lf\n", &theta_out, &phi_out, &val) == 3) {
|
| 254 |
|
|
FVECT ovec;
|
| 255 |
|
|
int pos[2];
|
| 256 |
|
|
|
| 257 |
|
|
ovec[2] = sin(M_PI/180.*theta_out);
|
| 258 |
|
|
ovec[0] = cos(M_PI/180.*phi_out) * ovec[2];
|
| 259 |
|
|
ovec[1] = sin(M_PI/180.*phi_out) * ovec[2];
|
| 260 |
|
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
|
| 261 |
|
|
|
| 262 |
greg |
2.5 |
if (!inp_is_DSF)
|
| 263 |
|
|
val *= ovec[2]; /* convert from BSDF to DSF */
|
| 264 |
greg |
2.1 |
|
| 265 |
|
|
pos_from_vec(pos, ovec);
|
| 266 |
|
|
|
| 267 |
greg |
2.5 |
dsf_grid[pos[0]][pos[1]].vsum += val;
|
| 268 |
|
|
dsf_grid[pos[0]][pos[1]].nval++;
|
| 269 |
greg |
2.1 |
}
|
| 270 |
|
|
n = 0;
|
| 271 |
|
|
while ((c = getc(fp)) != EOF)
|
| 272 |
|
|
n += !isspace(c);
|
| 273 |
|
|
if (n)
|
| 274 |
|
|
fprintf(stderr,
|
| 275 |
|
|
"%s: warning: %d unexpected characters past EOD\n",
|
| 276 |
|
|
fname, n);
|
| 277 |
|
|
fclose(fp);
|
| 278 |
|
|
return(1);
|
| 279 |
|
|
}
|
| 280 |
|
|
|
| 281 |
|
|
/* Compute radii for non-empty bins */
|
| 282 |
|
|
/* (distance to furthest empty bin for which non-empty bin is the closest) */
|
| 283 |
|
|
static void
|
| 284 |
|
|
compute_radii(void)
|
| 285 |
|
|
{
|
| 286 |
greg |
2.4 |
unsigned int fill_grid[GRIDRES][GRIDRES];
|
| 287 |
|
|
unsigned short fill_cnt[GRIDRES][GRIDRES];
|
| 288 |
greg |
2.2 |
FVECT ovec0, ovec1;
|
| 289 |
|
|
double ang2, lastang2;
|
| 290 |
|
|
int r, i, j, jn, ii, jj, inear, jnear;
|
| 291 |
|
|
|
| 292 |
|
|
r = GRIDRES/2; /* proceed in zig-zag */
|
| 293 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++)
|
| 294 |
|
|
for (jn = 0; jn < GRIDRES; jn++) {
|
| 295 |
|
|
j = (i&1) ? jn : GRIDRES-1-jn;
|
| 296 |
greg |
2.5 |
if (dsf_grid[i][j].nval) /* find empty grid pos. */
|
| 297 |
greg |
2.1 |
continue;
|
| 298 |
greg |
2.2 |
vec_from_pos(ovec0, i, j);
|
| 299 |
greg |
2.1 |
inear = jnear = -1; /* find nearest non-empty */
|
| 300 |
greg |
2.2 |
lastang2 = M_PI*M_PI;
|
| 301 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) {
|
| 302 |
|
|
if (ii < 0) continue;
|
| 303 |
|
|
if (ii >= GRIDRES) break;
|
| 304 |
|
|
for (jj = j-r; jj <= j+r; jj++) {
|
| 305 |
|
|
if (jj < 0) continue;
|
| 306 |
|
|
if (jj >= GRIDRES) break;
|
| 307 |
greg |
2.5 |
if (!dsf_grid[ii][jj].nval)
|
| 308 |
greg |
2.1 |
continue;
|
| 309 |
greg |
2.2 |
vec_from_pos(ovec1, ii, jj);
|
| 310 |
|
|
ang2 = 2. - 2.*DOT(ovec0,ovec1);
|
| 311 |
|
|
if (ang2 >= lastang2)
|
| 312 |
greg |
2.1 |
continue;
|
| 313 |
greg |
2.2 |
lastang2 = ang2;
|
| 314 |
greg |
2.1 |
inear = ii; jnear = jj;
|
| 315 |
|
|
}
|
| 316 |
|
|
}
|
| 317 |
greg |
2.2 |
if (inear < 0) {
|
| 318 |
|
|
fputs("Could not find non-empty neighbor!\n", stderr);
|
| 319 |
|
|
exit(1);
|
| 320 |
|
|
}
|
| 321 |
|
|
ang2 = sqrt(lastang2);
|
| 322 |
|
|
r = ANG2R(ang2); /* record if > previous */
|
| 323 |
greg |
2.5 |
if (r > dsf_grid[inear][jnear].crad)
|
| 324 |
|
|
dsf_grid[inear][jnear].crad = r;
|
| 325 |
greg |
2.2 |
/* next search radius */
|
| 326 |
|
|
r = ang2*(2.*GRIDRES/M_PI) + 1;
|
| 327 |
greg |
2.1 |
}
|
| 328 |
greg |
2.4 |
/* blur radii over hemisphere */
|
| 329 |
greg |
2.1 |
memset(fill_grid, 0, sizeof(fill_grid));
|
| 330 |
greg |
2.4 |
memset(fill_cnt, 0, sizeof(fill_cnt));
|
| 331 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++)
|
| 332 |
|
|
for (j = 0; j < GRIDRES; j++) {
|
| 333 |
greg |
2.5 |
if (!dsf_grid[i][j].crad)
|
| 334 |
greg |
2.4 |
continue; /* missing distance */
|
| 335 |
greg |
2.5 |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
|
| 336 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) {
|
| 337 |
|
|
if (ii < 0) continue;
|
| 338 |
|
|
if (ii >= GRIDRES) break;
|
| 339 |
|
|
for (jj = j-r; jj <= j+r; jj++) {
|
| 340 |
|
|
if (jj < 0) continue;
|
| 341 |
|
|
if (jj >= GRIDRES) break;
|
| 342 |
greg |
2.4 |
if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
|
| 343 |
greg |
2.1 |
continue;
|
| 344 |
greg |
2.5 |
fill_grid[ii][jj] += dsf_grid[i][j].crad;
|
| 345 |
greg |
2.4 |
fill_cnt[ii][jj]++;
|
| 346 |
greg |
2.1 |
}
|
| 347 |
|
|
}
|
| 348 |
|
|
}
|
| 349 |
greg |
2.6 |
/* copy back blurred radii */
|
| 350 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++)
|
| 351 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 352 |
greg |
2.4 |
if (fill_cnt[i][j])
|
| 353 |
greg |
2.5 |
dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
|
| 354 |
greg |
2.1 |
}
|
| 355 |
|
|
|
| 356 |
greg |
2.6 |
/* Cull points for more uniform distribution, leave all nval 0 or 1 */
|
| 357 |
greg |
2.1 |
static void
|
| 358 |
|
|
cull_values(void)
|
| 359 |
|
|
{
|
| 360 |
greg |
2.2 |
FVECT ovec0, ovec1;
|
| 361 |
|
|
double maxang, maxang2;
|
| 362 |
|
|
int i, j, ii, jj, r;
|
| 363 |
greg |
2.1 |
/* simple greedy algorithm */
|
| 364 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 365 |
|
|
for (j = 0; j < GRIDRES; j++) {
|
| 366 |
greg |
2.5 |
if (!dsf_grid[i][j].nval)
|
| 367 |
greg |
2.1 |
continue;
|
| 368 |
greg |
2.5 |
if (!dsf_grid[i][j].crad)
|
| 369 |
greg |
2.2 |
continue; /* shouldn't happen */
|
| 370 |
|
|
vec_from_pos(ovec0, i, j);
|
| 371 |
greg |
2.5 |
maxang = 2.*R2ANG(dsf_grid[i][j].crad);
|
| 372 |
greg |
2.2 |
if (maxang > ovec0[2]) /* clamp near horizon */
|
| 373 |
|
|
maxang = ovec0[2];
|
| 374 |
|
|
r = maxang*(2.*GRIDRES/M_PI) + 1;
|
| 375 |
|
|
maxang2 = maxang*maxang;
|
| 376 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) {
|
| 377 |
|
|
if (ii < 0) continue;
|
| 378 |
|
|
if (ii >= GRIDRES) break;
|
| 379 |
|
|
for (jj = j-r; jj <= j+r; jj++) {
|
| 380 |
|
|
if (jj < 0) continue;
|
| 381 |
|
|
if (jj >= GRIDRES) break;
|
| 382 |
greg |
2.5 |
if (!dsf_grid[ii][jj].nval)
|
| 383 |
greg |
2.1 |
continue;
|
| 384 |
greg |
2.2 |
if ((ii == i) & (jj == j))
|
| 385 |
|
|
continue; /* don't get self-absorbed */
|
| 386 |
|
|
vec_from_pos(ovec1, ii, jj);
|
| 387 |
|
|
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
|
| 388 |
greg |
2.1 |
continue;
|
| 389 |
greg |
2.2 |
/* absorb sum */
|
| 390 |
greg |
2.5 |
dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
|
| 391 |
|
|
dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
|
| 392 |
greg |
2.2 |
/* keep value, though */
|
| 393 |
greg |
2.6 |
dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
|
| 394 |
greg |
2.5 |
dsf_grid[ii][jj].nval = 0;
|
| 395 |
greg |
2.1 |
}
|
| 396 |
|
|
}
|
| 397 |
|
|
}
|
| 398 |
greg |
2.6 |
/* final averaging pass */
|
| 399 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 400 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 401 |
|
|
if (dsf_grid[i][j].nval > 1) {
|
| 402 |
|
|
dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
|
| 403 |
|
|
dsf_grid[i][j].nval = 1;
|
| 404 |
|
|
}
|
| 405 |
greg |
2.1 |
}
|
| 406 |
|
|
|
| 407 |
greg |
2.8 |
/* Compute (and allocate) migration price matrix for optimization */
|
| 408 |
|
|
static float *
|
| 409 |
|
|
price_routes(const RBFLIST *from_rbf, const RBFLIST *to_rbf)
|
| 410 |
|
|
{
|
| 411 |
|
|
float *pmtx = (float *)malloc(sizeof(float) *
|
| 412 |
|
|
from_rbf->nrbf * to_rbf->nrbf);
|
| 413 |
|
|
FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf);
|
| 414 |
|
|
int i, j;
|
| 415 |
|
|
|
| 416 |
|
|
if ((pmtx == NULL) | (vto == NULL)) {
|
| 417 |
|
|
fputs("Out of memory in migration_costs()\n", stderr);
|
| 418 |
|
|
exit(1);
|
| 419 |
|
|
}
|
| 420 |
|
|
for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */
|
| 421 |
|
|
vec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy);
|
| 422 |
|
|
|
| 423 |
|
|
for (i = from_rbf->nrbf; i--; ) {
|
| 424 |
|
|
const double from_ang = R2ANG(from_rbf->rbfa[i].crad);
|
| 425 |
|
|
FVECT vfrom;
|
| 426 |
|
|
vec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy);
|
| 427 |
|
|
for (j = to_rbf->nrbf; j--; )
|
| 428 |
|
|
pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) +
|
| 429 |
|
|
fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang);
|
| 430 |
|
|
}
|
| 431 |
|
|
free(vto);
|
| 432 |
|
|
return(pmtx);
|
| 433 |
|
|
}
|
| 434 |
|
|
|
| 435 |
|
|
/* Comparison routine needed for sorting price row */
|
| 436 |
|
|
static const float *price_arr;
|
| 437 |
|
|
static int
|
| 438 |
|
|
msrt_cmp(const void *p1, const void *p2)
|
| 439 |
|
|
{
|
| 440 |
|
|
float c1 = price_arr[*(const int *)p1];
|
| 441 |
|
|
float c2 = price_arr[*(const int *)p2];
|
| 442 |
|
|
|
| 443 |
|
|
if (c1 > c2) return(1);
|
| 444 |
|
|
if (c1 < c2) return(-1);
|
| 445 |
|
|
return(0);
|
| 446 |
|
|
}
|
| 447 |
|
|
|
| 448 |
|
|
/* Compute minimum (optimistic) cost for moving the given source material */
|
| 449 |
|
|
static double
|
| 450 |
|
|
min_cost(double amt2move, const double *avail, const float *price, int n)
|
| 451 |
|
|
{
|
| 452 |
|
|
static int *price_sort = NULL;
|
| 453 |
|
|
static int n_alloc = 0;
|
| 454 |
|
|
double total_cost = 0;
|
| 455 |
|
|
int i;
|
| 456 |
|
|
|
| 457 |
|
|
if (amt2move <= FTINY) /* pre-emptive check */
|
| 458 |
|
|
return(0.);
|
| 459 |
|
|
if (n > n_alloc) { /* (re)allocate sort array */
|
| 460 |
|
|
if (n_alloc) free(price_sort);
|
| 461 |
|
|
price_sort = (int *)malloc(sizeof(int)*n);
|
| 462 |
|
|
if (price_sort == NULL) {
|
| 463 |
|
|
fputs("Out of memory in min_cost()\n", stderr);
|
| 464 |
|
|
exit(1);
|
| 465 |
|
|
}
|
| 466 |
|
|
n_alloc = n;
|
| 467 |
|
|
}
|
| 468 |
|
|
for (i = n; i--; )
|
| 469 |
|
|
price_sort[i] = i;
|
| 470 |
|
|
price_arr = price;
|
| 471 |
|
|
qsort(price_sort, n, sizeof(int), &msrt_cmp);
|
| 472 |
|
|
/* move cheapest first */
|
| 473 |
|
|
for (i = 0; i < n && amt2move > FTINY; i++) {
|
| 474 |
|
|
int d = price_sort[i];
|
| 475 |
|
|
double amt = (amt2move < avail[d]) ? amt2move : avail[d];
|
| 476 |
|
|
|
| 477 |
|
|
total_cost += amt * price[d];
|
| 478 |
|
|
amt2move -= amt;
|
| 479 |
|
|
}
|
| 480 |
|
|
if (amt2move > 1e-5) fprintf(stderr, "%g leftover!\n", amt2move);
|
| 481 |
|
|
return(total_cost);
|
| 482 |
|
|
}
|
| 483 |
|
|
|
| 484 |
|
|
/* Take a step in migration by choosing optimal bucket to transfer */
|
| 485 |
|
|
static double
|
| 486 |
|
|
migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx)
|
| 487 |
|
|
{
|
| 488 |
|
|
static double *src_cost = NULL;
|
| 489 |
|
|
int n_alloc = 0;
|
| 490 |
|
|
const double maxamt = 0.5/(mtx_nrows(mig)*mtx_ncols(mig));
|
| 491 |
|
|
double amt = 0;
|
| 492 |
|
|
struct {
|
| 493 |
|
|
int s, d; /* source and destination */
|
| 494 |
|
|
double price; /* price estimate per amount moved */
|
| 495 |
|
|
double amt; /* amount we can move */
|
| 496 |
|
|
} cur, best;
|
| 497 |
|
|
int i;
|
| 498 |
|
|
|
| 499 |
|
|
if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */
|
| 500 |
|
|
if (n_alloc)
|
| 501 |
|
|
free(src_cost);
|
| 502 |
|
|
src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig));
|
| 503 |
|
|
if (src_cost == NULL) {
|
| 504 |
|
|
fputs("Out of memory in migration_step()\n", stderr);
|
| 505 |
|
|
exit(1);
|
| 506 |
|
|
}
|
| 507 |
|
|
n_alloc = mtx_nrows(mig);
|
| 508 |
|
|
}
|
| 509 |
|
|
for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */
|
| 510 |
|
|
src_cost[i] = min_cost(src_rem[i], dst_rem,
|
| 511 |
|
|
pmtx+i*mtx_ncols(mig), mtx_ncols(mig));
|
| 512 |
|
|
|
| 513 |
|
|
/* find best source & dest. */
|
| 514 |
|
|
best.s = best.d = -1; best.price = FHUGE; best.amt = 0;
|
| 515 |
|
|
for (cur.s = mtx_nrows(mig); cur.s--; ) {
|
| 516 |
|
|
const float *price = pmtx + cur.s*mtx_ncols(mig);
|
| 517 |
|
|
double cost_others = 0;
|
| 518 |
|
|
if (src_rem[cur.s] <= FTINY)
|
| 519 |
|
|
continue;
|
| 520 |
|
|
cur.d = -1; /* examine cheapest dest. */
|
| 521 |
|
|
for (i = mtx_ncols(mig); i--; )
|
| 522 |
|
|
if (dst_rem[i] > FTINY &&
|
| 523 |
|
|
(cur.d < 0 || price[i] < price[cur.d]))
|
| 524 |
|
|
cur.d = i;
|
| 525 |
|
|
if (cur.d < 0)
|
| 526 |
|
|
return(.0);
|
| 527 |
|
|
if ((cur.price = price[cur.d]) >= best.price)
|
| 528 |
|
|
continue; /* no point checking further */
|
| 529 |
|
|
cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ?
|
| 530 |
|
|
src_rem[cur.s] : dst_rem[cur.d];
|
| 531 |
|
|
if (cur.amt > maxamt) cur.amt = maxamt;
|
| 532 |
|
|
dst_rem[cur.d] -= cur.amt; /* add up differential costs */
|
| 533 |
|
|
for (i = mtx_nrows(mig); i--; ) {
|
| 534 |
|
|
if (i == cur.s) continue;
|
| 535 |
|
|
cost_others += min_cost(src_rem[i], dst_rem, price, mtx_ncols(mig))
|
| 536 |
|
|
- src_cost[i];
|
| 537 |
|
|
}
|
| 538 |
|
|
dst_rem[cur.d] += cur.amt; /* undo trial move */
|
| 539 |
|
|
cur.price += cost_others/cur.amt; /* adjust effective price */
|
| 540 |
|
|
if (cur.price < best.price) /* are we better than best? */
|
| 541 |
|
|
best = cur;
|
| 542 |
|
|
}
|
| 543 |
|
|
if ((best.s < 0) | (best.d < 0))
|
| 544 |
|
|
return(.0);
|
| 545 |
|
|
/* make the actual move */
|
| 546 |
|
|
mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt;
|
| 547 |
|
|
src_rem[best.s] -= best.amt;
|
| 548 |
|
|
dst_rem[best.d] -= best.amt;
|
| 549 |
|
|
return(best.amt);
|
| 550 |
|
|
}
|
| 551 |
|
|
|
| 552 |
|
|
/* Compute (and insert) migration along directed edge */
|
| 553 |
|
|
static MIGRATION *
|
| 554 |
|
|
make_migration(RBFLIST *from_rbf, RBFLIST *to_rbf)
|
| 555 |
|
|
{
|
| 556 |
|
|
const double end_thresh = 0.02/(from_rbf->nrbf*to_rbf->nrbf);
|
| 557 |
|
|
float *pmtx = price_routes(from_rbf, to_rbf);
|
| 558 |
|
|
MIGRATION *newmig = (MIGRATION *)malloc(sizeof(MIGRATION) +
|
| 559 |
|
|
sizeof(float) *
|
| 560 |
|
|
(from_rbf->nrbf*to_rbf->nrbf - 1));
|
| 561 |
|
|
double *src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf);
|
| 562 |
|
|
double *dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf);
|
| 563 |
|
|
double total_rem = 1.;
|
| 564 |
|
|
int i;
|
| 565 |
|
|
|
| 566 |
|
|
if ((newmig == NULL) | (src_rem == NULL) | (dst_rem == NULL)) {
|
| 567 |
|
|
fputs("Out of memory in make_migration()\n", stderr);
|
| 568 |
|
|
exit(1);
|
| 569 |
|
|
}
|
| 570 |
|
|
newmig->next = NULL;
|
| 571 |
|
|
newmig->rbfv[0] = from_rbf;
|
| 572 |
|
|
newmig->rbfv[1] = to_rbf;
|
| 573 |
|
|
newmig->enxt[0] = newmig->enxt[1] = NULL;
|
| 574 |
|
|
memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf);
|
| 575 |
|
|
/* starting quantities */
|
| 576 |
|
|
for (i = from_rbf->nrbf; i--; )
|
| 577 |
|
|
src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal;
|
| 578 |
|
|
for (i = to_rbf->nrbf; i--; )
|
| 579 |
|
|
dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal;
|
| 580 |
|
|
/* move a bit at a time */
|
| 581 |
|
|
while (total_rem > end_thresh)
|
| 582 |
|
|
total_rem -= migration_step(newmig, src_rem, dst_rem, pmtx);
|
| 583 |
|
|
|
| 584 |
|
|
free(pmtx); /* free working arrays */
|
| 585 |
|
|
free(src_rem);
|
| 586 |
|
|
free(dst_rem);
|
| 587 |
|
|
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
|
| 588 |
|
|
float nf = rbf_volume(&from_rbf->rbfa[i]);
|
| 589 |
|
|
int j;
|
| 590 |
|
|
if (nf <= FTINY) continue;
|
| 591 |
|
|
nf = from_rbf->vtotal / nf;
|
| 592 |
|
|
for (j = to_rbf->nrbf; j--; )
|
| 593 |
|
|
newmig->mtx[mtx_ndx(newmig,i,j)] *= nf;
|
| 594 |
|
|
}
|
| 595 |
|
|
/* insert in edge lists */
|
| 596 |
|
|
newmig->enxt[0] = from_rbf->ejl;
|
| 597 |
|
|
from_rbf->ejl = newmig;
|
| 598 |
|
|
newmig->enxt[1] = to_rbf->ejl;
|
| 599 |
|
|
to_rbf->ejl = newmig;
|
| 600 |
|
|
newmig->next = mig_list;
|
| 601 |
|
|
return(mig_list = newmig);
|
| 602 |
|
|
}
|
| 603 |
|
|
|
| 604 |
|
|
#if 0
|
| 605 |
|
|
/* Partially advect between the given RBFs to a newly allocated one */
|
| 606 |
|
|
static RBFLIST *
|
| 607 |
|
|
advect_rbf(const RBFLIST *from_rbf, const RBFLIST *to_rbf,
|
| 608 |
|
|
const float *mtx, const FVECT invec)
|
| 609 |
|
|
{
|
| 610 |
|
|
RBFLIST *rbf;
|
| 611 |
|
|
|
| 612 |
|
|
if (from_rbf->nrbf > to_rbf->nrbf) {
|
| 613 |
|
|
fputs("Internal error: source RBF won't fit destination\n",
|
| 614 |
|
|
stderr);
|
| 615 |
|
|
exit(1);
|
| 616 |
|
|
}
|
| 617 |
|
|
rbf = (RBFLIST *)malloc(sizeof(RBFLIST) + sizeof(RBFVAL)*(to_rbf->nrbf-1));
|
| 618 |
|
|
if (rbf == NULL) {
|
| 619 |
|
|
fputs("Out of memory in advect_rbf()\n", stderr);
|
| 620 |
|
|
exit(1);
|
| 621 |
|
|
}
|
| 622 |
|
|
rbf->next = NULL; rbf->ejl = NULL;
|
| 623 |
|
|
VCOPY(rbf->invec, invec);
|
| 624 |
|
|
rbf->vtotal = 0;
|
| 625 |
|
|
rbf->nrbf = to_rbf->nrbf;
|
| 626 |
|
|
|
| 627 |
|
|
return rbf;
|
| 628 |
|
|
}
|
| 629 |
|
|
#endif
|
| 630 |
greg |
2.1 |
|
| 631 |
|
|
#if 1
|
| 632 |
|
|
/* Test main produces a Radiance model from the given input file */
|
| 633 |
|
|
int
|
| 634 |
|
|
main(int argc, char *argv[])
|
| 635 |
|
|
{
|
| 636 |
|
|
char buf[128];
|
| 637 |
|
|
FILE *pfp;
|
| 638 |
|
|
double bsdf;
|
| 639 |
|
|
FVECT dir;
|
| 640 |
|
|
int i, j, n;
|
| 641 |
|
|
|
| 642 |
|
|
if (argc != 2) {
|
| 643 |
|
|
fprintf(stderr, "Usage: %s input.dat > output.rad\n", argv[0]);
|
| 644 |
|
|
return(1);
|
| 645 |
|
|
}
|
| 646 |
|
|
if (!load_bsdf_meas(argv[1]))
|
| 647 |
|
|
return(1);
|
| 648 |
|
|
|
| 649 |
|
|
compute_radii();
|
| 650 |
|
|
cull_values();
|
| 651 |
greg |
2.3 |
make_rbfrep();
|
| 652 |
|
|
/* produce spheres at meas. */
|
| 653 |
|
|
puts("void plastic yellow\n0\n0\n5 .6 .4 .01 .04 .08\n");
|
| 654 |
greg |
2.1 |
puts("void plastic pink\n0\n0\n5 .5 .05 .9 .04 .08\n");
|
| 655 |
|
|
n = 0;
|
| 656 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 657 |
|
|
for (j = 0; j < GRIDRES; j++)
|
| 658 |
greg |
2.5 |
if (dsf_grid[i][j].vsum > .0f) {
|
| 659 |
greg |
2.1 |
vec_from_pos(dir, i, j);
|
| 660 |
greg |
2.5 |
bsdf = dsf_grid[i][j].vsum / dir[2];
|
| 661 |
|
|
if (dsf_grid[i][j].nval) {
|
| 662 |
greg |
2.3 |
printf("pink cone c%04d\n0\n0\n8\n", ++n);
|
| 663 |
|
|
printf("\t%.6g %.6g %.6g\n",
|
| 664 |
greg |
2.1 |
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
|
| 665 |
greg |
2.3 |
printf("\t%.6g %.6g %.6g\n",
|
| 666 |
greg |
2.1 |
dir[0]*(bsdf+.005), dir[1]*(bsdf+.005),
|
| 667 |
|
|
dir[2]*(bsdf+.005));
|
| 668 |
greg |
2.3 |
puts("\t.003\t0\n");
|
| 669 |
|
|
} else {
|
| 670 |
|
|
vec_from_pos(dir, i, j);
|
| 671 |
|
|
printf("yellow sphere s%04d\n0\n0\n", ++n);
|
| 672 |
|
|
printf("4 %.6g %.6g %.6g .0015\n\n",
|
| 673 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
|
| 674 |
|
|
}
|
| 675 |
greg |
2.1 |
}
|
| 676 |
|
|
/* output continuous surface */
|
| 677 |
|
|
puts("void trans tgreen\n0\n0\n7 .7 1 .7 .04 .04 .9 .9\n");
|
| 678 |
|
|
fflush(stdout);
|
| 679 |
greg |
2.5 |
sprintf(buf, "gensurf tgreen bsdf - - - %d %d", GRIDRES-1, GRIDRES-1);
|
| 680 |
greg |
2.1 |
pfp = popen(buf, "w");
|
| 681 |
|
|
if (pfp == NULL) {
|
| 682 |
|
|
fputs(buf, stderr);
|
| 683 |
|
|
fputs(": cannot start command\n", stderr);
|
| 684 |
|
|
return(1);
|
| 685 |
|
|
}
|
| 686 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 687 |
|
|
for (j = 0; j < GRIDRES; j++) {
|
| 688 |
|
|
vec_from_pos(dir, i, j);
|
| 689 |
greg |
2.5 |
bsdf = eval_rbfrep(dsf_list, dir) / dir[2];
|
| 690 |
greg |
2.1 |
fprintf(pfp, "%.8e %.8e %.8e\n",
|
| 691 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
|
| 692 |
|
|
}
|
| 693 |
|
|
return(pclose(pfp)==0 ? 0 : 1);
|
| 694 |
|
|
}
|
| 695 |
|
|
#endif
|