1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.18 |
static const char RCSid[] = "$Id: pabopto2xml.c,v 2.17 2012/10/16 22:00:51 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Convert PAB-Opto measurements to XML format using tensor tree representation |
6 |
|
|
* Employs Bonneel et al. Earth Mover's Distance interpolant. |
7 |
|
|
* |
8 |
|
|
* G.Ward |
9 |
|
|
*/ |
10 |
|
|
|
11 |
greg |
2.16 |
#ifndef _WIN32 |
12 |
|
|
#include <unistd.h> |
13 |
|
|
#include <sys/wait.h> |
14 |
|
|
#include <sys/mman.h> |
15 |
|
|
#endif |
16 |
greg |
2.1 |
#define _USE_MATH_DEFINES |
17 |
|
|
#include <stdio.h> |
18 |
|
|
#include <stdlib.h> |
19 |
|
|
#include <string.h> |
20 |
|
|
#include <ctype.h> |
21 |
|
|
#include <math.h> |
22 |
|
|
#include "bsdf.h" |
23 |
|
|
|
24 |
greg |
2.10 |
#define DEBUG 1 |
25 |
|
|
|
26 |
greg |
2.1 |
#ifndef GRIDRES |
27 |
greg |
2.10 |
#define GRIDRES 200 /* grid resolution per side */ |
28 |
greg |
2.1 |
#endif |
29 |
|
|
|
30 |
greg |
2.18 |
#define MAXSAMPORD 7 /* don't sample finer than this */ |
31 |
|
|
|
32 |
greg |
2.3 |
#define RSCA 2.7 /* radius scaling factor (empirical) */ |
33 |
greg |
2.2 |
|
34 |
greg |
2.6 |
/* convert to/from coded radians */ |
35 |
|
|
#define ANG2R(r) (int)((r)*((1<<16)/M_PI)) |
36 |
greg |
2.2 |
#define R2ANG(c) (((c)+.5)*(M_PI/(1<<16))) |
37 |
greg |
2.1 |
|
38 |
|
|
typedef struct { |
39 |
greg |
2.5 |
float vsum; /* DSF sum */ |
40 |
greg |
2.1 |
unsigned short nval; /* number of values in sum */ |
41 |
greg |
2.2 |
unsigned short crad; /* radius (coded angle) */ |
42 |
greg |
2.1 |
} GRIDVAL; /* grid value */ |
43 |
|
|
|
44 |
|
|
typedef struct { |
45 |
greg |
2.5 |
float peak; /* lobe value at peak */ |
46 |
greg |
2.2 |
unsigned short crad; /* radius (coded angle) */ |
47 |
greg |
2.1 |
unsigned char gx, gy; /* grid position */ |
48 |
|
|
} RBFVAL; /* radial basis function value */ |
49 |
|
|
|
50 |
greg |
2.7 |
struct s_rbfnode; /* forward declaration of RBF struct */ |
51 |
|
|
|
52 |
|
|
typedef struct s_migration { |
53 |
|
|
struct s_migration *next; /* next in global edge list */ |
54 |
|
|
struct s_rbfnode *rbfv[2]; /* from,to vertex */ |
55 |
|
|
struct s_migration *enxt[2]; /* next from,to sibling */ |
56 |
|
|
float mtx[1]; /* matrix (extends struct) */ |
57 |
|
|
} MIGRATION; /* migration link (winged edge structure) */ |
58 |
|
|
|
59 |
|
|
typedef struct s_rbfnode { |
60 |
|
|
struct s_rbfnode *next; /* next in global RBF list */ |
61 |
|
|
MIGRATION *ejl; /* edge list for this vertex */ |
62 |
greg |
2.1 |
FVECT invec; /* incident vector direction */ |
63 |
greg |
2.8 |
double vtotal; /* volume for normalization */ |
64 |
greg |
2.1 |
int nrbf; /* number of RBFs */ |
65 |
|
|
RBFVAL rbfa[1]; /* RBF array (extends struct) */ |
66 |
greg |
2.10 |
} RBFNODE; /* RBF representation of DSF @ 1 incidence */ |
67 |
greg |
2.1 |
|
68 |
|
|
/* our loaded grid for this incident angle */ |
69 |
greg |
2.10 |
static double theta_in_deg, phi_in_deg; |
70 |
|
|
static GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
71 |
|
|
|
72 |
|
|
/* all incident angles in-plane so far? */ |
73 |
|
|
static int single_plane_incident = -1; |
74 |
|
|
|
75 |
|
|
/* input/output orientations */ |
76 |
|
|
static int input_orient = 0; |
77 |
|
|
static int output_orient = 0; |
78 |
greg |
2.1 |
|
79 |
greg |
2.5 |
/* processed incident DSF measurements */ |
80 |
greg |
2.10 |
static RBFNODE *dsf_list = NULL; |
81 |
greg |
2.7 |
|
82 |
greg |
2.8 |
/* RBF-linking matrices (edges) */ |
83 |
greg |
2.7 |
static MIGRATION *mig_list = NULL; |
84 |
|
|
|
85 |
greg |
2.10 |
/* migration edges drawn in raster fashion */ |
86 |
|
|
static MIGRATION *mig_grid[GRIDRES][GRIDRES]; |
87 |
|
|
|
88 |
greg |
2.8 |
#define mtx_nrows(m) ((m)->rbfv[0]->nrbf) |
89 |
|
|
#define mtx_ncols(m) ((m)->rbfv[1]->nrbf) |
90 |
|
|
#define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j)) |
91 |
|
|
#define is_src(rbf,m) ((rbf) == (m)->rbfv[0]) |
92 |
|
|
#define is_dest(rbf,m) ((rbf) == (m)->rbfv[1]) |
93 |
|
|
#define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)] |
94 |
greg |
2.10 |
#define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)] |
95 |
|
|
|
96 |
|
|
#define round(v) (int)((v) + .5 - ((v) < -.5)) |
97 |
greg |
2.8 |
|
98 |
greg |
2.12 |
char *progname; |
99 |
greg |
2.13 |
|
100 |
greg |
2.18 |
/* percentage to cull (<0 to turn off) */ |
101 |
greg |
2.12 |
int pctcull = 90; |
102 |
greg |
2.16 |
/* number of processes to run */ |
103 |
|
|
int nprocs = 1; |
104 |
greg |
2.18 |
|
105 |
greg |
2.16 |
/* number of children (-1 in child) */ |
106 |
|
|
int nchild = 0; |
107 |
|
|
|
108 |
greg |
2.13 |
/* sampling order (set by data density) */ |
109 |
greg |
2.12 |
int samp_order = 0; |
110 |
|
|
|
111 |
greg |
2.8 |
/* Compute volume associated with Gaussian lobe */ |
112 |
|
|
static double |
113 |
|
|
rbf_volume(const RBFVAL *rbfp) |
114 |
|
|
{ |
115 |
|
|
double rad = R2ANG(rbfp->crad); |
116 |
|
|
|
117 |
|
|
return((2.*M_PI) * rbfp->peak * rad*rad); |
118 |
|
|
} |
119 |
greg |
2.1 |
|
120 |
greg |
2.3 |
/* Compute outgoing vector from grid position */ |
121 |
|
|
static void |
122 |
greg |
2.10 |
ovec_from_pos(FVECT vec, int xpos, int ypos) |
123 |
greg |
2.1 |
{ |
124 |
greg |
2.3 |
double uv[2]; |
125 |
|
|
double r2; |
126 |
|
|
|
127 |
|
|
SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5)); |
128 |
|
|
/* uniform hemispherical projection */ |
129 |
|
|
r2 = uv[0]*uv[0] + uv[1]*uv[1]; |
130 |
|
|
vec[0] = vec[1] = sqrt(2. - r2); |
131 |
|
|
vec[0] *= uv[0]; |
132 |
|
|
vec[1] *= uv[1]; |
133 |
greg |
2.10 |
vec[2] = output_orient*(1. - r2); |
134 |
greg |
2.1 |
} |
135 |
|
|
|
136 |
greg |
2.10 |
/* Compute grid position from normalized input/output vector */ |
137 |
greg |
2.1 |
static void |
138 |
|
|
pos_from_vec(int pos[2], const FVECT vec) |
139 |
|
|
{ |
140 |
|
|
double sq[2]; /* uniform hemispherical projection */ |
141 |
greg |
2.10 |
double norm = 1./sqrt(1. + fabs(vec[2])); |
142 |
greg |
2.1 |
|
143 |
|
|
SDdisk2square(sq, vec[0]*norm, vec[1]*norm); |
144 |
|
|
|
145 |
|
|
pos[0] = (int)(sq[0]*GRIDRES); |
146 |
|
|
pos[1] = (int)(sq[1]*GRIDRES); |
147 |
|
|
} |
148 |
|
|
|
149 |
greg |
2.5 |
/* Evaluate RBF for DSF at the given normalized outgoing direction */ |
150 |
greg |
2.1 |
static double |
151 |
greg |
2.10 |
eval_rbfrep(const RBFNODE *rp, const FVECT outvec) |
152 |
greg |
2.1 |
{ |
153 |
|
|
double res = .0; |
154 |
|
|
const RBFVAL *rbfp; |
155 |
|
|
FVECT odir; |
156 |
|
|
double sig2; |
157 |
|
|
int n; |
158 |
|
|
|
159 |
greg |
2.12 |
if (rp == NULL) |
160 |
|
|
return(.0); |
161 |
greg |
2.1 |
rbfp = rp->rbfa; |
162 |
|
|
for (n = rp->nrbf; n--; rbfp++) { |
163 |
greg |
2.10 |
ovec_from_pos(odir, rbfp->gx, rbfp->gy); |
164 |
greg |
2.2 |
sig2 = R2ANG(rbfp->crad); |
165 |
|
|
sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2); |
166 |
greg |
2.1 |
if (sig2 > -19.) |
167 |
greg |
2.5 |
res += rbfp->peak * exp(sig2); |
168 |
greg |
2.1 |
} |
169 |
|
|
return(res); |
170 |
|
|
} |
171 |
|
|
|
172 |
greg |
2.10 |
/* Insert a new directional scattering function in our global list */ |
173 |
|
|
static void |
174 |
|
|
insert_dsf(RBFNODE *newrbf) |
175 |
|
|
{ |
176 |
|
|
RBFNODE *rbf, *rbf_last; |
177 |
greg |
2.14 |
/* check for redundant meas. */ |
178 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
179 |
|
|
if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) { |
180 |
|
|
fputs("Duplicate incident measurement (ignored)\n", stderr); |
181 |
|
|
free(newrbf); |
182 |
|
|
return; |
183 |
|
|
} |
184 |
greg |
2.10 |
/* keep in ascending theta order */ |
185 |
|
|
for (rbf_last = NULL, rbf = dsf_list; |
186 |
|
|
single_plane_incident & (rbf != NULL); |
187 |
|
|
rbf_last = rbf, rbf = rbf->next) |
188 |
|
|
if (input_orient*rbf->invec[2] < input_orient*newrbf->invec[2]) |
189 |
|
|
break; |
190 |
|
|
if (rbf_last == NULL) { |
191 |
|
|
newrbf->next = dsf_list; |
192 |
|
|
dsf_list = newrbf; |
193 |
|
|
return; |
194 |
|
|
} |
195 |
|
|
newrbf->next = rbf; |
196 |
|
|
rbf_last->next = newrbf; |
197 |
|
|
} |
198 |
|
|
|
199 |
greg |
2.3 |
/* Count up filled nodes and build RBF representation from current grid */ |
200 |
greg |
2.10 |
static RBFNODE * |
201 |
greg |
2.3 |
make_rbfrep(void) |
202 |
|
|
{ |
203 |
greg |
2.6 |
int niter = 16; |
204 |
greg |
2.12 |
int minrad = ANG2R(pow(2., 1.-samp_order)); |
205 |
greg |
2.6 |
double lastVar, thisVar = 100.; |
206 |
greg |
2.3 |
int nn; |
207 |
greg |
2.10 |
RBFNODE *newnode; |
208 |
greg |
2.3 |
int i, j; |
209 |
|
|
|
210 |
|
|
nn = 0; /* count selected bins */ |
211 |
|
|
for (i = 0; i < GRIDRES; i++) |
212 |
|
|
for (j = 0; j < GRIDRES; j++) |
213 |
greg |
2.6 |
nn += dsf_grid[i][j].nval; |
214 |
greg |
2.3 |
/* allocate RBF array */ |
215 |
greg |
2.10 |
newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
216 |
greg |
2.3 |
if (newnode == NULL) { |
217 |
greg |
2.8 |
fputs("Out of memory in make_rbfrep()\n", stderr); |
218 |
greg |
2.3 |
exit(1); |
219 |
|
|
} |
220 |
|
|
newnode->next = NULL; |
221 |
greg |
2.7 |
newnode->ejl = NULL; |
222 |
greg |
2.3 |
newnode->invec[2] = sin(M_PI/180.*theta_in_deg); |
223 |
|
|
newnode->invec[0] = cos(M_PI/180.*phi_in_deg)*newnode->invec[2]; |
224 |
|
|
newnode->invec[1] = sin(M_PI/180.*phi_in_deg)*newnode->invec[2]; |
225 |
greg |
2.10 |
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]); |
226 |
greg |
2.8 |
newnode->vtotal = 0; |
227 |
greg |
2.3 |
newnode->nrbf = nn; |
228 |
|
|
nn = 0; /* fill RBF array */ |
229 |
|
|
for (i = 0; i < GRIDRES; i++) |
230 |
|
|
for (j = 0; j < GRIDRES; j++) |
231 |
greg |
2.5 |
if (dsf_grid[i][j].nval) { |
232 |
greg |
2.6 |
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
233 |
greg |
2.5 |
newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5; |
234 |
greg |
2.3 |
newnode->rbfa[nn].gx = i; |
235 |
|
|
newnode->rbfa[nn].gy = j; |
236 |
greg |
2.12 |
if (newnode->rbfa[nn].crad < minrad) |
237 |
|
|
minrad = newnode->rbfa[nn].crad; |
238 |
greg |
2.3 |
++nn; |
239 |
|
|
} |
240 |
greg |
2.6 |
/* iterate to improve interpolation accuracy */ |
241 |
|
|
do { |
242 |
greg |
2.13 |
double dsum = 0, dsum2 = 0; |
243 |
greg |
2.3 |
nn = 0; |
244 |
|
|
for (i = 0; i < GRIDRES; i++) |
245 |
|
|
for (j = 0; j < GRIDRES; j++) |
246 |
greg |
2.5 |
if (dsf_grid[i][j].nval) { |
247 |
greg |
2.3 |
FVECT odir; |
248 |
greg |
2.6 |
double corr; |
249 |
greg |
2.10 |
ovec_from_pos(odir, i, j); |
250 |
greg |
2.6 |
newnode->rbfa[nn++].peak *= corr = |
251 |
greg |
2.5 |
dsf_grid[i][j].vsum / |
252 |
greg |
2.3 |
eval_rbfrep(newnode, odir); |
253 |
greg |
2.4 |
dsum += corr - 1.; |
254 |
|
|
dsum2 += (corr-1.)*(corr-1.); |
255 |
greg |
2.3 |
} |
256 |
greg |
2.6 |
lastVar = thisVar; |
257 |
|
|
thisVar = dsum2/(double)nn; |
258 |
greg |
2.10 |
#ifdef DEBUG |
259 |
greg |
2.4 |
fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n", |
260 |
|
|
100.*dsum/(double)nn, |
261 |
greg |
2.6 |
100.*sqrt(thisVar)); |
262 |
greg |
2.10 |
#endif |
263 |
greg |
2.6 |
} while (--niter > 0 && lastVar-thisVar > 0.02*lastVar); |
264 |
|
|
|
265 |
greg |
2.8 |
nn = 0; /* compute sum for normalization */ |
266 |
|
|
while (nn < newnode->nrbf) |
267 |
|
|
newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]); |
268 |
|
|
|
269 |
greg |
2.10 |
insert_dsf(newnode); |
270 |
greg |
2.12 |
/* adjust sampling resolution */ |
271 |
greg |
2.13 |
samp_order = log(2./R2ANG(minrad))/M_LN2 + .5; |
272 |
greg |
2.18 |
if (samp_order > MAXSAMPORD) |
273 |
|
|
samp_order = MAXSAMPORD; |
274 |
greg |
2.12 |
|
275 |
greg |
2.10 |
return(newnode); |
276 |
greg |
2.3 |
} |
277 |
|
|
|
278 |
greg |
2.1 |
/* Load a set of measurements corresponding to a particular incident angle */ |
279 |
|
|
static int |
280 |
greg |
2.10 |
load_pabopto_meas(const char *fname) |
281 |
greg |
2.1 |
{ |
282 |
|
|
FILE *fp = fopen(fname, "r"); |
283 |
|
|
int inp_is_DSF = -1; |
284 |
greg |
2.10 |
double new_phi, theta_out, phi_out, val; |
285 |
greg |
2.1 |
char buf[2048]; |
286 |
|
|
int n, c; |
287 |
|
|
|
288 |
|
|
if (fp == NULL) { |
289 |
|
|
fputs(fname, stderr); |
290 |
|
|
fputs(": cannot open\n", stderr); |
291 |
|
|
return(0); |
292 |
|
|
} |
293 |
greg |
2.5 |
memset(dsf_grid, 0, sizeof(dsf_grid)); |
294 |
greg |
2.10 |
#ifdef DEBUG |
295 |
|
|
fprintf(stderr, "Loading measurement file '%s'...\n", fname); |
296 |
|
|
#endif |
297 |
greg |
2.1 |
/* read header information */ |
298 |
|
|
while ((c = getc(fp)) == '#' || c == EOF) { |
299 |
|
|
if (fgets(buf, sizeof(buf), fp) == NULL) { |
300 |
|
|
fputs(fname, stderr); |
301 |
|
|
fputs(": unexpected EOF\n", stderr); |
302 |
|
|
fclose(fp); |
303 |
|
|
return(0); |
304 |
|
|
} |
305 |
|
|
if (!strcmp(buf, "format: theta phi DSF\n")) { |
306 |
|
|
inp_is_DSF = 1; |
307 |
|
|
continue; |
308 |
|
|
} |
309 |
|
|
if (!strcmp(buf, "format: theta phi BSDF\n")) { |
310 |
|
|
inp_is_DSF = 0; |
311 |
|
|
continue; |
312 |
|
|
} |
313 |
|
|
if (sscanf(buf, "intheta %lf", &theta_in_deg) == 1) |
314 |
|
|
continue; |
315 |
greg |
2.10 |
if (sscanf(buf, "inphi %lf", &new_phi) == 1) |
316 |
greg |
2.1 |
continue; |
317 |
|
|
if (sscanf(buf, "incident_angle %lf %lf", |
318 |
greg |
2.10 |
&theta_in_deg, &new_phi) == 2) |
319 |
greg |
2.1 |
continue; |
320 |
|
|
} |
321 |
|
|
if (inp_is_DSF < 0) { |
322 |
|
|
fputs(fname, stderr); |
323 |
|
|
fputs(": unknown format\n", stderr); |
324 |
|
|
fclose(fp); |
325 |
|
|
return(0); |
326 |
|
|
} |
327 |
greg |
2.10 |
if (!input_orient) /* check input orientation */ |
328 |
|
|
input_orient = 1 - 2*(theta_in_deg > 90.); |
329 |
|
|
else if (input_orient > 0 ^ theta_in_deg < 90.) { |
330 |
|
|
fputs("Cannot handle input angles on both sides of surface\n", |
331 |
|
|
stderr); |
332 |
|
|
exit(1); |
333 |
|
|
} |
334 |
|
|
if (single_plane_incident > 0) /* check if still in plane */ |
335 |
|
|
single_plane_incident = (round(new_phi) == round(phi_in_deg)); |
336 |
|
|
else if (single_plane_incident < 0) |
337 |
|
|
single_plane_incident = 1; |
338 |
|
|
phi_in_deg = new_phi; |
339 |
|
|
ungetc(c, fp); /* read actual data */ |
340 |
greg |
2.1 |
while (fscanf(fp, "%lf %lf %lf\n", &theta_out, &phi_out, &val) == 3) { |
341 |
|
|
FVECT ovec; |
342 |
|
|
int pos[2]; |
343 |
|
|
|
344 |
greg |
2.10 |
if (!output_orient) /* check output orientation */ |
345 |
|
|
output_orient = 1 - 2*(theta_out > 90.); |
346 |
|
|
else if (output_orient > 0 ^ theta_out < 90.) { |
347 |
|
|
fputs("Cannot handle output angles on both sides of surface\n", |
348 |
|
|
stderr); |
349 |
|
|
exit(1); |
350 |
|
|
} |
351 |
greg |
2.1 |
ovec[2] = sin(M_PI/180.*theta_out); |
352 |
|
|
ovec[0] = cos(M_PI/180.*phi_out) * ovec[2]; |
353 |
|
|
ovec[1] = sin(M_PI/180.*phi_out) * ovec[2]; |
354 |
|
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
355 |
|
|
|
356 |
greg |
2.5 |
if (!inp_is_DSF) |
357 |
|
|
val *= ovec[2]; /* convert from BSDF to DSF */ |
358 |
greg |
2.1 |
|
359 |
|
|
pos_from_vec(pos, ovec); |
360 |
|
|
|
361 |
greg |
2.5 |
dsf_grid[pos[0]][pos[1]].vsum += val; |
362 |
|
|
dsf_grid[pos[0]][pos[1]].nval++; |
363 |
greg |
2.1 |
} |
364 |
|
|
n = 0; |
365 |
|
|
while ((c = getc(fp)) != EOF) |
366 |
|
|
n += !isspace(c); |
367 |
|
|
if (n) |
368 |
|
|
fprintf(stderr, |
369 |
|
|
"%s: warning: %d unexpected characters past EOD\n", |
370 |
|
|
fname, n); |
371 |
|
|
fclose(fp); |
372 |
|
|
return(1); |
373 |
|
|
} |
374 |
|
|
|
375 |
|
|
/* Compute radii for non-empty bins */ |
376 |
|
|
/* (distance to furthest empty bin for which non-empty bin is the closest) */ |
377 |
|
|
static void |
378 |
|
|
compute_radii(void) |
379 |
|
|
{ |
380 |
greg |
2.4 |
unsigned int fill_grid[GRIDRES][GRIDRES]; |
381 |
|
|
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
382 |
greg |
2.2 |
FVECT ovec0, ovec1; |
383 |
|
|
double ang2, lastang2; |
384 |
|
|
int r, i, j, jn, ii, jj, inear, jnear; |
385 |
|
|
|
386 |
|
|
r = GRIDRES/2; /* proceed in zig-zag */ |
387 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++) |
388 |
|
|
for (jn = 0; jn < GRIDRES; jn++) { |
389 |
|
|
j = (i&1) ? jn : GRIDRES-1-jn; |
390 |
greg |
2.5 |
if (dsf_grid[i][j].nval) /* find empty grid pos. */ |
391 |
greg |
2.1 |
continue; |
392 |
greg |
2.10 |
ovec_from_pos(ovec0, i, j); |
393 |
greg |
2.1 |
inear = jnear = -1; /* find nearest non-empty */ |
394 |
greg |
2.2 |
lastang2 = M_PI*M_PI; |
395 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) { |
396 |
|
|
if (ii < 0) continue; |
397 |
|
|
if (ii >= GRIDRES) break; |
398 |
|
|
for (jj = j-r; jj <= j+r; jj++) { |
399 |
|
|
if (jj < 0) continue; |
400 |
|
|
if (jj >= GRIDRES) break; |
401 |
greg |
2.5 |
if (!dsf_grid[ii][jj].nval) |
402 |
greg |
2.1 |
continue; |
403 |
greg |
2.10 |
ovec_from_pos(ovec1, ii, jj); |
404 |
greg |
2.2 |
ang2 = 2. - 2.*DOT(ovec0,ovec1); |
405 |
|
|
if (ang2 >= lastang2) |
406 |
greg |
2.1 |
continue; |
407 |
greg |
2.2 |
lastang2 = ang2; |
408 |
greg |
2.1 |
inear = ii; jnear = jj; |
409 |
|
|
} |
410 |
|
|
} |
411 |
greg |
2.2 |
if (inear < 0) { |
412 |
|
|
fputs("Could not find non-empty neighbor!\n", stderr); |
413 |
|
|
exit(1); |
414 |
|
|
} |
415 |
|
|
ang2 = sqrt(lastang2); |
416 |
|
|
r = ANG2R(ang2); /* record if > previous */ |
417 |
greg |
2.5 |
if (r > dsf_grid[inear][jnear].crad) |
418 |
|
|
dsf_grid[inear][jnear].crad = r; |
419 |
greg |
2.2 |
/* next search radius */ |
420 |
greg |
2.10 |
r = ang2*(2.*GRIDRES/M_PI) + 3; |
421 |
greg |
2.1 |
} |
422 |
greg |
2.4 |
/* blur radii over hemisphere */ |
423 |
greg |
2.1 |
memset(fill_grid, 0, sizeof(fill_grid)); |
424 |
greg |
2.4 |
memset(fill_cnt, 0, sizeof(fill_cnt)); |
425 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++) |
426 |
|
|
for (j = 0; j < GRIDRES; j++) { |
427 |
greg |
2.5 |
if (!dsf_grid[i][j].crad) |
428 |
greg |
2.4 |
continue; /* missing distance */ |
429 |
greg |
2.5 |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI); |
430 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) { |
431 |
|
|
if (ii < 0) continue; |
432 |
|
|
if (ii >= GRIDRES) break; |
433 |
|
|
for (jj = j-r; jj <= j+r; jj++) { |
434 |
|
|
if (jj < 0) continue; |
435 |
|
|
if (jj >= GRIDRES) break; |
436 |
greg |
2.4 |
if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r) |
437 |
greg |
2.1 |
continue; |
438 |
greg |
2.5 |
fill_grid[ii][jj] += dsf_grid[i][j].crad; |
439 |
greg |
2.4 |
fill_cnt[ii][jj]++; |
440 |
greg |
2.1 |
} |
441 |
|
|
} |
442 |
|
|
} |
443 |
greg |
2.6 |
/* copy back blurred radii */ |
444 |
greg |
2.1 |
for (i = 0; i < GRIDRES; i++) |
445 |
|
|
for (j = 0; j < GRIDRES; j++) |
446 |
greg |
2.4 |
if (fill_cnt[i][j]) |
447 |
greg |
2.5 |
dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j]; |
448 |
greg |
2.1 |
} |
449 |
|
|
|
450 |
greg |
2.6 |
/* Cull points for more uniform distribution, leave all nval 0 or 1 */ |
451 |
greg |
2.1 |
static void |
452 |
|
|
cull_values(void) |
453 |
|
|
{ |
454 |
greg |
2.2 |
FVECT ovec0, ovec1; |
455 |
|
|
double maxang, maxang2; |
456 |
|
|
int i, j, ii, jj, r; |
457 |
greg |
2.1 |
/* simple greedy algorithm */ |
458 |
|
|
for (i = 0; i < GRIDRES; i++) |
459 |
|
|
for (j = 0; j < GRIDRES; j++) { |
460 |
greg |
2.5 |
if (!dsf_grid[i][j].nval) |
461 |
greg |
2.1 |
continue; |
462 |
greg |
2.5 |
if (!dsf_grid[i][j].crad) |
463 |
greg |
2.2 |
continue; /* shouldn't happen */ |
464 |
greg |
2.10 |
ovec_from_pos(ovec0, i, j); |
465 |
greg |
2.5 |
maxang = 2.*R2ANG(dsf_grid[i][j].crad); |
466 |
greg |
2.2 |
if (maxang > ovec0[2]) /* clamp near horizon */ |
467 |
|
|
maxang = ovec0[2]; |
468 |
|
|
r = maxang*(2.*GRIDRES/M_PI) + 1; |
469 |
|
|
maxang2 = maxang*maxang; |
470 |
greg |
2.1 |
for (ii = i-r; ii <= i+r; ii++) { |
471 |
|
|
if (ii < 0) continue; |
472 |
|
|
if (ii >= GRIDRES) break; |
473 |
|
|
for (jj = j-r; jj <= j+r; jj++) { |
474 |
|
|
if (jj < 0) continue; |
475 |
|
|
if (jj >= GRIDRES) break; |
476 |
greg |
2.5 |
if (!dsf_grid[ii][jj].nval) |
477 |
greg |
2.1 |
continue; |
478 |
greg |
2.2 |
if ((ii == i) & (jj == j)) |
479 |
|
|
continue; /* don't get self-absorbed */ |
480 |
greg |
2.10 |
ovec_from_pos(ovec1, ii, jj); |
481 |
greg |
2.2 |
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
482 |
greg |
2.1 |
continue; |
483 |
greg |
2.2 |
/* absorb sum */ |
484 |
greg |
2.5 |
dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum; |
485 |
|
|
dsf_grid[i][j].nval += dsf_grid[ii][jj].nval; |
486 |
greg |
2.2 |
/* keep value, though */ |
487 |
greg |
2.6 |
dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval; |
488 |
greg |
2.5 |
dsf_grid[ii][jj].nval = 0; |
489 |
greg |
2.1 |
} |
490 |
|
|
} |
491 |
|
|
} |
492 |
greg |
2.6 |
/* final averaging pass */ |
493 |
|
|
for (i = 0; i < GRIDRES; i++) |
494 |
|
|
for (j = 0; j < GRIDRES; j++) |
495 |
|
|
if (dsf_grid[i][j].nval > 1) { |
496 |
|
|
dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval; |
497 |
|
|
dsf_grid[i][j].nval = 1; |
498 |
|
|
} |
499 |
greg |
2.1 |
} |
500 |
|
|
|
501 |
greg |
2.8 |
/* Compute (and allocate) migration price matrix for optimization */ |
502 |
|
|
static float * |
503 |
greg |
2.10 |
price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf) |
504 |
greg |
2.8 |
{ |
505 |
|
|
float *pmtx = (float *)malloc(sizeof(float) * |
506 |
|
|
from_rbf->nrbf * to_rbf->nrbf); |
507 |
|
|
FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); |
508 |
|
|
int i, j; |
509 |
|
|
|
510 |
|
|
if ((pmtx == NULL) | (vto == NULL)) { |
511 |
|
|
fputs("Out of memory in migration_costs()\n", stderr); |
512 |
|
|
exit(1); |
513 |
|
|
} |
514 |
|
|
for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */ |
515 |
greg |
2.10 |
ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); |
516 |
greg |
2.8 |
|
517 |
|
|
for (i = from_rbf->nrbf; i--; ) { |
518 |
|
|
const double from_ang = R2ANG(from_rbf->rbfa[i].crad); |
519 |
|
|
FVECT vfrom; |
520 |
greg |
2.10 |
ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); |
521 |
greg |
2.8 |
for (j = to_rbf->nrbf; j--; ) |
522 |
|
|
pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) + |
523 |
|
|
fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang); |
524 |
|
|
} |
525 |
|
|
free(vto); |
526 |
|
|
return(pmtx); |
527 |
|
|
} |
528 |
|
|
|
529 |
|
|
/* Comparison routine needed for sorting price row */ |
530 |
|
|
static const float *price_arr; |
531 |
|
|
static int |
532 |
|
|
msrt_cmp(const void *p1, const void *p2) |
533 |
|
|
{ |
534 |
|
|
float c1 = price_arr[*(const int *)p1]; |
535 |
|
|
float c2 = price_arr[*(const int *)p2]; |
536 |
|
|
|
537 |
|
|
if (c1 > c2) return(1); |
538 |
|
|
if (c1 < c2) return(-1); |
539 |
|
|
return(0); |
540 |
|
|
} |
541 |
|
|
|
542 |
|
|
/* Compute minimum (optimistic) cost for moving the given source material */ |
543 |
|
|
static double |
544 |
|
|
min_cost(double amt2move, const double *avail, const float *price, int n) |
545 |
|
|
{ |
546 |
|
|
static int *price_sort = NULL; |
547 |
|
|
static int n_alloc = 0; |
548 |
|
|
double total_cost = 0; |
549 |
|
|
int i; |
550 |
|
|
|
551 |
|
|
if (amt2move <= FTINY) /* pre-emptive check */ |
552 |
|
|
return(0.); |
553 |
|
|
if (n > n_alloc) { /* (re)allocate sort array */ |
554 |
|
|
if (n_alloc) free(price_sort); |
555 |
|
|
price_sort = (int *)malloc(sizeof(int)*n); |
556 |
|
|
if (price_sort == NULL) { |
557 |
|
|
fputs("Out of memory in min_cost()\n", stderr); |
558 |
|
|
exit(1); |
559 |
|
|
} |
560 |
|
|
n_alloc = n; |
561 |
|
|
} |
562 |
|
|
for (i = n; i--; ) |
563 |
|
|
price_sort[i] = i; |
564 |
|
|
price_arr = price; |
565 |
|
|
qsort(price_sort, n, sizeof(int), &msrt_cmp); |
566 |
|
|
/* move cheapest first */ |
567 |
|
|
for (i = 0; i < n && amt2move > FTINY; i++) { |
568 |
|
|
int d = price_sort[i]; |
569 |
|
|
double amt = (amt2move < avail[d]) ? amt2move : avail[d]; |
570 |
|
|
|
571 |
|
|
total_cost += amt * price[d]; |
572 |
|
|
amt2move -= amt; |
573 |
|
|
} |
574 |
|
|
return(total_cost); |
575 |
|
|
} |
576 |
|
|
|
577 |
|
|
/* Take a step in migration by choosing optimal bucket to transfer */ |
578 |
|
|
static double |
579 |
|
|
migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx) |
580 |
|
|
{ |
581 |
greg |
2.18 |
const double maxamt = .1; |
582 |
greg |
2.8 |
static double *src_cost = NULL; |
583 |
greg |
2.17 |
static int n_alloc = 0; |
584 |
greg |
2.8 |
struct { |
585 |
|
|
int s, d; /* source and destination */ |
586 |
|
|
double price; /* price estimate per amount moved */ |
587 |
|
|
double amt; /* amount we can move */ |
588 |
|
|
} cur, best; |
589 |
|
|
int i; |
590 |
|
|
|
591 |
|
|
if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */ |
592 |
|
|
if (n_alloc) |
593 |
|
|
free(src_cost); |
594 |
|
|
src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig)); |
595 |
|
|
if (src_cost == NULL) { |
596 |
|
|
fputs("Out of memory in migration_step()\n", stderr); |
597 |
|
|
exit(1); |
598 |
|
|
} |
599 |
|
|
n_alloc = mtx_nrows(mig); |
600 |
|
|
} |
601 |
|
|
for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */ |
602 |
|
|
src_cost[i] = min_cost(src_rem[i], dst_rem, |
603 |
|
|
pmtx+i*mtx_ncols(mig), mtx_ncols(mig)); |
604 |
|
|
|
605 |
|
|
/* find best source & dest. */ |
606 |
|
|
best.s = best.d = -1; best.price = FHUGE; best.amt = 0; |
607 |
|
|
for (cur.s = mtx_nrows(mig); cur.s--; ) { |
608 |
|
|
const float *price = pmtx + cur.s*mtx_ncols(mig); |
609 |
|
|
double cost_others = 0; |
610 |
|
|
if (src_rem[cur.s] <= FTINY) |
611 |
|
|
continue; |
612 |
|
|
cur.d = -1; /* examine cheapest dest. */ |
613 |
|
|
for (i = mtx_ncols(mig); i--; ) |
614 |
|
|
if (dst_rem[i] > FTINY && |
615 |
|
|
(cur.d < 0 || price[i] < price[cur.d])) |
616 |
|
|
cur.d = i; |
617 |
|
|
if (cur.d < 0) |
618 |
|
|
return(.0); |
619 |
|
|
if ((cur.price = price[cur.d]) >= best.price) |
620 |
|
|
continue; /* no point checking further */ |
621 |
|
|
cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? |
622 |
|
|
src_rem[cur.s] : dst_rem[cur.d]; |
623 |
|
|
if (cur.amt > maxamt) cur.amt = maxamt; |
624 |
|
|
dst_rem[cur.d] -= cur.amt; /* add up differential costs */ |
625 |
greg |
2.18 |
for (i = mtx_nrows(mig); i--; ) |
626 |
|
|
if (i != cur.s) |
627 |
|
|
cost_others += min_cost(src_rem[i], dst_rem, |
628 |
|
|
price, mtx_ncols(mig)) |
629 |
greg |
2.8 |
- src_cost[i]; |
630 |
|
|
dst_rem[cur.d] += cur.amt; /* undo trial move */ |
631 |
|
|
cur.price += cost_others/cur.amt; /* adjust effective price */ |
632 |
|
|
if (cur.price < best.price) /* are we better than best? */ |
633 |
|
|
best = cur; |
634 |
|
|
} |
635 |
|
|
if ((best.s < 0) | (best.d < 0)) |
636 |
|
|
return(.0); |
637 |
|
|
/* make the actual move */ |
638 |
|
|
mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt; |
639 |
|
|
src_rem[best.s] -= best.amt; |
640 |
|
|
dst_rem[best.d] -= best.amt; |
641 |
|
|
return(best.amt); |
642 |
|
|
} |
643 |
|
|
|
644 |
greg |
2.14 |
#ifdef DEBUG |
645 |
|
|
static char * |
646 |
|
|
thetaphi(const FVECT v) |
647 |
|
|
{ |
648 |
|
|
static char buf[128]; |
649 |
|
|
double theta, phi; |
650 |
|
|
|
651 |
|
|
theta = 180./M_PI*acos(v[2]); |
652 |
|
|
phi = 180./M_PI*atan2(v[1],v[0]); |
653 |
|
|
sprintf(buf, "(%.0f,%.0f)", theta, phi); |
654 |
|
|
|
655 |
|
|
return(buf); |
656 |
|
|
} |
657 |
|
|
#endif |
658 |
|
|
|
659 |
greg |
2.16 |
/* Create a new migration holder (sharing memory for multiprocessing) */ |
660 |
greg |
2.8 |
static MIGRATION * |
661 |
greg |
2.16 |
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
662 |
|
|
{ |
663 |
|
|
size_t memlen = sizeof(MIGRATION) + |
664 |
|
|
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); |
665 |
|
|
MIGRATION *newmig; |
666 |
|
|
#ifdef _WIN32 |
667 |
|
|
newmig = (MIGRATION *)malloc(memlen); |
668 |
|
|
#else |
669 |
|
|
if (nprocs <= 1) { /* single process? */ |
670 |
|
|
newmig = (MIGRATION *)malloc(memlen); |
671 |
|
|
} else { /* else need to share memory */ |
672 |
|
|
newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, |
673 |
|
|
MAP_ANON|MAP_SHARED, -1, 0); |
674 |
|
|
if ((void *)newmig == MAP_FAILED) |
675 |
|
|
newmig = NULL; |
676 |
|
|
} |
677 |
|
|
#endif |
678 |
|
|
if (newmig == NULL) { |
679 |
|
|
fprintf(stderr, "%s: cannot allocate new migration\n", progname); |
680 |
|
|
exit(1); |
681 |
|
|
} |
682 |
|
|
newmig->rbfv[0] = from_rbf; |
683 |
|
|
newmig->rbfv[1] = to_rbf; |
684 |
|
|
/* insert in edge lists */ |
685 |
|
|
newmig->enxt[0] = from_rbf->ejl; |
686 |
|
|
from_rbf->ejl = newmig; |
687 |
|
|
newmig->enxt[1] = to_rbf->ejl; |
688 |
|
|
to_rbf->ejl = newmig; |
689 |
|
|
newmig->next = mig_list; /* push onto global list */ |
690 |
|
|
return(mig_list = newmig); |
691 |
|
|
} |
692 |
|
|
|
693 |
|
|
#ifdef _WIN32 |
694 |
|
|
#define await_children(n) (void)(n) |
695 |
|
|
#define run_subprocess() 0 |
696 |
|
|
#define end_subprocess() (void)0 |
697 |
|
|
#else |
698 |
|
|
|
699 |
|
|
/* Wait for the specified number of child processes to complete */ |
700 |
|
|
static void |
701 |
|
|
await_children(int n) |
702 |
|
|
{ |
703 |
greg |
2.17 |
int exit_status = 0; |
704 |
|
|
|
705 |
greg |
2.16 |
if (n > nchild) |
706 |
|
|
n = nchild; |
707 |
|
|
while (n-- > 0) { |
708 |
|
|
int status; |
709 |
|
|
if (wait(&status) < 0) { |
710 |
|
|
fprintf(stderr, "%s: missing child(ren)!\n", progname); |
711 |
|
|
nchild = 0; |
712 |
|
|
break; |
713 |
|
|
} |
714 |
|
|
--nchild; |
715 |
greg |
2.17 |
if (status) { /* something wrong */ |
716 |
greg |
2.16 |
if ((status = WEXITSTATUS(status))) |
717 |
greg |
2.17 |
exit_status = status; |
718 |
|
|
else |
719 |
|
|
exit_status += !exit_status; |
720 |
greg |
2.16 |
fprintf(stderr, "%s: subprocess died\n", progname); |
721 |
greg |
2.17 |
n = nchild; /* wait for the rest */ |
722 |
greg |
2.16 |
} |
723 |
|
|
} |
724 |
greg |
2.17 |
if (exit_status) |
725 |
|
|
exit(exit_status); |
726 |
greg |
2.16 |
} |
727 |
|
|
|
728 |
|
|
/* Start child process if multiprocessing selected */ |
729 |
|
|
static pid_t |
730 |
|
|
run_subprocess(void) |
731 |
|
|
{ |
732 |
|
|
int status; |
733 |
|
|
pid_t pid; |
734 |
|
|
|
735 |
|
|
if (nprocs <= 1) /* any children requested? */ |
736 |
|
|
return(0); |
737 |
|
|
await_children(nchild + 1 - nprocs); /* free up child process */ |
738 |
|
|
if ((pid = fork())) { |
739 |
|
|
if (pid < 0) { |
740 |
|
|
fprintf(stderr, "%s: cannot fork subprocess\n", |
741 |
|
|
progname); |
742 |
|
|
exit(1); |
743 |
|
|
} |
744 |
|
|
++nchild; /* subprocess started */ |
745 |
|
|
return(pid); |
746 |
|
|
} |
747 |
|
|
nchild = -1; |
748 |
|
|
return(0); /* put child to work */ |
749 |
|
|
} |
750 |
|
|
|
751 |
|
|
/* If we are in subprocess, call exit */ |
752 |
|
|
#define end_subprocess() if (nchild < 0) _exit(0); else |
753 |
|
|
|
754 |
|
|
#endif /* ! _WIN32 */ |
755 |
|
|
|
756 |
|
|
/* Compute and insert migration along directed edge (may fork child) */ |
757 |
|
|
static MIGRATION * |
758 |
|
|
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
759 |
greg |
2.8 |
{ |
760 |
greg |
2.17 |
const double end_thresh = 0.1/(from_rbf->nrbf*to_rbf->nrbf); |
761 |
|
|
const double rel_thresh = 0.0001; |
762 |
greg |
2.14 |
float *pmtx; |
763 |
|
|
MIGRATION *newmig; |
764 |
|
|
double *src_rem, *dst_rem; |
765 |
greg |
2.17 |
double total_rem = 1., move_amt; |
766 |
greg |
2.8 |
int i; |
767 |
greg |
2.14 |
/* check if exists already */ |
768 |
|
|
for (newmig = from_rbf->ejl; newmig != NULL; |
769 |
|
|
newmig = nextedge(from_rbf,newmig)) |
770 |
|
|
if (newmig->rbfv[1] == to_rbf) |
771 |
greg |
2.16 |
return(NULL); |
772 |
greg |
2.14 |
/* else allocate */ |
773 |
greg |
2.16 |
newmig = new_migration(from_rbf, to_rbf); |
774 |
|
|
if (run_subprocess()) |
775 |
|
|
return(newmig); /* child continues */ |
776 |
greg |
2.14 |
pmtx = price_routes(from_rbf, to_rbf); |
777 |
|
|
src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); |
778 |
|
|
dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); |
779 |
greg |
2.16 |
if ((src_rem == NULL) | (dst_rem == NULL)) { |
780 |
|
|
fputs("Out of memory in create_migration()\n", stderr); |
781 |
greg |
2.8 |
exit(1); |
782 |
|
|
} |
783 |
greg |
2.10 |
#ifdef DEBUG |
784 |
greg |
2.16 |
fprintf(stderr, "Building path from (theta,phi) %s ", |
785 |
|
|
thetaphi(from_rbf->invec)); |
786 |
|
|
fprintf(stderr, "to %s", thetaphi(to_rbf->invec)); |
787 |
|
|
/* if (nchild) */ fputc('\n', stderr); |
788 |
greg |
2.10 |
#endif |
789 |
greg |
2.16 |
/* starting quantities */ |
790 |
greg |
2.8 |
memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); |
791 |
|
|
for (i = from_rbf->nrbf; i--; ) |
792 |
|
|
src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; |
793 |
|
|
for (i = to_rbf->nrbf; i--; ) |
794 |
|
|
dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal; |
795 |
greg |
2.17 |
do { /* move a bit at a time */ |
796 |
|
|
move_amt = migration_step(newmig, src_rem, dst_rem, pmtx); |
797 |
|
|
total_rem -= move_amt; |
798 |
greg |
2.13 |
#ifdef DEBUG |
799 |
greg |
2.16 |
if (!nchild) |
800 |
|
|
/* fputc('.', stderr); */ |
801 |
|
|
fprintf(stderr, "%.9f remaining...\r", total_rem); |
802 |
greg |
2.13 |
#endif |
803 |
greg |
2.17 |
} while ((total_rem > end_thresh) & (move_amt > rel_thresh*total_rem)); |
804 |
greg |
2.13 |
#ifdef DEBUG |
805 |
greg |
2.17 |
if (!nchild) fputs("\ndone.\n", stderr); |
806 |
greg |
2.13 |
#endif |
807 |
greg |
2.8 |
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ |
808 |
|
|
float nf = rbf_volume(&from_rbf->rbfa[i]); |
809 |
|
|
int j; |
810 |
|
|
if (nf <= FTINY) continue; |
811 |
|
|
nf = from_rbf->vtotal / nf; |
812 |
|
|
for (j = to_rbf->nrbf; j--; ) |
813 |
|
|
newmig->mtx[mtx_ndx(newmig,i,j)] *= nf; |
814 |
|
|
} |
815 |
greg |
2.16 |
end_subprocess(); /* exit here if subprocess */ |
816 |
greg |
2.18 |
free(pmtx); /* free working arrays */ |
817 |
|
|
free(src_rem); |
818 |
|
|
free(dst_rem); |
819 |
greg |
2.16 |
return(newmig); |
820 |
greg |
2.8 |
} |
821 |
|
|
|
822 |
greg |
2.10 |
/* Get triangle surface orientation (unnormalized) */ |
823 |
|
|
static void |
824 |
|
|
tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3) |
825 |
|
|
{ |
826 |
|
|
FVECT v2minus1, v3minus2; |
827 |
|
|
|
828 |
|
|
VSUB(v2minus1, v2, v1); |
829 |
|
|
VSUB(v3minus2, v3, v2); |
830 |
|
|
VCROSS(vres, v2minus1, v3minus2); |
831 |
|
|
} |
832 |
|
|
|
833 |
|
|
/* Determine if vertex order is reversed (inward normal) */ |
834 |
|
|
static int |
835 |
|
|
is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3) |
836 |
|
|
{ |
837 |
|
|
FVECT tor; |
838 |
|
|
|
839 |
|
|
tri_orient(tor, v1, v2, v3); |
840 |
|
|
|
841 |
|
|
return(DOT(tor, v2) < 0.); |
842 |
|
|
} |
843 |
|
|
|
844 |
|
|
/* Find vertices completing triangles on either side of the given edge */ |
845 |
|
|
static int |
846 |
|
|
get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig) |
847 |
|
|
{ |
848 |
|
|
const MIGRATION *ej, *ej2; |
849 |
|
|
RBFNODE *tv; |
850 |
|
|
|
851 |
|
|
rbfv[0] = rbfv[1] = NULL; |
852 |
greg |
2.13 |
if (mig == NULL) |
853 |
|
|
return(0); |
854 |
greg |
2.10 |
for (ej = mig->rbfv[0]->ejl; ej != NULL; |
855 |
|
|
ej = nextedge(mig->rbfv[0],ej)) { |
856 |
|
|
if (ej == mig) |
857 |
|
|
continue; |
858 |
|
|
tv = opp_rbf(mig->rbfv[0],ej); |
859 |
|
|
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
860 |
|
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
861 |
|
|
rbfv[is_rev_tri(mig->rbfv[0]->invec, |
862 |
|
|
mig->rbfv[1]->invec, |
863 |
|
|
tv->invec)] = tv; |
864 |
|
|
break; |
865 |
|
|
} |
866 |
|
|
} |
867 |
|
|
return((rbfv[0] != NULL) + (rbfv[1] != NULL)); |
868 |
|
|
} |
869 |
|
|
|
870 |
greg |
2.13 |
/* Check if prospective vertex would create overlapping triangle */ |
871 |
|
|
static int |
872 |
|
|
overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) |
873 |
|
|
{ |
874 |
|
|
const MIGRATION *ej; |
875 |
|
|
RBFNODE *vother[2]; |
876 |
|
|
int im_rev; |
877 |
greg |
2.15 |
/* find shared edge in mesh */ |
878 |
greg |
2.13 |
for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { |
879 |
|
|
const RBFNODE *tv = opp_rbf(pv,ej); |
880 |
|
|
if (tv == bv0) { |
881 |
|
|
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
882 |
|
|
ej->rbfv[1]->invec, bv1->invec); |
883 |
|
|
break; |
884 |
|
|
} |
885 |
|
|
if (tv == bv1) { |
886 |
|
|
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
887 |
|
|
ej->rbfv[1]->invec, bv0->invec); |
888 |
|
|
break; |
889 |
|
|
} |
890 |
|
|
} |
891 |
greg |
2.15 |
if (!get_triangles(vother, ej)) /* triangle on same side? */ |
892 |
greg |
2.13 |
return(0); |
893 |
|
|
return(vother[im_rev] != NULL); |
894 |
|
|
} |
895 |
|
|
|
896 |
greg |
2.10 |
/* Find context hull vertex to complete triangle (oriented call) */ |
897 |
|
|
static RBFNODE * |
898 |
|
|
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) |
899 |
greg |
2.8 |
{ |
900 |
greg |
2.14 |
FVECT vmid, vejn, vp; |
901 |
greg |
2.10 |
RBFNODE *rbf, *rbfbest = NULL; |
902 |
greg |
2.14 |
double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; |
903 |
greg |
2.10 |
|
904 |
greg |
2.14 |
VSUB(vejn, rbf1->invec, rbf0->invec); |
905 |
greg |
2.10 |
VADD(vmid, rbf0->invec, rbf1->invec); |
906 |
greg |
2.14 |
if (normalize(vejn) == 0 || normalize(vmid) == 0) |
907 |
greg |
2.10 |
return(NULL); |
908 |
|
|
/* XXX exhaustive search */ |
909 |
greg |
2.15 |
/* Find triangle with minimum rotation from perpendicular */ |
910 |
greg |
2.10 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
911 |
|
|
if ((rbf == rbf0) | (rbf == rbf1)) |
912 |
|
|
continue; |
913 |
greg |
2.14 |
tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); |
914 |
|
|
if (DOT(vp, vmid) <= FTINY) |
915 |
greg |
2.10 |
continue; /* wrong orientation */ |
916 |
greg |
2.15 |
area2 = .25*DOT(vp,vp); |
917 |
greg |
2.14 |
VSUB(vp, rbf->invec, rbf0->invec); |
918 |
|
|
dprod = -DOT(vp, vejn); |
919 |
greg |
2.15 |
VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ |
920 |
greg |
2.14 |
dprod = DOT(vp, vmid) / VLEN(vp); |
921 |
|
|
if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) |
922 |
|
|
continue; /* found better already */ |
923 |
|
|
if (overlaps_tri(rbf0, rbf1, rbf)) |
924 |
|
|
continue; /* overlaps another triangle */ |
925 |
|
|
rbfbest = rbf; |
926 |
|
|
bestdprod = dprod; /* new one to beat */ |
927 |
|
|
bestarea2 = area2; |
928 |
greg |
2.10 |
} |
929 |
greg |
2.13 |
return(rbfbest); |
930 |
greg |
2.10 |
} |
931 |
|
|
|
932 |
|
|
/* Create new migration edge and grow mesh recursively around it */ |
933 |
|
|
static void |
934 |
greg |
2.13 |
mesh_from_edge(MIGRATION *edge) |
935 |
greg |
2.10 |
{ |
936 |
greg |
2.13 |
MIGRATION *ej0, *ej1; |
937 |
greg |
2.10 |
RBFNODE *tvert[2]; |
938 |
greg |
2.14 |
|
939 |
|
|
if (edge == NULL) |
940 |
|
|
return; |
941 |
greg |
2.10 |
/* triangle on either side? */ |
942 |
greg |
2.13 |
get_triangles(tvert, edge); |
943 |
|
|
if (tvert[0] == NULL) { /* grow mesh on right */ |
944 |
|
|
tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); |
945 |
greg |
2.10 |
if (tvert[0] != NULL) { |
946 |
greg |
2.13 |
if (tvert[0] > edge->rbfv[0]) |
947 |
greg |
2.16 |
ej0 = create_migration(edge->rbfv[0], tvert[0]); |
948 |
greg |
2.13 |
else |
949 |
greg |
2.16 |
ej0 = create_migration(tvert[0], edge->rbfv[0]); |
950 |
greg |
2.13 |
if (tvert[0] > edge->rbfv[1]) |
951 |
greg |
2.16 |
ej1 = create_migration(edge->rbfv[1], tvert[0]); |
952 |
greg |
2.13 |
else |
953 |
greg |
2.16 |
ej1 = create_migration(tvert[0], edge->rbfv[1]); |
954 |
greg |
2.13 |
mesh_from_edge(ej0); |
955 |
|
|
mesh_from_edge(ej1); |
956 |
greg |
2.10 |
} |
957 |
greg |
2.14 |
} else if (tvert[1] == NULL) { /* grow mesh on left */ |
958 |
greg |
2.13 |
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); |
959 |
greg |
2.10 |
if (tvert[1] != NULL) { |
960 |
greg |
2.13 |
if (tvert[1] > edge->rbfv[0]) |
961 |
greg |
2.16 |
ej0 = create_migration(edge->rbfv[0], tvert[1]); |
962 |
greg |
2.13 |
else |
963 |
greg |
2.16 |
ej0 = create_migration(tvert[1], edge->rbfv[0]); |
964 |
greg |
2.13 |
if (tvert[1] > edge->rbfv[1]) |
965 |
greg |
2.16 |
ej1 = create_migration(edge->rbfv[1], tvert[1]); |
966 |
greg |
2.13 |
else |
967 |
greg |
2.16 |
ej1 = create_migration(tvert[1], edge->rbfv[1]); |
968 |
greg |
2.13 |
mesh_from_edge(ej0); |
969 |
|
|
mesh_from_edge(ej1); |
970 |
greg |
2.10 |
} |
971 |
|
|
} |
972 |
|
|
} |
973 |
greg |
2.8 |
|
974 |
greg |
2.13 |
#ifdef DEBUG |
975 |
|
|
#include "random.h" |
976 |
|
|
#include "bmpfile.h" |
977 |
greg |
2.15 |
/* Hash pointer to byte value (must return 0 for NULL) */ |
978 |
greg |
2.13 |
static int |
979 |
|
|
byte_hash(const void *p) |
980 |
|
|
{ |
981 |
|
|
size_t h = (size_t)p; |
982 |
|
|
h ^= (size_t)p >> 8; |
983 |
|
|
h ^= (size_t)p >> 16; |
984 |
|
|
h ^= (size_t)p >> 24; |
985 |
|
|
return(h & 0xff); |
986 |
|
|
} |
987 |
|
|
/* Write out BMP image showing edges */ |
988 |
|
|
static void |
989 |
|
|
write_edge_image(const char *fname) |
990 |
|
|
{ |
991 |
|
|
BMPHeader *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256); |
992 |
|
|
BMPWriter *wtr; |
993 |
|
|
int i, j; |
994 |
|
|
|
995 |
|
|
fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname); |
996 |
|
|
hdr->compr = BI_RLE8; |
997 |
|
|
for (i = 256; --i; ) { /* assign random color map */ |
998 |
|
|
hdr->palette[i].r = random() & 0xff; |
999 |
greg |
2.15 |
hdr->palette[i].g = random() & 0xff; |
1000 |
|
|
hdr->palette[i].b = random() & 0xff; |
1001 |
|
|
/* reject dark colors */ |
1002 |
|
|
i += (hdr->palette[i].r + hdr->palette[i].g + |
1003 |
|
|
hdr->palette[i].b < 128); |
1004 |
greg |
2.13 |
} |
1005 |
|
|
hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0; |
1006 |
|
|
/* open output */ |
1007 |
|
|
wtr = BMPopenOutputFile(fname, hdr); |
1008 |
|
|
if (wtr == NULL) { |
1009 |
|
|
free(hdr); |
1010 |
|
|
return; |
1011 |
|
|
} |
1012 |
|
|
for (i = 0; i < GRIDRES; i++) { /* write scanlines */ |
1013 |
|
|
for (j = 0; j < GRIDRES; j++) |
1014 |
|
|
wtr->scanline[j] = byte_hash(mig_grid[i][j]); |
1015 |
|
|
if (BMPwriteScanline(wtr) != BIR_OK) |
1016 |
|
|
break; |
1017 |
|
|
} |
1018 |
|
|
BMPcloseOutput(wtr); /* close & clean up */ |
1019 |
|
|
} |
1020 |
|
|
#endif |
1021 |
|
|
|
1022 |
greg |
2.10 |
/* Draw edge list into mig_grid array */ |
1023 |
|
|
static void |
1024 |
|
|
draw_edges() |
1025 |
|
|
{ |
1026 |
|
|
int nnull = 0, ntot = 0; |
1027 |
|
|
MIGRATION *ej; |
1028 |
|
|
int p0[2], p1[2]; |
1029 |
|
|
|
1030 |
|
|
/* memset(mig_grid, 0, sizeof(mig_grid)); */ |
1031 |
|
|
for (ej = mig_list; ej != NULL; ej = ej->next) { |
1032 |
|
|
++ntot; |
1033 |
|
|
pos_from_vec(p0, ej->rbfv[0]->invec); |
1034 |
|
|
pos_from_vec(p1, ej->rbfv[1]->invec); |
1035 |
|
|
if ((p0[0] == p1[0]) & (p0[1] == p1[1])) { |
1036 |
|
|
++nnull; |
1037 |
|
|
mig_grid[p0[0]][p0[1]] = ej; |
1038 |
|
|
continue; |
1039 |
|
|
} |
1040 |
|
|
if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) { |
1041 |
|
|
const int xstep = 2*(p1[0] > p0[0]) - 1; |
1042 |
|
|
const double ystep = (double)((p1[1]-p0[1])*xstep) / |
1043 |
|
|
(double)(p1[0]-p0[0]); |
1044 |
|
|
int x; |
1045 |
|
|
double y; |
1046 |
|
|
for (x = p0[0], y = p0[1]+.5; x != p1[0]; |
1047 |
|
|
x += xstep, y += ystep) |
1048 |
|
|
mig_grid[x][(int)y] = ej; |
1049 |
|
|
mig_grid[x][(int)y] = ej; |
1050 |
|
|
} else { |
1051 |
|
|
const int ystep = 2*(p1[1] > p0[1]) - 1; |
1052 |
|
|
const double xstep = (double)((p1[0]-p0[0])*ystep) / |
1053 |
|
|
(double)(p1[1]-p0[1]); |
1054 |
|
|
int y; |
1055 |
|
|
double x; |
1056 |
|
|
for (y = p0[1], x = p0[0]+.5; y != p1[1]; |
1057 |
|
|
y += ystep, x += xstep) |
1058 |
|
|
mig_grid[(int)x][y] = ej; |
1059 |
|
|
mig_grid[(int)x][y] = ej; |
1060 |
|
|
} |
1061 |
|
|
} |
1062 |
|
|
if (nnull) |
1063 |
|
|
fprintf(stderr, "Warning: %d of %d edges are null\n", |
1064 |
|
|
nnull, ntot); |
1065 |
greg |
2.13 |
#ifdef DEBUG |
1066 |
|
|
write_edge_image("bsdf_edges.bmp"); |
1067 |
|
|
#endif |
1068 |
greg |
2.10 |
} |
1069 |
|
|
|
1070 |
|
|
/* Build our triangle mesh from recorded RBFs */ |
1071 |
|
|
static void |
1072 |
|
|
build_mesh() |
1073 |
|
|
{ |
1074 |
|
|
double best2 = M_PI*M_PI; |
1075 |
greg |
2.13 |
RBFNODE *shrt_edj[2]; |
1076 |
|
|
RBFNODE *rbf0, *rbf1; |
1077 |
greg |
2.10 |
/* check if isotropic */ |
1078 |
|
|
if (single_plane_incident) { |
1079 |
greg |
2.13 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
1080 |
|
|
if (rbf0->next != NULL) |
1081 |
greg |
2.16 |
create_migration(rbf0, rbf0->next); |
1082 |
|
|
await_children(nchild); |
1083 |
greg |
2.10 |
return; |
1084 |
|
|
} |
1085 |
greg |
2.13 |
/* start w/ shortest edge */ |
1086 |
|
|
shrt_edj[0] = shrt_edj[1] = NULL; |
1087 |
|
|
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
1088 |
|
|
for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { |
1089 |
|
|
double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); |
1090 |
greg |
2.10 |
if (dist2 < best2) { |
1091 |
greg |
2.13 |
shrt_edj[0] = rbf0; |
1092 |
|
|
shrt_edj[1] = rbf1; |
1093 |
greg |
2.10 |
best2 = dist2; |
1094 |
|
|
} |
1095 |
|
|
} |
1096 |
greg |
2.13 |
if (shrt_edj[0] == NULL) { |
1097 |
|
|
fputs("Cannot find shortest edge\n", stderr); |
1098 |
greg |
2.8 |
exit(1); |
1099 |
|
|
} |
1100 |
greg |
2.10 |
/* build mesh from this edge */ |
1101 |
greg |
2.13 |
if (shrt_edj[0] < shrt_edj[1]) |
1102 |
greg |
2.16 |
mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); |
1103 |
greg |
2.13 |
else |
1104 |
greg |
2.16 |
mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); |
1105 |
greg |
2.18 |
/* draw edge list into grid */ |
1106 |
|
|
draw_edges(); |
1107 |
greg |
2.16 |
/* complete migrations */ |
1108 |
|
|
await_children(nchild); |
1109 |
greg |
2.10 |
} |
1110 |
|
|
|
1111 |
|
|
/* Identify enclosing triangle for this position (flood fill raster check) */ |
1112 |
|
|
static int |
1113 |
|
|
identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8], |
1114 |
|
|
int px, int py) |
1115 |
|
|
{ |
1116 |
|
|
const int btest = 1<<(py&07); |
1117 |
|
|
|
1118 |
|
|
if (vmap[px][py>>3] & btest) /* already visited here? */ |
1119 |
|
|
return(1); |
1120 |
|
|
/* else mark it */ |
1121 |
|
|
vmap[px][py>>3] |= btest; |
1122 |
|
|
|
1123 |
|
|
if (mig_grid[px][py] != NULL) { /* are we on an edge? */ |
1124 |
|
|
int i; |
1125 |
|
|
for (i = 0; i < 3; i++) { |
1126 |
|
|
if (miga[i] == mig_grid[px][py]) |
1127 |
|
|
return(1); |
1128 |
|
|
if (miga[i] != NULL) |
1129 |
|
|
continue; |
1130 |
|
|
miga[i] = mig_grid[px][py]; |
1131 |
|
|
return(1); |
1132 |
|
|
} |
1133 |
|
|
return(0); /* outside triangle! */ |
1134 |
|
|
} |
1135 |
|
|
/* check neighbors (flood) */ |
1136 |
|
|
if (px > 0 && !identify_tri(miga, vmap, px-1, py)) |
1137 |
|
|
return(0); |
1138 |
|
|
if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py)) |
1139 |
|
|
return(0); |
1140 |
|
|
if (py > 0 && !identify_tri(miga, vmap, px, py-1)) |
1141 |
|
|
return(0); |
1142 |
|
|
if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1)) |
1143 |
|
|
return(0); |
1144 |
|
|
return(1); /* this neighborhood done */ |
1145 |
|
|
} |
1146 |
|
|
|
1147 |
greg |
2.15 |
/* Insert vertex in ordered list */ |
1148 |
|
|
static void |
1149 |
|
|
insert_vert(RBFNODE **vlist, RBFNODE *v) |
1150 |
|
|
{ |
1151 |
|
|
int i, j; |
1152 |
|
|
|
1153 |
|
|
for (i = 0; vlist[i] != NULL; i++) { |
1154 |
|
|
if (v == vlist[i]) |
1155 |
|
|
return; |
1156 |
|
|
if (v < vlist[i]) |
1157 |
|
|
break; |
1158 |
|
|
} |
1159 |
|
|
for (j = i; vlist[j] != NULL; j++) |
1160 |
|
|
; |
1161 |
|
|
while (j > i) { |
1162 |
|
|
vlist[j] = vlist[j-1]; |
1163 |
|
|
--j; |
1164 |
|
|
} |
1165 |
|
|
vlist[i] = v; |
1166 |
|
|
} |
1167 |
|
|
|
1168 |
|
|
/* Sort triangle edges in standard order */ |
1169 |
|
|
static int |
1170 |
|
|
order_triangle(MIGRATION *miga[3]) |
1171 |
|
|
{ |
1172 |
|
|
RBFNODE *vert[7]; |
1173 |
|
|
MIGRATION *ord[3]; |
1174 |
|
|
int i; |
1175 |
|
|
/* order vertices, first */ |
1176 |
|
|
memset(vert, 0, sizeof(vert)); |
1177 |
|
|
for (i = 3; i--; ) { |
1178 |
|
|
if (miga[i] == NULL) |
1179 |
|
|
return(0); |
1180 |
|
|
insert_vert(vert, miga[i]->rbfv[0]); |
1181 |
|
|
insert_vert(vert, miga[i]->rbfv[1]); |
1182 |
|
|
} |
1183 |
|
|
/* should be just 3 vertices */ |
1184 |
|
|
if ((vert[3] == NULL) | (vert[4] != NULL)) |
1185 |
|
|
return(0); |
1186 |
|
|
/* identify edge 0 */ |
1187 |
|
|
for (i = 3; i--; ) |
1188 |
|
|
if (miga[i]->rbfv[0] == vert[0] && |
1189 |
|
|
miga[i]->rbfv[1] == vert[1]) { |
1190 |
|
|
ord[0] = miga[i]; |
1191 |
|
|
break; |
1192 |
|
|
} |
1193 |
|
|
if (i < 0) |
1194 |
|
|
return(0); |
1195 |
|
|
/* identify edge 1 */ |
1196 |
|
|
for (i = 3; i--; ) |
1197 |
|
|
if (miga[i]->rbfv[0] == vert[1] && |
1198 |
|
|
miga[i]->rbfv[1] == vert[2]) { |
1199 |
|
|
ord[1] = miga[i]; |
1200 |
|
|
break; |
1201 |
|
|
} |
1202 |
|
|
if (i < 0) |
1203 |
|
|
return(0); |
1204 |
|
|
/* identify edge 2 */ |
1205 |
|
|
for (i = 3; i--; ) |
1206 |
|
|
if (miga[i]->rbfv[0] == vert[0] && |
1207 |
|
|
miga[i]->rbfv[1] == vert[2]) { |
1208 |
|
|
ord[2] = miga[i]; |
1209 |
|
|
break; |
1210 |
|
|
} |
1211 |
|
|
if (i < 0) |
1212 |
|
|
return(0); |
1213 |
|
|
/* reassign order */ |
1214 |
|
|
miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2]; |
1215 |
|
|
return(1); |
1216 |
|
|
} |
1217 |
|
|
|
1218 |
greg |
2.10 |
/* Find edge(s) for interpolating the given incident vector */ |
1219 |
|
|
static int |
1220 |
|
|
get_interp(MIGRATION *miga[3], const FVECT invec) |
1221 |
|
|
{ |
1222 |
|
|
miga[0] = miga[1] = miga[2] = NULL; |
1223 |
|
|
if (single_plane_incident) { /* isotropic BSDF? */ |
1224 |
|
|
RBFNODE *rbf; /* find edge we're on */ |
1225 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
1226 |
|
|
if (input_orient*rbf->invec[2] < input_orient*invec[2]) |
1227 |
|
|
break; |
1228 |
|
|
if (rbf->next != NULL && |
1229 |
|
|
input_orient*rbf->next->invec[2] < |
1230 |
|
|
input_orient*invec[2]) { |
1231 |
|
|
for (miga[0] = rbf->ejl; miga[0] != NULL; |
1232 |
|
|
miga[0] = nextedge(rbf,miga[0])) |
1233 |
|
|
if (opp_rbf(rbf,miga[0]) == rbf->next) |
1234 |
|
|
return(1); |
1235 |
|
|
break; |
1236 |
|
|
} |
1237 |
|
|
} |
1238 |
|
|
return(0); /* outside range! */ |
1239 |
|
|
} |
1240 |
greg |
2.12 |
{ /* else use triangle mesh */ |
1241 |
greg |
2.10 |
unsigned char floodmap[GRIDRES][(GRIDRES+7)/8]; |
1242 |
|
|
int pstart[2]; |
1243 |
greg |
2.15 |
RBFNODE *vother; |
1244 |
|
|
MIGRATION *ej; |
1245 |
|
|
int i; |
1246 |
greg |
2.10 |
|
1247 |
|
|
pos_from_vec(pstart, invec); |
1248 |
|
|
memset(floodmap, 0, sizeof(floodmap)); |
1249 |
|
|
/* call flooding function */ |
1250 |
|
|
if (!identify_tri(miga, floodmap, pstart[0], pstart[1])) |
1251 |
|
|
return(0); /* outside mesh */ |
1252 |
|
|
if ((miga[0] == NULL) | (miga[2] == NULL)) |
1253 |
|
|
return(0); /* should never happen */ |
1254 |
|
|
if (miga[1] == NULL) |
1255 |
|
|
return(1); /* on edge */ |
1256 |
greg |
2.15 |
/* verify triangle */ |
1257 |
|
|
if (!order_triangle(miga)) { |
1258 |
|
|
#ifdef DEBUG |
1259 |
|
|
fputs("Munged triangle in get_interp()\n", stderr); |
1260 |
|
|
#endif |
1261 |
|
|
vother = NULL; /* find triangle from edge */ |
1262 |
|
|
for (i = 3; i--; ) { |
1263 |
|
|
RBFNODE *tpair[2]; |
1264 |
|
|
if (get_triangles(tpair, miga[i]) && |
1265 |
|
|
(vother = tpair[ is_rev_tri( |
1266 |
|
|
miga[i]->rbfv[0]->invec, |
1267 |
|
|
miga[i]->rbfv[1]->invec, |
1268 |
|
|
invec) ]) != NULL) |
1269 |
|
|
break; |
1270 |
|
|
} |
1271 |
|
|
if (vother == NULL) { /* couldn't find 3rd vertex */ |
1272 |
|
|
#ifdef DEBUG |
1273 |
|
|
fputs("No triangle in get_interp()\n", stderr); |
1274 |
|
|
#endif |
1275 |
|
|
return(0); |
1276 |
|
|
} |
1277 |
|
|
/* reassign other two edges */ |
1278 |
|
|
for (ej = vother->ejl; ej != NULL; |
1279 |
|
|
ej = nextedge(vother,ej)) { |
1280 |
|
|
RBFNODE *vorig = opp_rbf(vother,ej); |
1281 |
|
|
if (vorig == miga[i]->rbfv[0]) |
1282 |
|
|
miga[(i+1)%3] = ej; |
1283 |
|
|
else if (vorig == miga[i]->rbfv[1]) |
1284 |
|
|
miga[(i+2)%3] = ej; |
1285 |
|
|
} |
1286 |
|
|
if (!order_triangle(miga)) { |
1287 |
|
|
#ifdef DEBUG |
1288 |
|
|
fputs("Bad triangle in get_interp()\n", stderr); |
1289 |
|
|
#endif |
1290 |
|
|
return(0); |
1291 |
|
|
} |
1292 |
|
|
} |
1293 |
|
|
return(3); /* return in standard order */ |
1294 |
greg |
2.10 |
} |
1295 |
|
|
} |
1296 |
|
|
|
1297 |
|
|
/* Advect and allocate new RBF along edge */ |
1298 |
|
|
static RBFNODE * |
1299 |
|
|
e_advect_rbf(const MIGRATION *mig, const FVECT invec) |
1300 |
|
|
{ |
1301 |
|
|
RBFNODE *rbf; |
1302 |
|
|
int n, i, j; |
1303 |
|
|
double t, full_dist; |
1304 |
|
|
/* get relative position */ |
1305 |
|
|
t = acos(DOT(invec, mig->rbfv[0]->invec)); |
1306 |
|
|
if (t < M_PI/GRIDRES) { /* near first DSF */ |
1307 |
|
|
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
1308 |
|
|
rbf = (RBFNODE *)malloc(n); |
1309 |
|
|
if (rbf == NULL) |
1310 |
|
|
goto memerr; |
1311 |
|
|
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
1312 |
|
|
return(rbf); |
1313 |
|
|
} |
1314 |
|
|
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
1315 |
|
|
if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */ |
1316 |
|
|
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
1317 |
|
|
rbf = (RBFNODE *)malloc(n); |
1318 |
|
|
if (rbf == NULL) |
1319 |
|
|
goto memerr; |
1320 |
|
|
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
1321 |
|
|
return(rbf); |
1322 |
|
|
} |
1323 |
|
|
t /= full_dist; |
1324 |
|
|
n = 0; /* count migrating particles */ |
1325 |
|
|
for (i = 0; i < mtx_nrows(mig); i++) |
1326 |
|
|
for (j = 0; j < mtx_ncols(mig); j++) |
1327 |
|
|
n += (mig->mtx[mtx_ndx(mig,i,j)] > FTINY); |
1328 |
greg |
2.12 |
#ifdef DEBUG |
1329 |
|
|
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
1330 |
|
|
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
1331 |
|
|
#endif |
1332 |
greg |
2.10 |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
1333 |
|
|
if (rbf == NULL) |
1334 |
|
|
goto memerr; |
1335 |
|
|
rbf->next = NULL; rbf->ejl = NULL; |
1336 |
|
|
VCOPY(rbf->invec, invec); |
1337 |
|
|
rbf->nrbf = n; |
1338 |
|
|
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
1339 |
|
|
n = 0; /* advect RBF lobes */ |
1340 |
|
|
for (i = 0; i < mtx_nrows(mig); i++) { |
1341 |
|
|
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
1342 |
|
|
const float peak0 = rbf0i->peak; |
1343 |
|
|
const double rad0 = R2ANG(rbf0i->crad); |
1344 |
|
|
FVECT v0; |
1345 |
|
|
float mv; |
1346 |
|
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
1347 |
|
|
for (j = 0; j < mtx_ncols(mig); j++) |
1348 |
|
|
if ((mv = mig->mtx[mtx_ndx(mig,i,j)]) > FTINY) { |
1349 |
|
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
1350 |
|
|
double rad1 = R2ANG(rbf1j->crad); |
1351 |
|
|
FVECT v; |
1352 |
|
|
int pos[2]; |
1353 |
|
|
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; |
1354 |
|
|
rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + |
1355 |
|
|
rad1*rad1*t)); |
1356 |
|
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
1357 |
|
|
geodesic(v, v0, v, t, GEOD_REL); |
1358 |
|
|
pos_from_vec(pos, v); |
1359 |
|
|
rbf->rbfa[n].gx = pos[0]; |
1360 |
|
|
rbf->rbfa[n].gy = pos[1]; |
1361 |
|
|
++n; |
1362 |
|
|
} |
1363 |
|
|
} |
1364 |
|
|
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
1365 |
|
|
return(rbf); |
1366 |
|
|
memerr: |
1367 |
|
|
fputs("Out of memory in e_advect_rbf()\n", stderr); |
1368 |
|
|
exit(1); |
1369 |
|
|
return(NULL); /* pro forma return */ |
1370 |
|
|
} |
1371 |
|
|
|
1372 |
|
|
/* Partially advect between recorded incident angles and allocate new RBF */ |
1373 |
|
|
static RBFNODE * |
1374 |
|
|
advect_rbf(const FVECT invec) |
1375 |
|
|
{ |
1376 |
|
|
MIGRATION *miga[3]; |
1377 |
|
|
RBFNODE *rbf; |
1378 |
greg |
2.11 |
float mbfact, mcfact; |
1379 |
|
|
int n, i, j, k; |
1380 |
|
|
FVECT v0, v1, v2; |
1381 |
greg |
2.10 |
double s, t; |
1382 |
|
|
|
1383 |
|
|
if (!get_interp(miga, invec)) /* can't interpolate? */ |
1384 |
|
|
return(NULL); |
1385 |
greg |
2.13 |
if (miga[1] == NULL) /* advect along edge? */ |
1386 |
greg |
2.10 |
return(e_advect_rbf(miga[0], invec)); |
1387 |
greg |
2.12 |
#ifdef DEBUG |
1388 |
|
|
if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | |
1389 |
|
|
miga[0]->rbfv[1] != miga[1]->rbfv[0] | |
1390 |
|
|
miga[1]->rbfv[1] != miga[2]->rbfv[1]) { |
1391 |
|
|
fputs("Triangle vertex screw-up!\n", stderr); |
1392 |
|
|
exit(1); |
1393 |
|
|
} |
1394 |
|
|
#endif |
1395 |
greg |
2.10 |
/* figure out position */ |
1396 |
greg |
2.11 |
fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec); |
1397 |
|
|
normalize(v0); |
1398 |
|
|
fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec); |
1399 |
|
|
normalize(v2); |
1400 |
|
|
fcross(v1, invec, miga[1]->rbfv[1]->invec); |
1401 |
|
|
normalize(v1); |
1402 |
|
|
s = acos(DOT(v0,v1)) / acos(DOT(v0,v2)); |
1403 |
|
|
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, |
1404 |
|
|
s, GEOD_REL); |
1405 |
|
|
t = acos(DOT(v1,invec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); |
1406 |
|
|
n = 0; /* count migrating particles */ |
1407 |
|
|
for (i = 0; i < mtx_nrows(miga[0]); i++) |
1408 |
|
|
for (j = 0; j < mtx_ncols(miga[0]); j++) |
1409 |
|
|
for (k = (miga[0]->mtx[mtx_ndx(miga[0],i,j)] > FTINY) * |
1410 |
|
|
mtx_ncols(miga[2]); k--; ) |
1411 |
|
|
n += (miga[2]->mtx[mtx_ndx(miga[2],i,k)] > FTINY && |
1412 |
|
|
miga[1]->mtx[mtx_ndx(miga[1],j,k)] > FTINY); |
1413 |
greg |
2.12 |
#ifdef DEBUG |
1414 |
|
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", |
1415 |
|
|
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, |
1416 |
|
|
miga[2]->rbfv[1]->nrbf, n); |
1417 |
|
|
#endif |
1418 |
greg |
2.10 |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
1419 |
greg |
2.8 |
if (rbf == NULL) { |
1420 |
|
|
fputs("Out of memory in advect_rbf()\n", stderr); |
1421 |
|
|
exit(1); |
1422 |
|
|
} |
1423 |
|
|
rbf->next = NULL; rbf->ejl = NULL; |
1424 |
|
|
VCOPY(rbf->invec, invec); |
1425 |
greg |
2.10 |
rbf->nrbf = n; |
1426 |
greg |
2.11 |
n = 0; /* compute RBF lobes */ |
1427 |
|
|
mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal * |
1428 |
|
|
(1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal); |
1429 |
|
|
mcfact = (1.-s) * |
1430 |
|
|
(1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal); |
1431 |
|
|
for (i = 0; i < mtx_nrows(miga[0]); i++) { |
1432 |
|
|
const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; |
1433 |
|
|
const float w0i = rbf0i->peak; |
1434 |
|
|
const double rad0i = R2ANG(rbf0i->crad); |
1435 |
|
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
1436 |
|
|
for (j = 0; j < mtx_ncols(miga[0]); j++) { |
1437 |
|
|
const float ma = miga[0]->mtx[mtx_ndx(miga[0],i,j)]; |
1438 |
|
|
const RBFVAL *rbf1j; |
1439 |
|
|
double rad1j, srad2; |
1440 |
|
|
if (ma <= FTINY) |
1441 |
|
|
continue; |
1442 |
|
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j]; |
1443 |
|
|
rad1j = R2ANG(rbf1j->crad); |
1444 |
|
|
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; |
1445 |
|
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); |
1446 |
|
|
geodesic(v1, v0, v1, s, GEOD_REL); |
1447 |
|
|
for (k = 0; k < mtx_ncols(miga[2]); k++) { |
1448 |
|
|
float mb = miga[1]->mtx[mtx_ndx(miga[1],j,k)]; |
1449 |
|
|
float mc = miga[2]->mtx[mtx_ndx(miga[2],i,k)]; |
1450 |
|
|
const RBFVAL *rbf2k; |
1451 |
|
|
double rad2k; |
1452 |
|
|
FVECT vout; |
1453 |
|
|
int pos[2]; |
1454 |
|
|
if ((mb <= FTINY) | (mc <= FTINY)) |
1455 |
|
|
continue; |
1456 |
|
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k]; |
1457 |
|
|
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); |
1458 |
|
|
rad2k = R2ANG(rbf2k->crad); |
1459 |
greg |
2.12 |
rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); |
1460 |
greg |
2.11 |
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); |
1461 |
|
|
geodesic(vout, v1, v2, t, GEOD_REL); |
1462 |
|
|
pos_from_vec(pos, vout); |
1463 |
|
|
rbf->rbfa[n].gx = pos[0]; |
1464 |
|
|
rbf->rbfa[n].gy = pos[1]; |
1465 |
|
|
++n; |
1466 |
|
|
} |
1467 |
|
|
} |
1468 |
|
|
} |
1469 |
|
|
rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact); |
1470 |
greg |
2.10 |
return(rbf); |
1471 |
greg |
2.8 |
} |
1472 |
greg |
2.1 |
|
1473 |
greg |
2.12 |
/* Interpolate and output isotropic BSDF data */ |
1474 |
|
|
static void |
1475 |
|
|
interp_isotropic() |
1476 |
|
|
{ |
1477 |
|
|
const int sqres = 1<<samp_order; |
1478 |
|
|
FILE *ofp = NULL; |
1479 |
|
|
char cmd[128]; |
1480 |
|
|
int ix, ox, oy; |
1481 |
|
|
FVECT ivec, ovec; |
1482 |
|
|
double bsdf; |
1483 |
greg |
2.13 |
#if DEBUG |
1484 |
|
|
fprintf(stderr, "Writing isotropic order %d ", samp_order); |
1485 |
|
|
if (pctcull >= 0) fprintf(stderr, "data with %d%% culling\n", pctcull); |
1486 |
|
|
else fputs("raw data\n", stderr); |
1487 |
|
|
#endif |
1488 |
greg |
2.12 |
if (pctcull >= 0) { /* begin output */ |
1489 |
|
|
sprintf(cmd, "rttree_reduce -h -a -fd -r 3 -t %d -g %d", |
1490 |
|
|
pctcull, samp_order); |
1491 |
|
|
fflush(stdout); |
1492 |
|
|
ofp = popen(cmd, "w"); |
1493 |
|
|
if (ofp == NULL) { |
1494 |
greg |
2.16 |
fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", |
1495 |
|
|
progname); |
1496 |
greg |
2.12 |
exit(1); |
1497 |
|
|
} |
1498 |
|
|
} else |
1499 |
|
|
fputs("{\n", stdout); |
1500 |
|
|
/* run through directions */ |
1501 |
|
|
for (ix = 0; ix < sqres/2; ix++) { |
1502 |
|
|
RBFNODE *rbf; |
1503 |
|
|
SDsquare2disk(ivec, (ix+.5)/sqres, .5); |
1504 |
|
|
ivec[2] = input_orient * |
1505 |
|
|
sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]); |
1506 |
|
|
rbf = advect_rbf(ivec); |
1507 |
|
|
for (ox = 0; ox < sqres; ox++) |
1508 |
|
|
for (oy = 0; oy < sqres; oy++) { |
1509 |
|
|
SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres); |
1510 |
|
|
ovec[2] = output_orient * |
1511 |
|
|
sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]); |
1512 |
|
|
bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]); |
1513 |
|
|
if (pctcull >= 0) |
1514 |
|
|
fwrite(&bsdf, sizeof(bsdf), 1, ofp); |
1515 |
|
|
else |
1516 |
|
|
printf("\t%.3e\n", bsdf); |
1517 |
|
|
} |
1518 |
|
|
free(rbf); |
1519 |
|
|
} |
1520 |
|
|
if (pctcull >= 0) { /* finish output */ |
1521 |
|
|
if (pclose(ofp)) { |
1522 |
greg |
2.16 |
fprintf(stderr, "%s: error running '%s'\n", |
1523 |
|
|
progname, cmd); |
1524 |
greg |
2.12 |
exit(1); |
1525 |
|
|
} |
1526 |
|
|
} else { |
1527 |
|
|
for (ix = sqres*sqres*sqres/2; ix--; ) |
1528 |
|
|
fputs("\t0\n", stdout); |
1529 |
|
|
fputs("}\n", stdout); |
1530 |
|
|
} |
1531 |
|
|
} |
1532 |
|
|
|
1533 |
|
|
/* Interpolate and output anisotropic BSDF data */ |
1534 |
|
|
static void |
1535 |
|
|
interp_anisotropic() |
1536 |
|
|
{ |
1537 |
|
|
const int sqres = 1<<samp_order; |
1538 |
|
|
FILE *ofp = NULL; |
1539 |
|
|
char cmd[128]; |
1540 |
|
|
int ix, iy, ox, oy; |
1541 |
|
|
FVECT ivec, ovec; |
1542 |
|
|
double bsdf; |
1543 |
greg |
2.13 |
#if DEBUG |
1544 |
|
|
fprintf(stderr, "Writing anisotropic order %d ", samp_order); |
1545 |
|
|
if (pctcull >= 0) fprintf(stderr, "data with %d%% culling\n", pctcull); |
1546 |
|
|
else fputs("raw data\n", stderr); |
1547 |
|
|
#endif |
1548 |
greg |
2.12 |
if (pctcull >= 0) { /* begin output */ |
1549 |
|
|
sprintf(cmd, "rttree_reduce -h -a -fd -r 4 -t %d -g %d", |
1550 |
|
|
pctcull, samp_order); |
1551 |
|
|
fflush(stdout); |
1552 |
|
|
ofp = popen(cmd, "w"); |
1553 |
|
|
if (ofp == NULL) { |
1554 |
greg |
2.16 |
fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", |
1555 |
|
|
progname); |
1556 |
greg |
2.12 |
exit(1); |
1557 |
|
|
} |
1558 |
|
|
} else |
1559 |
|
|
fputs("{\n", stdout); |
1560 |
|
|
/* run through directions */ |
1561 |
|
|
for (ix = 0; ix < sqres; ix++) |
1562 |
|
|
for (iy = 0; iy < sqres; iy++) { |
1563 |
|
|
RBFNODE *rbf; |
1564 |
|
|
SDsquare2disk(ivec, (ix+.5)/sqres, (iy+.5)/sqres); |
1565 |
|
|
ivec[2] = input_orient * |
1566 |
|
|
sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]); |
1567 |
|
|
rbf = advect_rbf(ivec); |
1568 |
|
|
for (ox = 0; ox < sqres; ox++) |
1569 |
|
|
for (oy = 0; oy < sqres; oy++) { |
1570 |
|
|
SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres); |
1571 |
|
|
ovec[2] = output_orient * |
1572 |
|
|
sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]); |
1573 |
|
|
bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]); |
1574 |
|
|
if (pctcull >= 0) |
1575 |
|
|
fwrite(&bsdf, sizeof(bsdf), 1, ofp); |
1576 |
|
|
else |
1577 |
|
|
printf("\t%.3e\n", bsdf); |
1578 |
|
|
} |
1579 |
|
|
free(rbf); |
1580 |
|
|
} |
1581 |
|
|
if (pctcull >= 0) { /* finish output */ |
1582 |
|
|
if (pclose(ofp)) { |
1583 |
greg |
2.16 |
fprintf(stderr, "%s: error running '%s'\n", |
1584 |
|
|
progname, cmd); |
1585 |
greg |
2.12 |
exit(1); |
1586 |
|
|
} |
1587 |
|
|
} else |
1588 |
|
|
fputs("}\n", stdout); |
1589 |
|
|
} |
1590 |
|
|
|
1591 |
greg |
2.1 |
#if 1 |
1592 |
greg |
2.12 |
/* Read in BSDF files and interpolate as tensor tree representation */ |
1593 |
|
|
int |
1594 |
|
|
main(int argc, char *argv[]) |
1595 |
|
|
{ |
1596 |
|
|
RBFNODE *rbf; |
1597 |
|
|
double bsdf; |
1598 |
|
|
int i; |
1599 |
|
|
|
1600 |
greg |
2.16 |
progname = argv[0]; /* get options */ |
1601 |
|
|
while (argc > 2 && argv[1][0] == '-') { |
1602 |
|
|
switch (argv[1][1]) { |
1603 |
|
|
case 'n': |
1604 |
|
|
nprocs = atoi(argv[2]); |
1605 |
|
|
break; |
1606 |
|
|
case 't': |
1607 |
|
|
pctcull = atoi(argv[2]); |
1608 |
|
|
break; |
1609 |
|
|
default: |
1610 |
|
|
goto userr; |
1611 |
|
|
} |
1612 |
greg |
2.12 |
argv += 2; argc -= 2; |
1613 |
|
|
} |
1614 |
greg |
2.16 |
if (argc < 3) |
1615 |
|
|
goto userr; |
1616 |
|
|
#ifdef _WIN32 |
1617 |
|
|
if (nprocs > 1) { |
1618 |
|
|
fprintf(stderr, "%s: multiprocessing not supported\n", |
1619 |
greg |
2.12 |
progname); |
1620 |
|
|
return(1); |
1621 |
|
|
} |
1622 |
greg |
2.16 |
#endif |
1623 |
greg |
2.12 |
for (i = 1; i < argc; i++) { /* compile measurements */ |
1624 |
|
|
if (!load_pabopto_meas(argv[i])) |
1625 |
|
|
return(1); |
1626 |
|
|
compute_radii(); |
1627 |
|
|
cull_values(); |
1628 |
|
|
make_rbfrep(); |
1629 |
|
|
} |
1630 |
|
|
build_mesh(); /* create interpolation */ |
1631 |
|
|
/* xml_prologue(); /* start XML output */ |
1632 |
|
|
if (single_plane_incident) /* resample dist. */ |
1633 |
|
|
interp_isotropic(); |
1634 |
|
|
else |
1635 |
|
|
interp_anisotropic(); |
1636 |
|
|
/* xml_epilogue(); /* finish XML output */ |
1637 |
|
|
return(0); |
1638 |
greg |
2.16 |
userr: |
1639 |
|
|
fprintf(stderr, |
1640 |
|
|
"Usage: %s [-n nprocs][-t pctcull] meas1.dat meas2.dat .. > bsdf.xml\n", |
1641 |
|
|
progname); |
1642 |
|
|
return(1); |
1643 |
greg |
2.12 |
} |
1644 |
|
|
#else |
1645 |
greg |
2.1 |
/* Test main produces a Radiance model from the given input file */ |
1646 |
|
|
int |
1647 |
|
|
main(int argc, char *argv[]) |
1648 |
|
|
{ |
1649 |
|
|
char buf[128]; |
1650 |
|
|
FILE *pfp; |
1651 |
|
|
double bsdf; |
1652 |
|
|
FVECT dir; |
1653 |
|
|
int i, j, n; |
1654 |
|
|
|
1655 |
|
|
if (argc != 2) { |
1656 |
|
|
fprintf(stderr, "Usage: %s input.dat > output.rad\n", argv[0]); |
1657 |
|
|
return(1); |
1658 |
|
|
} |
1659 |
greg |
2.10 |
if (!load_pabopto_meas(argv[1])) |
1660 |
greg |
2.1 |
return(1); |
1661 |
|
|
|
1662 |
|
|
compute_radii(); |
1663 |
|
|
cull_values(); |
1664 |
greg |
2.3 |
make_rbfrep(); |
1665 |
|
|
/* produce spheres at meas. */ |
1666 |
|
|
puts("void plastic yellow\n0\n0\n5 .6 .4 .01 .04 .08\n"); |
1667 |
greg |
2.1 |
puts("void plastic pink\n0\n0\n5 .5 .05 .9 .04 .08\n"); |
1668 |
|
|
n = 0; |
1669 |
|
|
for (i = 0; i < GRIDRES; i++) |
1670 |
|
|
for (j = 0; j < GRIDRES; j++) |
1671 |
greg |
2.5 |
if (dsf_grid[i][j].vsum > .0f) { |
1672 |
greg |
2.10 |
ovec_from_pos(dir, i, j); |
1673 |
greg |
2.5 |
bsdf = dsf_grid[i][j].vsum / dir[2]; |
1674 |
|
|
if (dsf_grid[i][j].nval) { |
1675 |
greg |
2.3 |
printf("pink cone c%04d\n0\n0\n8\n", ++n); |
1676 |
|
|
printf("\t%.6g %.6g %.6g\n", |
1677 |
greg |
2.1 |
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); |
1678 |
greg |
2.3 |
printf("\t%.6g %.6g %.6g\n", |
1679 |
greg |
2.1 |
dir[0]*(bsdf+.005), dir[1]*(bsdf+.005), |
1680 |
|
|
dir[2]*(bsdf+.005)); |
1681 |
greg |
2.3 |
puts("\t.003\t0\n"); |
1682 |
|
|
} else { |
1683 |
greg |
2.10 |
ovec_from_pos(dir, i, j); |
1684 |
greg |
2.3 |
printf("yellow sphere s%04d\n0\n0\n", ++n); |
1685 |
|
|
printf("4 %.6g %.6g %.6g .0015\n\n", |
1686 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); |
1687 |
|
|
} |
1688 |
greg |
2.1 |
} |
1689 |
|
|
/* output continuous surface */ |
1690 |
|
|
puts("void trans tgreen\n0\n0\n7 .7 1 .7 .04 .04 .9 .9\n"); |
1691 |
|
|
fflush(stdout); |
1692 |
greg |
2.5 |
sprintf(buf, "gensurf tgreen bsdf - - - %d %d", GRIDRES-1, GRIDRES-1); |
1693 |
greg |
2.1 |
pfp = popen(buf, "w"); |
1694 |
|
|
if (pfp == NULL) { |
1695 |
|
|
fputs(buf, stderr); |
1696 |
|
|
fputs(": cannot start command\n", stderr); |
1697 |
|
|
return(1); |
1698 |
|
|
} |
1699 |
|
|
for (i = 0; i < GRIDRES; i++) |
1700 |
|
|
for (j = 0; j < GRIDRES; j++) { |
1701 |
greg |
2.10 |
ovec_from_pos(dir, i, j); |
1702 |
greg |
2.5 |
bsdf = eval_rbfrep(dsf_list, dir) / dir[2]; |
1703 |
greg |
2.1 |
fprintf(pfp, "%.8e %.8e %.8e\n", |
1704 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); |
1705 |
|
|
} |
1706 |
|
|
return(pclose(pfp)==0 ? 0 : 1); |
1707 |
|
|
} |
1708 |
|
|
#endif |