ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/pabopto2xml.c
Revision: 2.16
Committed: Sun Oct 14 22:31:20 2012 UTC (11 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.15: +166 -49 lines
Log Message:
Added multi-processing option

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.16 static const char RCSid[] = "$Id: pabopto2xml.c,v 2.15 2012/09/23 16:45:20 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Convert PAB-Opto measurements to XML format using tensor tree representation
6     * Employs Bonneel et al. Earth Mover's Distance interpolant.
7     *
8     * G.Ward
9     */
10    
11 greg 2.16 #ifndef _WIN32
12     #include <unistd.h>
13     #include <sys/wait.h>
14     #include <sys/mman.h>
15     #endif
16 greg 2.1 #define _USE_MATH_DEFINES
17     #include <stdio.h>
18     #include <stdlib.h>
19     #include <string.h>
20     #include <ctype.h>
21     #include <math.h>
22     #include "bsdf.h"
23    
24 greg 2.10 #define DEBUG 1
25    
26 greg 2.1 #ifndef GRIDRES
27 greg 2.10 #define GRIDRES 200 /* grid resolution per side */
28 greg 2.1 #endif
29    
30 greg 2.3 #define RSCA 2.7 /* radius scaling factor (empirical) */
31 greg 2.2
32 greg 2.6 /* convert to/from coded radians */
33     #define ANG2R(r) (int)((r)*((1<<16)/M_PI))
34 greg 2.2 #define R2ANG(c) (((c)+.5)*(M_PI/(1<<16)))
35 greg 2.1
36     typedef struct {
37 greg 2.5 float vsum; /* DSF sum */
38 greg 2.1 unsigned short nval; /* number of values in sum */
39 greg 2.2 unsigned short crad; /* radius (coded angle) */
40 greg 2.1 } GRIDVAL; /* grid value */
41    
42     typedef struct {
43 greg 2.5 float peak; /* lobe value at peak */
44 greg 2.2 unsigned short crad; /* radius (coded angle) */
45 greg 2.1 unsigned char gx, gy; /* grid position */
46     } RBFVAL; /* radial basis function value */
47    
48 greg 2.7 struct s_rbfnode; /* forward declaration of RBF struct */
49    
50     typedef struct s_migration {
51     struct s_migration *next; /* next in global edge list */
52     struct s_rbfnode *rbfv[2]; /* from,to vertex */
53     struct s_migration *enxt[2]; /* next from,to sibling */
54     float mtx[1]; /* matrix (extends struct) */
55     } MIGRATION; /* migration link (winged edge structure) */
56    
57     typedef struct s_rbfnode {
58     struct s_rbfnode *next; /* next in global RBF list */
59     MIGRATION *ejl; /* edge list for this vertex */
60 greg 2.1 FVECT invec; /* incident vector direction */
61 greg 2.8 double vtotal; /* volume for normalization */
62 greg 2.1 int nrbf; /* number of RBFs */
63     RBFVAL rbfa[1]; /* RBF array (extends struct) */
64 greg 2.10 } RBFNODE; /* RBF representation of DSF @ 1 incidence */
65 greg 2.1
66     /* our loaded grid for this incident angle */
67 greg 2.10 static double theta_in_deg, phi_in_deg;
68     static GRIDVAL dsf_grid[GRIDRES][GRIDRES];
69    
70     /* all incident angles in-plane so far? */
71     static int single_plane_incident = -1;
72    
73     /* input/output orientations */
74     static int input_orient = 0;
75     static int output_orient = 0;
76 greg 2.1
77 greg 2.5 /* processed incident DSF measurements */
78 greg 2.10 static RBFNODE *dsf_list = NULL;
79 greg 2.7
80 greg 2.8 /* RBF-linking matrices (edges) */
81 greg 2.7 static MIGRATION *mig_list = NULL;
82    
83 greg 2.10 /* migration edges drawn in raster fashion */
84     static MIGRATION *mig_grid[GRIDRES][GRIDRES];
85    
86 greg 2.8 #define mtx_nrows(m) ((m)->rbfv[0]->nrbf)
87     #define mtx_ncols(m) ((m)->rbfv[1]->nrbf)
88     #define mtx_ndx(m,i,j) ((i)*mtx_ncols(m) + (j))
89     #define is_src(rbf,m) ((rbf) == (m)->rbfv[0])
90     #define is_dest(rbf,m) ((rbf) == (m)->rbfv[1])
91     #define nextedge(rbf,m) (m)->enxt[is_dest(rbf,m)]
92 greg 2.10 #define opp_rbf(rbf,m) (m)->rbfv[is_src(rbf,m)]
93    
94     #define round(v) (int)((v) + .5 - ((v) < -.5))
95 greg 2.8
96 greg 2.12 char *progname;
97 greg 2.13
98     #ifdef DEBUG /* percentage to cull (<0 to turn off) */
99     int pctcull = -1;
100     #else
101 greg 2.12 int pctcull = 90;
102 greg 2.13 #endif
103 greg 2.16 /* number of processes to run */
104     int nprocs = 1;
105     /* number of children (-1 in child) */
106     int nchild = 0;
107    
108 greg 2.13 /* sampling order (set by data density) */
109 greg 2.12 int samp_order = 0;
110    
111 greg 2.8 /* Compute volume associated with Gaussian lobe */
112     static double
113     rbf_volume(const RBFVAL *rbfp)
114     {
115     double rad = R2ANG(rbfp->crad);
116    
117     return((2.*M_PI) * rbfp->peak * rad*rad);
118     }
119 greg 2.1
120 greg 2.3 /* Compute outgoing vector from grid position */
121     static void
122 greg 2.10 ovec_from_pos(FVECT vec, int xpos, int ypos)
123 greg 2.1 {
124 greg 2.3 double uv[2];
125     double r2;
126    
127     SDsquare2disk(uv, (1./GRIDRES)*(xpos+.5), (1./GRIDRES)*(ypos+.5));
128     /* uniform hemispherical projection */
129     r2 = uv[0]*uv[0] + uv[1]*uv[1];
130     vec[0] = vec[1] = sqrt(2. - r2);
131     vec[0] *= uv[0];
132     vec[1] *= uv[1];
133 greg 2.10 vec[2] = output_orient*(1. - r2);
134 greg 2.1 }
135    
136 greg 2.10 /* Compute grid position from normalized input/output vector */
137 greg 2.1 static void
138     pos_from_vec(int pos[2], const FVECT vec)
139     {
140     double sq[2]; /* uniform hemispherical projection */
141 greg 2.10 double norm = 1./sqrt(1. + fabs(vec[2]));
142 greg 2.1
143     SDdisk2square(sq, vec[0]*norm, vec[1]*norm);
144    
145     pos[0] = (int)(sq[0]*GRIDRES);
146     pos[1] = (int)(sq[1]*GRIDRES);
147     }
148    
149 greg 2.5 /* Evaluate RBF for DSF at the given normalized outgoing direction */
150 greg 2.1 static double
151 greg 2.10 eval_rbfrep(const RBFNODE *rp, const FVECT outvec)
152 greg 2.1 {
153     double res = .0;
154     const RBFVAL *rbfp;
155     FVECT odir;
156     double sig2;
157     int n;
158    
159 greg 2.12 if (rp == NULL)
160     return(.0);
161 greg 2.1 rbfp = rp->rbfa;
162     for (n = rp->nrbf; n--; rbfp++) {
163 greg 2.10 ovec_from_pos(odir, rbfp->gx, rbfp->gy);
164 greg 2.2 sig2 = R2ANG(rbfp->crad);
165     sig2 = (DOT(odir,outvec) - 1.) / (sig2*sig2);
166 greg 2.1 if (sig2 > -19.)
167 greg 2.5 res += rbfp->peak * exp(sig2);
168 greg 2.1 }
169     return(res);
170     }
171    
172 greg 2.10 /* Insert a new directional scattering function in our global list */
173     static void
174     insert_dsf(RBFNODE *newrbf)
175     {
176     RBFNODE *rbf, *rbf_last;
177 greg 2.14 /* check for redundant meas. */
178     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
179     if (DOT(rbf->invec, newrbf->invec) >= 1.-FTINY) {
180     fputs("Duplicate incident measurement (ignored)\n", stderr);
181     free(newrbf);
182     return;
183     }
184 greg 2.10 /* keep in ascending theta order */
185     for (rbf_last = NULL, rbf = dsf_list;
186     single_plane_incident & (rbf != NULL);
187     rbf_last = rbf, rbf = rbf->next)
188     if (input_orient*rbf->invec[2] < input_orient*newrbf->invec[2])
189     break;
190     if (rbf_last == NULL) {
191     newrbf->next = dsf_list;
192     dsf_list = newrbf;
193     return;
194     }
195     newrbf->next = rbf;
196     rbf_last->next = newrbf;
197     }
198    
199 greg 2.3 /* Count up filled nodes and build RBF representation from current grid */
200 greg 2.10 static RBFNODE *
201 greg 2.3 make_rbfrep(void)
202     {
203 greg 2.6 int niter = 16;
204 greg 2.12 int minrad = ANG2R(pow(2., 1.-samp_order));
205 greg 2.6 double lastVar, thisVar = 100.;
206 greg 2.3 int nn;
207 greg 2.10 RBFNODE *newnode;
208 greg 2.3 int i, j;
209    
210     nn = 0; /* count selected bins */
211     for (i = 0; i < GRIDRES; i++)
212     for (j = 0; j < GRIDRES; j++)
213 greg 2.6 nn += dsf_grid[i][j].nval;
214 greg 2.3 /* allocate RBF array */
215 greg 2.10 newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
216 greg 2.3 if (newnode == NULL) {
217 greg 2.8 fputs("Out of memory in make_rbfrep()\n", stderr);
218 greg 2.3 exit(1);
219     }
220     newnode->next = NULL;
221 greg 2.7 newnode->ejl = NULL;
222 greg 2.3 newnode->invec[2] = sin(M_PI/180.*theta_in_deg);
223     newnode->invec[0] = cos(M_PI/180.*phi_in_deg)*newnode->invec[2];
224     newnode->invec[1] = sin(M_PI/180.*phi_in_deg)*newnode->invec[2];
225 greg 2.10 newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
226 greg 2.8 newnode->vtotal = 0;
227 greg 2.3 newnode->nrbf = nn;
228     nn = 0; /* fill RBF array */
229     for (i = 0; i < GRIDRES; i++)
230     for (j = 0; j < GRIDRES; j++)
231 greg 2.5 if (dsf_grid[i][j].nval) {
232 greg 2.6 newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
233 greg 2.5 newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5;
234 greg 2.3 newnode->rbfa[nn].gx = i;
235     newnode->rbfa[nn].gy = j;
236 greg 2.12 if (newnode->rbfa[nn].crad < minrad)
237     minrad = newnode->rbfa[nn].crad;
238 greg 2.3 ++nn;
239     }
240 greg 2.6 /* iterate to improve interpolation accuracy */
241     do {
242 greg 2.13 double dsum = 0, dsum2 = 0;
243 greg 2.3 nn = 0;
244     for (i = 0; i < GRIDRES; i++)
245     for (j = 0; j < GRIDRES; j++)
246 greg 2.5 if (dsf_grid[i][j].nval) {
247 greg 2.3 FVECT odir;
248 greg 2.6 double corr;
249 greg 2.10 ovec_from_pos(odir, i, j);
250 greg 2.6 newnode->rbfa[nn++].peak *= corr =
251 greg 2.5 dsf_grid[i][j].vsum /
252 greg 2.3 eval_rbfrep(newnode, odir);
253 greg 2.4 dsum += corr - 1.;
254     dsum2 += (corr-1.)*(corr-1.);
255 greg 2.3 }
256 greg 2.6 lastVar = thisVar;
257     thisVar = dsum2/(double)nn;
258 greg 2.10 #ifdef DEBUG
259 greg 2.4 fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
260     100.*dsum/(double)nn,
261 greg 2.6 100.*sqrt(thisVar));
262 greg 2.10 #endif
263 greg 2.6 } while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
264    
265 greg 2.8 nn = 0; /* compute sum for normalization */
266     while (nn < newnode->nrbf)
267     newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
268    
269 greg 2.10 insert_dsf(newnode);
270 greg 2.12 /* adjust sampling resolution */
271 greg 2.13 samp_order = log(2./R2ANG(minrad))/M_LN2 + .5;
272 greg 2.12
273 greg 2.10 return(newnode);
274 greg 2.3 }
275    
276 greg 2.1 /* Load a set of measurements corresponding to a particular incident angle */
277     static int
278 greg 2.10 load_pabopto_meas(const char *fname)
279 greg 2.1 {
280     FILE *fp = fopen(fname, "r");
281     int inp_is_DSF = -1;
282 greg 2.10 double new_phi, theta_out, phi_out, val;
283 greg 2.1 char buf[2048];
284     int n, c;
285    
286     if (fp == NULL) {
287     fputs(fname, stderr);
288     fputs(": cannot open\n", stderr);
289     return(0);
290     }
291 greg 2.5 memset(dsf_grid, 0, sizeof(dsf_grid));
292 greg 2.10 #ifdef DEBUG
293     fprintf(stderr, "Loading measurement file '%s'...\n", fname);
294     #endif
295 greg 2.1 /* read header information */
296     while ((c = getc(fp)) == '#' || c == EOF) {
297     if (fgets(buf, sizeof(buf), fp) == NULL) {
298     fputs(fname, stderr);
299     fputs(": unexpected EOF\n", stderr);
300     fclose(fp);
301     return(0);
302     }
303     if (!strcmp(buf, "format: theta phi DSF\n")) {
304     inp_is_DSF = 1;
305     continue;
306     }
307     if (!strcmp(buf, "format: theta phi BSDF\n")) {
308     inp_is_DSF = 0;
309     continue;
310     }
311     if (sscanf(buf, "intheta %lf", &theta_in_deg) == 1)
312     continue;
313 greg 2.10 if (sscanf(buf, "inphi %lf", &new_phi) == 1)
314 greg 2.1 continue;
315     if (sscanf(buf, "incident_angle %lf %lf",
316 greg 2.10 &theta_in_deg, &new_phi) == 2)
317 greg 2.1 continue;
318     }
319     if (inp_is_DSF < 0) {
320     fputs(fname, stderr);
321     fputs(": unknown format\n", stderr);
322     fclose(fp);
323     return(0);
324     }
325 greg 2.10 if (!input_orient) /* check input orientation */
326     input_orient = 1 - 2*(theta_in_deg > 90.);
327     else if (input_orient > 0 ^ theta_in_deg < 90.) {
328     fputs("Cannot handle input angles on both sides of surface\n",
329     stderr);
330     exit(1);
331     }
332     if (single_plane_incident > 0) /* check if still in plane */
333     single_plane_incident = (round(new_phi) == round(phi_in_deg));
334     else if (single_plane_incident < 0)
335     single_plane_incident = 1;
336     phi_in_deg = new_phi;
337     ungetc(c, fp); /* read actual data */
338 greg 2.1 while (fscanf(fp, "%lf %lf %lf\n", &theta_out, &phi_out, &val) == 3) {
339     FVECT ovec;
340     int pos[2];
341    
342 greg 2.10 if (!output_orient) /* check output orientation */
343     output_orient = 1 - 2*(theta_out > 90.);
344     else if (output_orient > 0 ^ theta_out < 90.) {
345     fputs("Cannot handle output angles on both sides of surface\n",
346     stderr);
347     exit(1);
348     }
349 greg 2.1 ovec[2] = sin(M_PI/180.*theta_out);
350     ovec[0] = cos(M_PI/180.*phi_out) * ovec[2];
351     ovec[1] = sin(M_PI/180.*phi_out) * ovec[2];
352     ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
353    
354 greg 2.5 if (!inp_is_DSF)
355     val *= ovec[2]; /* convert from BSDF to DSF */
356 greg 2.1
357     pos_from_vec(pos, ovec);
358    
359 greg 2.5 dsf_grid[pos[0]][pos[1]].vsum += val;
360     dsf_grid[pos[0]][pos[1]].nval++;
361 greg 2.1 }
362     n = 0;
363     while ((c = getc(fp)) != EOF)
364     n += !isspace(c);
365     if (n)
366     fprintf(stderr,
367     "%s: warning: %d unexpected characters past EOD\n",
368     fname, n);
369     fclose(fp);
370     return(1);
371     }
372    
373     /* Compute radii for non-empty bins */
374     /* (distance to furthest empty bin for which non-empty bin is the closest) */
375     static void
376     compute_radii(void)
377     {
378 greg 2.4 unsigned int fill_grid[GRIDRES][GRIDRES];
379     unsigned short fill_cnt[GRIDRES][GRIDRES];
380 greg 2.2 FVECT ovec0, ovec1;
381     double ang2, lastang2;
382     int r, i, j, jn, ii, jj, inear, jnear;
383    
384     r = GRIDRES/2; /* proceed in zig-zag */
385 greg 2.1 for (i = 0; i < GRIDRES; i++)
386     for (jn = 0; jn < GRIDRES; jn++) {
387     j = (i&1) ? jn : GRIDRES-1-jn;
388 greg 2.5 if (dsf_grid[i][j].nval) /* find empty grid pos. */
389 greg 2.1 continue;
390 greg 2.10 ovec_from_pos(ovec0, i, j);
391 greg 2.1 inear = jnear = -1; /* find nearest non-empty */
392 greg 2.2 lastang2 = M_PI*M_PI;
393 greg 2.1 for (ii = i-r; ii <= i+r; ii++) {
394     if (ii < 0) continue;
395     if (ii >= GRIDRES) break;
396     for (jj = j-r; jj <= j+r; jj++) {
397     if (jj < 0) continue;
398     if (jj >= GRIDRES) break;
399 greg 2.5 if (!dsf_grid[ii][jj].nval)
400 greg 2.1 continue;
401 greg 2.10 ovec_from_pos(ovec1, ii, jj);
402 greg 2.2 ang2 = 2. - 2.*DOT(ovec0,ovec1);
403     if (ang2 >= lastang2)
404 greg 2.1 continue;
405 greg 2.2 lastang2 = ang2;
406 greg 2.1 inear = ii; jnear = jj;
407     }
408     }
409 greg 2.2 if (inear < 0) {
410     fputs("Could not find non-empty neighbor!\n", stderr);
411     exit(1);
412     }
413     ang2 = sqrt(lastang2);
414     r = ANG2R(ang2); /* record if > previous */
415 greg 2.5 if (r > dsf_grid[inear][jnear].crad)
416     dsf_grid[inear][jnear].crad = r;
417 greg 2.2 /* next search radius */
418 greg 2.10 r = ang2*(2.*GRIDRES/M_PI) + 3;
419 greg 2.1 }
420 greg 2.4 /* blur radii over hemisphere */
421 greg 2.1 memset(fill_grid, 0, sizeof(fill_grid));
422 greg 2.4 memset(fill_cnt, 0, sizeof(fill_cnt));
423 greg 2.1 for (i = 0; i < GRIDRES; i++)
424     for (j = 0; j < GRIDRES; j++) {
425 greg 2.5 if (!dsf_grid[i][j].crad)
426 greg 2.4 continue; /* missing distance */
427 greg 2.5 r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
428 greg 2.1 for (ii = i-r; ii <= i+r; ii++) {
429     if (ii < 0) continue;
430     if (ii >= GRIDRES) break;
431     for (jj = j-r; jj <= j+r; jj++) {
432     if (jj < 0) continue;
433     if (jj >= GRIDRES) break;
434 greg 2.4 if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
435 greg 2.1 continue;
436 greg 2.5 fill_grid[ii][jj] += dsf_grid[i][j].crad;
437 greg 2.4 fill_cnt[ii][jj]++;
438 greg 2.1 }
439     }
440     }
441 greg 2.6 /* copy back blurred radii */
442 greg 2.1 for (i = 0; i < GRIDRES; i++)
443     for (j = 0; j < GRIDRES; j++)
444 greg 2.4 if (fill_cnt[i][j])
445 greg 2.5 dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
446 greg 2.1 }
447    
448 greg 2.6 /* Cull points for more uniform distribution, leave all nval 0 or 1 */
449 greg 2.1 static void
450     cull_values(void)
451     {
452 greg 2.2 FVECT ovec0, ovec1;
453     double maxang, maxang2;
454     int i, j, ii, jj, r;
455 greg 2.1 /* simple greedy algorithm */
456     for (i = 0; i < GRIDRES; i++)
457     for (j = 0; j < GRIDRES; j++) {
458 greg 2.5 if (!dsf_grid[i][j].nval)
459 greg 2.1 continue;
460 greg 2.5 if (!dsf_grid[i][j].crad)
461 greg 2.2 continue; /* shouldn't happen */
462 greg 2.10 ovec_from_pos(ovec0, i, j);
463 greg 2.5 maxang = 2.*R2ANG(dsf_grid[i][j].crad);
464 greg 2.2 if (maxang > ovec0[2]) /* clamp near horizon */
465     maxang = ovec0[2];
466     r = maxang*(2.*GRIDRES/M_PI) + 1;
467     maxang2 = maxang*maxang;
468 greg 2.1 for (ii = i-r; ii <= i+r; ii++) {
469     if (ii < 0) continue;
470     if (ii >= GRIDRES) break;
471     for (jj = j-r; jj <= j+r; jj++) {
472     if (jj < 0) continue;
473     if (jj >= GRIDRES) break;
474 greg 2.5 if (!dsf_grid[ii][jj].nval)
475 greg 2.1 continue;
476 greg 2.2 if ((ii == i) & (jj == j))
477     continue; /* don't get self-absorbed */
478 greg 2.10 ovec_from_pos(ovec1, ii, jj);
479 greg 2.2 if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
480 greg 2.1 continue;
481 greg 2.2 /* absorb sum */
482 greg 2.5 dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
483     dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
484 greg 2.2 /* keep value, though */
485 greg 2.6 dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
486 greg 2.5 dsf_grid[ii][jj].nval = 0;
487 greg 2.1 }
488     }
489     }
490 greg 2.6 /* final averaging pass */
491     for (i = 0; i < GRIDRES; i++)
492     for (j = 0; j < GRIDRES; j++)
493     if (dsf_grid[i][j].nval > 1) {
494     dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
495     dsf_grid[i][j].nval = 1;
496     }
497 greg 2.1 }
498    
499 greg 2.8 /* Compute (and allocate) migration price matrix for optimization */
500     static float *
501 greg 2.10 price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf)
502 greg 2.8 {
503     float *pmtx = (float *)malloc(sizeof(float) *
504     from_rbf->nrbf * to_rbf->nrbf);
505     FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf);
506     int i, j;
507    
508     if ((pmtx == NULL) | (vto == NULL)) {
509     fputs("Out of memory in migration_costs()\n", stderr);
510     exit(1);
511     }
512     for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */
513 greg 2.10 ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy);
514 greg 2.8
515     for (i = from_rbf->nrbf; i--; ) {
516     const double from_ang = R2ANG(from_rbf->rbfa[i].crad);
517     FVECT vfrom;
518 greg 2.10 ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy);
519 greg 2.8 for (j = to_rbf->nrbf; j--; )
520     pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) +
521     fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang);
522     }
523     free(vto);
524     return(pmtx);
525     }
526    
527     /* Comparison routine needed for sorting price row */
528     static const float *price_arr;
529     static int
530     msrt_cmp(const void *p1, const void *p2)
531     {
532     float c1 = price_arr[*(const int *)p1];
533     float c2 = price_arr[*(const int *)p2];
534    
535     if (c1 > c2) return(1);
536     if (c1 < c2) return(-1);
537     return(0);
538     }
539    
540     /* Compute minimum (optimistic) cost for moving the given source material */
541     static double
542     min_cost(double amt2move, const double *avail, const float *price, int n)
543     {
544     static int *price_sort = NULL;
545     static int n_alloc = 0;
546     double total_cost = 0;
547     int i;
548    
549     if (amt2move <= FTINY) /* pre-emptive check */
550     return(0.);
551     if (n > n_alloc) { /* (re)allocate sort array */
552     if (n_alloc) free(price_sort);
553     price_sort = (int *)malloc(sizeof(int)*n);
554     if (price_sort == NULL) {
555     fputs("Out of memory in min_cost()\n", stderr);
556     exit(1);
557     }
558     n_alloc = n;
559     }
560     for (i = n; i--; )
561     price_sort[i] = i;
562     price_arr = price;
563     qsort(price_sort, n, sizeof(int), &msrt_cmp);
564     /* move cheapest first */
565     for (i = 0; i < n && amt2move > FTINY; i++) {
566     int d = price_sort[i];
567     double amt = (amt2move < avail[d]) ? amt2move : avail[d];
568    
569     total_cost += amt * price[d];
570     amt2move -= amt;
571     }
572     return(total_cost);
573     }
574    
575     /* Take a step in migration by choosing optimal bucket to transfer */
576     static double
577     migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx)
578     {
579     static double *src_cost = NULL;
580     int n_alloc = 0;
581 greg 2.14 const double maxamt = .1; /* 2./(mtx_nrows(mig)*mtx_ncols(mig)); */
582 greg 2.8 double amt = 0;
583     struct {
584     int s, d; /* source and destination */
585     double price; /* price estimate per amount moved */
586     double amt; /* amount we can move */
587     } cur, best;
588     int i;
589    
590     if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */
591     if (n_alloc)
592     free(src_cost);
593     src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig));
594     if (src_cost == NULL) {
595     fputs("Out of memory in migration_step()\n", stderr);
596     exit(1);
597     }
598     n_alloc = mtx_nrows(mig);
599     }
600     for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */
601     src_cost[i] = min_cost(src_rem[i], dst_rem,
602     pmtx+i*mtx_ncols(mig), mtx_ncols(mig));
603    
604     /* find best source & dest. */
605     best.s = best.d = -1; best.price = FHUGE; best.amt = 0;
606     for (cur.s = mtx_nrows(mig); cur.s--; ) {
607     const float *price = pmtx + cur.s*mtx_ncols(mig);
608     double cost_others = 0;
609     if (src_rem[cur.s] <= FTINY)
610     continue;
611     cur.d = -1; /* examine cheapest dest. */
612     for (i = mtx_ncols(mig); i--; )
613     if (dst_rem[i] > FTINY &&
614     (cur.d < 0 || price[i] < price[cur.d]))
615     cur.d = i;
616     if (cur.d < 0)
617     return(.0);
618     if ((cur.price = price[cur.d]) >= best.price)
619     continue; /* no point checking further */
620     cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ?
621     src_rem[cur.s] : dst_rem[cur.d];
622     if (cur.amt > maxamt) cur.amt = maxamt;
623     dst_rem[cur.d] -= cur.amt; /* add up differential costs */
624     for (i = mtx_nrows(mig); i--; ) {
625     if (i == cur.s) continue;
626     cost_others += min_cost(src_rem[i], dst_rem, price, mtx_ncols(mig))
627     - src_cost[i];
628     }
629     dst_rem[cur.d] += cur.amt; /* undo trial move */
630     cur.price += cost_others/cur.amt; /* adjust effective price */
631     if (cur.price < best.price) /* are we better than best? */
632     best = cur;
633     }
634     if ((best.s < 0) | (best.d < 0))
635     return(.0);
636     /* make the actual move */
637     mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt;
638     src_rem[best.s] -= best.amt;
639     dst_rem[best.d] -= best.amt;
640     return(best.amt);
641     }
642    
643 greg 2.14 #ifdef DEBUG
644     static char *
645     thetaphi(const FVECT v)
646     {
647     static char buf[128];
648     double theta, phi;
649    
650     theta = 180./M_PI*acos(v[2]);
651     phi = 180./M_PI*atan2(v[1],v[0]);
652     sprintf(buf, "(%.0f,%.0f)", theta, phi);
653    
654     return(buf);
655     }
656     #endif
657    
658 greg 2.16 /* Create a new migration holder (sharing memory for multiprocessing) */
659 greg 2.8 static MIGRATION *
660 greg 2.16 new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
661     {
662     size_t memlen = sizeof(MIGRATION) +
663     sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
664     MIGRATION *newmig;
665     #ifdef _WIN32
666     newmig = (MIGRATION *)malloc(memlen);
667     #else
668     if (nprocs <= 1) { /* single process? */
669     newmig = (MIGRATION *)malloc(memlen);
670     } else { /* else need to share memory */
671     newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
672     MAP_ANON|MAP_SHARED, -1, 0);
673     if ((void *)newmig == MAP_FAILED)
674     newmig = NULL;
675     }
676     #endif
677     if (newmig == NULL) {
678     fprintf(stderr, "%s: cannot allocate new migration\n", progname);
679     exit(1);
680     }
681     newmig->rbfv[0] = from_rbf;
682     newmig->rbfv[1] = to_rbf;
683     /* insert in edge lists */
684     newmig->enxt[0] = from_rbf->ejl;
685     from_rbf->ejl = newmig;
686     newmig->enxt[1] = to_rbf->ejl;
687     to_rbf->ejl = newmig;
688     newmig->next = mig_list; /* push onto global list */
689     return(mig_list = newmig);
690     }
691    
692     #ifdef _WIN32
693     #define await_children(n) (void)(n)
694     #define run_subprocess() 0
695     #define end_subprocess() (void)0
696     #else
697    
698     /* Wait for the specified number of child processes to complete */
699     static void
700     await_children(int n)
701     {
702     if (n > nchild)
703     n = nchild;
704     while (n-- > 0) {
705     int status;
706     if (wait(&status) < 0) {
707     fprintf(stderr, "%s: missing child(ren)!\n", progname);
708     nchild = 0;
709     break;
710     }
711     --nchild;
712     if (status) {
713     if ((status = WEXITSTATUS(status)))
714     exit(status);
715     fprintf(stderr, "%s: subprocess died\n", progname);
716     exit(1);
717     }
718     }
719     }
720    
721     /* Start child process if multiprocessing selected */
722     static pid_t
723     run_subprocess(void)
724     {
725     int status;
726     pid_t pid;
727    
728     if (nprocs <= 1) /* any children requested? */
729     return(0);
730     await_children(nchild + 1 - nprocs); /* free up child process */
731     if ((pid = fork())) {
732     if (pid < 0) {
733     fprintf(stderr, "%s: cannot fork subprocess\n",
734     progname);
735     exit(1);
736     }
737     ++nchild; /* subprocess started */
738     return(pid);
739     }
740     nchild = -1;
741     return(0); /* put child to work */
742     }
743    
744     /* If we are in subprocess, call exit */
745     #define end_subprocess() if (nchild < 0) _exit(0); else
746    
747     #endif /* ! _WIN32 */
748    
749     /* Compute and insert migration along directed edge (may fork child) */
750     static MIGRATION *
751     create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
752 greg 2.8 {
753     const double end_thresh = 0.02/(from_rbf->nrbf*to_rbf->nrbf);
754 greg 2.14 float *pmtx;
755     MIGRATION *newmig;
756     double *src_rem, *dst_rem;
757 greg 2.8 double total_rem = 1.;
758     int i;
759 greg 2.14 /* check if exists already */
760     for (newmig = from_rbf->ejl; newmig != NULL;
761     newmig = nextedge(from_rbf,newmig))
762     if (newmig->rbfv[1] == to_rbf)
763 greg 2.16 return(NULL);
764 greg 2.14 /* else allocate */
765 greg 2.16 newmig = new_migration(from_rbf, to_rbf);
766     if (run_subprocess())
767     return(newmig); /* child continues */
768 greg 2.14 pmtx = price_routes(from_rbf, to_rbf);
769     src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf);
770     dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf);
771 greg 2.16 if ((src_rem == NULL) | (dst_rem == NULL)) {
772     fputs("Out of memory in create_migration()\n", stderr);
773 greg 2.8 exit(1);
774     }
775 greg 2.10 #ifdef DEBUG
776 greg 2.16 fprintf(stderr, "Building path from (theta,phi) %s ",
777     thetaphi(from_rbf->invec));
778     fprintf(stderr, "to %s", thetaphi(to_rbf->invec));
779     /* if (nchild) */ fputc('\n', stderr);
780 greg 2.10 #endif
781 greg 2.16 /* starting quantities */
782 greg 2.8 memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf);
783     for (i = from_rbf->nrbf; i--; )
784     src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal;
785     for (i = to_rbf->nrbf; i--; )
786     dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal;
787     /* move a bit at a time */
788 greg 2.13 while (total_rem > end_thresh) {
789 greg 2.8 total_rem -= migration_step(newmig, src_rem, dst_rem, pmtx);
790 greg 2.13 #ifdef DEBUG
791 greg 2.16 if (!nchild)
792     /* fputc('.', stderr); */
793     fprintf(stderr, "%.9f remaining...\r", total_rem);
794 greg 2.13 #endif
795     }
796     #ifdef DEBUG
797 greg 2.16 if (!nchild) fputs("done.\n", stderr);
798 greg 2.13 #endif
799 greg 2.8
800     free(pmtx); /* free working arrays */
801     free(src_rem);
802     free(dst_rem);
803     for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
804     float nf = rbf_volume(&from_rbf->rbfa[i]);
805     int j;
806     if (nf <= FTINY) continue;
807     nf = from_rbf->vtotal / nf;
808     for (j = to_rbf->nrbf; j--; )
809     newmig->mtx[mtx_ndx(newmig,i,j)] *= nf;
810     }
811 greg 2.16 end_subprocess(); /* exit here if subprocess */
812     return(newmig);
813 greg 2.8 }
814    
815 greg 2.10 /* Get triangle surface orientation (unnormalized) */
816     static void
817     tri_orient(FVECT vres, const FVECT v1, const FVECT v2, const FVECT v3)
818     {
819     FVECT v2minus1, v3minus2;
820    
821     VSUB(v2minus1, v2, v1);
822     VSUB(v3minus2, v3, v2);
823     VCROSS(vres, v2minus1, v3minus2);
824     }
825    
826     /* Determine if vertex order is reversed (inward normal) */
827     static int
828     is_rev_tri(const FVECT v1, const FVECT v2, const FVECT v3)
829     {
830     FVECT tor;
831    
832     tri_orient(tor, v1, v2, v3);
833    
834     return(DOT(tor, v2) < 0.);
835     }
836    
837     /* Find vertices completing triangles on either side of the given edge */
838     static int
839     get_triangles(RBFNODE *rbfv[2], const MIGRATION *mig)
840     {
841     const MIGRATION *ej, *ej2;
842     RBFNODE *tv;
843    
844     rbfv[0] = rbfv[1] = NULL;
845 greg 2.13 if (mig == NULL)
846     return(0);
847 greg 2.10 for (ej = mig->rbfv[0]->ejl; ej != NULL;
848     ej = nextedge(mig->rbfv[0],ej)) {
849     if (ej == mig)
850     continue;
851     tv = opp_rbf(mig->rbfv[0],ej);
852     for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
853     if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
854     rbfv[is_rev_tri(mig->rbfv[0]->invec,
855     mig->rbfv[1]->invec,
856     tv->invec)] = tv;
857     break;
858     }
859     }
860     return((rbfv[0] != NULL) + (rbfv[1] != NULL));
861     }
862    
863 greg 2.13 /* Check if prospective vertex would create overlapping triangle */
864     static int
865     overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
866     {
867     const MIGRATION *ej;
868     RBFNODE *vother[2];
869     int im_rev;
870 greg 2.15 /* find shared edge in mesh */
871 greg 2.13 for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
872     const RBFNODE *tv = opp_rbf(pv,ej);
873     if (tv == bv0) {
874     im_rev = is_rev_tri(ej->rbfv[0]->invec,
875     ej->rbfv[1]->invec, bv1->invec);
876     break;
877     }
878     if (tv == bv1) {
879     im_rev = is_rev_tri(ej->rbfv[0]->invec,
880     ej->rbfv[1]->invec, bv0->invec);
881     break;
882     }
883     }
884 greg 2.15 if (!get_triangles(vother, ej)) /* triangle on same side? */
885 greg 2.13 return(0);
886     return(vother[im_rev] != NULL);
887     }
888    
889 greg 2.10 /* Find context hull vertex to complete triangle (oriented call) */
890     static RBFNODE *
891     find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
892 greg 2.8 {
893 greg 2.14 FVECT vmid, vejn, vp;
894 greg 2.10 RBFNODE *rbf, *rbfbest = NULL;
895 greg 2.14 double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
896 greg 2.10
897 greg 2.14 VSUB(vejn, rbf1->invec, rbf0->invec);
898 greg 2.10 VADD(vmid, rbf0->invec, rbf1->invec);
899 greg 2.14 if (normalize(vejn) == 0 || normalize(vmid) == 0)
900 greg 2.10 return(NULL);
901     /* XXX exhaustive search */
902 greg 2.15 /* Find triangle with minimum rotation from perpendicular */
903 greg 2.10 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
904     if ((rbf == rbf0) | (rbf == rbf1))
905     continue;
906 greg 2.14 tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
907     if (DOT(vp, vmid) <= FTINY)
908 greg 2.10 continue; /* wrong orientation */
909 greg 2.15 area2 = .25*DOT(vp,vp);
910 greg 2.14 VSUB(vp, rbf->invec, rbf0->invec);
911     dprod = -DOT(vp, vejn);
912 greg 2.15 VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
913 greg 2.14 dprod = DOT(vp, vmid) / VLEN(vp);
914     if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
915     continue; /* found better already */
916     if (overlaps_tri(rbf0, rbf1, rbf))
917     continue; /* overlaps another triangle */
918     rbfbest = rbf;
919     bestdprod = dprod; /* new one to beat */
920     bestarea2 = area2;
921 greg 2.10 }
922 greg 2.13 return(rbfbest);
923 greg 2.10 }
924    
925     /* Create new migration edge and grow mesh recursively around it */
926     static void
927 greg 2.13 mesh_from_edge(MIGRATION *edge)
928 greg 2.10 {
929 greg 2.13 MIGRATION *ej0, *ej1;
930 greg 2.10 RBFNODE *tvert[2];
931 greg 2.14
932     if (edge == NULL)
933     return;
934 greg 2.10 /* triangle on either side? */
935 greg 2.13 get_triangles(tvert, edge);
936     if (tvert[0] == NULL) { /* grow mesh on right */
937     tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
938 greg 2.10 if (tvert[0] != NULL) {
939 greg 2.13 if (tvert[0] > edge->rbfv[0])
940 greg 2.16 ej0 = create_migration(edge->rbfv[0], tvert[0]);
941 greg 2.13 else
942 greg 2.16 ej0 = create_migration(tvert[0], edge->rbfv[0]);
943 greg 2.13 if (tvert[0] > edge->rbfv[1])
944 greg 2.16 ej1 = create_migration(edge->rbfv[1], tvert[0]);
945 greg 2.13 else
946 greg 2.16 ej1 = create_migration(tvert[0], edge->rbfv[1]);
947 greg 2.13 mesh_from_edge(ej0);
948     mesh_from_edge(ej1);
949 greg 2.10 }
950 greg 2.14 } else if (tvert[1] == NULL) { /* grow mesh on left */
951 greg 2.13 tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
952 greg 2.10 if (tvert[1] != NULL) {
953 greg 2.13 if (tvert[1] > edge->rbfv[0])
954 greg 2.16 ej0 = create_migration(edge->rbfv[0], tvert[1]);
955 greg 2.13 else
956 greg 2.16 ej0 = create_migration(tvert[1], edge->rbfv[0]);
957 greg 2.13 if (tvert[1] > edge->rbfv[1])
958 greg 2.16 ej1 = create_migration(edge->rbfv[1], tvert[1]);
959 greg 2.13 else
960 greg 2.16 ej1 = create_migration(tvert[1], edge->rbfv[1]);
961 greg 2.13 mesh_from_edge(ej0);
962     mesh_from_edge(ej1);
963 greg 2.10 }
964     }
965     }
966 greg 2.8
967 greg 2.13 #ifdef DEBUG
968     #include "random.h"
969     #include "bmpfile.h"
970 greg 2.15 /* Hash pointer to byte value (must return 0 for NULL) */
971 greg 2.13 static int
972     byte_hash(const void *p)
973     {
974     size_t h = (size_t)p;
975     h ^= (size_t)p >> 8;
976     h ^= (size_t)p >> 16;
977     h ^= (size_t)p >> 24;
978     return(h & 0xff);
979     }
980     /* Write out BMP image showing edges */
981     static void
982     write_edge_image(const char *fname)
983     {
984     BMPHeader *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256);
985     BMPWriter *wtr;
986     int i, j;
987    
988     fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname);
989     hdr->compr = BI_RLE8;
990     for (i = 256; --i; ) { /* assign random color map */
991     hdr->palette[i].r = random() & 0xff;
992 greg 2.15 hdr->palette[i].g = random() & 0xff;
993     hdr->palette[i].b = random() & 0xff;
994     /* reject dark colors */
995     i += (hdr->palette[i].r + hdr->palette[i].g +
996     hdr->palette[i].b < 128);
997 greg 2.13 }
998     hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0;
999     /* open output */
1000     wtr = BMPopenOutputFile(fname, hdr);
1001     if (wtr == NULL) {
1002     free(hdr);
1003     return;
1004     }
1005     for (i = 0; i < GRIDRES; i++) { /* write scanlines */
1006     for (j = 0; j < GRIDRES; j++)
1007     wtr->scanline[j] = byte_hash(mig_grid[i][j]);
1008     if (BMPwriteScanline(wtr) != BIR_OK)
1009     break;
1010     }
1011     BMPcloseOutput(wtr); /* close & clean up */
1012     }
1013     #endif
1014    
1015 greg 2.10 /* Draw edge list into mig_grid array */
1016     static void
1017     draw_edges()
1018     {
1019     int nnull = 0, ntot = 0;
1020     MIGRATION *ej;
1021     int p0[2], p1[2];
1022    
1023     /* memset(mig_grid, 0, sizeof(mig_grid)); */
1024     for (ej = mig_list; ej != NULL; ej = ej->next) {
1025     ++ntot;
1026     pos_from_vec(p0, ej->rbfv[0]->invec);
1027     pos_from_vec(p1, ej->rbfv[1]->invec);
1028     if ((p0[0] == p1[0]) & (p0[1] == p1[1])) {
1029     ++nnull;
1030     mig_grid[p0[0]][p0[1]] = ej;
1031     continue;
1032     }
1033     if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) {
1034     const int xstep = 2*(p1[0] > p0[0]) - 1;
1035     const double ystep = (double)((p1[1]-p0[1])*xstep) /
1036     (double)(p1[0]-p0[0]);
1037     int x;
1038     double y;
1039     for (x = p0[0], y = p0[1]+.5; x != p1[0];
1040     x += xstep, y += ystep)
1041     mig_grid[x][(int)y] = ej;
1042     mig_grid[x][(int)y] = ej;
1043     } else {
1044     const int ystep = 2*(p1[1] > p0[1]) - 1;
1045     const double xstep = (double)((p1[0]-p0[0])*ystep) /
1046     (double)(p1[1]-p0[1]);
1047     int y;
1048     double x;
1049     for (y = p0[1], x = p0[0]+.5; y != p1[1];
1050     y += ystep, x += xstep)
1051     mig_grid[(int)x][y] = ej;
1052     mig_grid[(int)x][y] = ej;
1053     }
1054     }
1055     if (nnull)
1056     fprintf(stderr, "Warning: %d of %d edges are null\n",
1057     nnull, ntot);
1058 greg 2.13 #ifdef DEBUG
1059     write_edge_image("bsdf_edges.bmp");
1060     #endif
1061 greg 2.10 }
1062    
1063     /* Build our triangle mesh from recorded RBFs */
1064     static void
1065     build_mesh()
1066     {
1067     double best2 = M_PI*M_PI;
1068 greg 2.13 RBFNODE *shrt_edj[2];
1069     RBFNODE *rbf0, *rbf1;
1070 greg 2.10 /* check if isotropic */
1071     if (single_plane_incident) {
1072 greg 2.13 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
1073     if (rbf0->next != NULL)
1074 greg 2.16 create_migration(rbf0, rbf0->next);
1075     await_children(nchild);
1076 greg 2.10 return;
1077     }
1078 greg 2.13 /* start w/ shortest edge */
1079     shrt_edj[0] = shrt_edj[1] = NULL;
1080     for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
1081     for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
1082     double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
1083 greg 2.10 if (dist2 < best2) {
1084 greg 2.13 shrt_edj[0] = rbf0;
1085     shrt_edj[1] = rbf1;
1086 greg 2.10 best2 = dist2;
1087     }
1088     }
1089 greg 2.13 if (shrt_edj[0] == NULL) {
1090     fputs("Cannot find shortest edge\n", stderr);
1091 greg 2.8 exit(1);
1092     }
1093 greg 2.10 /* build mesh from this edge */
1094 greg 2.13 if (shrt_edj[0] < shrt_edj[1])
1095 greg 2.16 mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
1096 greg 2.13 else
1097 greg 2.16 mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
1098     /* complete migrations */
1099     await_children(nchild);
1100 greg 2.10 /* draw edge list into grid */
1101     draw_edges();
1102     }
1103    
1104     /* Identify enclosing triangle for this position (flood fill raster check) */
1105     static int
1106     identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8],
1107     int px, int py)
1108     {
1109     const int btest = 1<<(py&07);
1110    
1111     if (vmap[px][py>>3] & btest) /* already visited here? */
1112     return(1);
1113     /* else mark it */
1114     vmap[px][py>>3] |= btest;
1115    
1116     if (mig_grid[px][py] != NULL) { /* are we on an edge? */
1117     int i;
1118     for (i = 0; i < 3; i++) {
1119     if (miga[i] == mig_grid[px][py])
1120     return(1);
1121     if (miga[i] != NULL)
1122     continue;
1123     miga[i] = mig_grid[px][py];
1124     return(1);
1125     }
1126     return(0); /* outside triangle! */
1127     }
1128     /* check neighbors (flood) */
1129     if (px > 0 && !identify_tri(miga, vmap, px-1, py))
1130     return(0);
1131     if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py))
1132     return(0);
1133     if (py > 0 && !identify_tri(miga, vmap, px, py-1))
1134     return(0);
1135     if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1))
1136     return(0);
1137     return(1); /* this neighborhood done */
1138     }
1139    
1140 greg 2.15 /* Insert vertex in ordered list */
1141     static void
1142     insert_vert(RBFNODE **vlist, RBFNODE *v)
1143     {
1144     int i, j;
1145    
1146     for (i = 0; vlist[i] != NULL; i++) {
1147     if (v == vlist[i])
1148     return;
1149     if (v < vlist[i])
1150     break;
1151     }
1152     for (j = i; vlist[j] != NULL; j++)
1153     ;
1154     while (j > i) {
1155     vlist[j] = vlist[j-1];
1156     --j;
1157     }
1158     vlist[i] = v;
1159     }
1160    
1161     /* Sort triangle edges in standard order */
1162     static int
1163     order_triangle(MIGRATION *miga[3])
1164     {
1165     RBFNODE *vert[7];
1166     MIGRATION *ord[3];
1167     int i;
1168     /* order vertices, first */
1169     memset(vert, 0, sizeof(vert));
1170     for (i = 3; i--; ) {
1171     if (miga[i] == NULL)
1172     return(0);
1173     insert_vert(vert, miga[i]->rbfv[0]);
1174     insert_vert(vert, miga[i]->rbfv[1]);
1175     }
1176     /* should be just 3 vertices */
1177     if ((vert[3] == NULL) | (vert[4] != NULL))
1178     return(0);
1179     /* identify edge 0 */
1180     for (i = 3; i--; )
1181     if (miga[i]->rbfv[0] == vert[0] &&
1182     miga[i]->rbfv[1] == vert[1]) {
1183     ord[0] = miga[i];
1184     break;
1185     }
1186     if (i < 0)
1187     return(0);
1188     /* identify edge 1 */
1189     for (i = 3; i--; )
1190     if (miga[i]->rbfv[0] == vert[1] &&
1191     miga[i]->rbfv[1] == vert[2]) {
1192     ord[1] = miga[i];
1193     break;
1194     }
1195     if (i < 0)
1196     return(0);
1197     /* identify edge 2 */
1198     for (i = 3; i--; )
1199     if (miga[i]->rbfv[0] == vert[0] &&
1200     miga[i]->rbfv[1] == vert[2]) {
1201     ord[2] = miga[i];
1202     break;
1203     }
1204     if (i < 0)
1205     return(0);
1206     /* reassign order */
1207     miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
1208     return(1);
1209     }
1210    
1211 greg 2.10 /* Find edge(s) for interpolating the given incident vector */
1212     static int
1213     get_interp(MIGRATION *miga[3], const FVECT invec)
1214     {
1215     miga[0] = miga[1] = miga[2] = NULL;
1216     if (single_plane_incident) { /* isotropic BSDF? */
1217     RBFNODE *rbf; /* find edge we're on */
1218     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
1219     if (input_orient*rbf->invec[2] < input_orient*invec[2])
1220     break;
1221     if (rbf->next != NULL &&
1222     input_orient*rbf->next->invec[2] <
1223     input_orient*invec[2]) {
1224     for (miga[0] = rbf->ejl; miga[0] != NULL;
1225     miga[0] = nextedge(rbf,miga[0]))
1226     if (opp_rbf(rbf,miga[0]) == rbf->next)
1227     return(1);
1228     break;
1229     }
1230     }
1231     return(0); /* outside range! */
1232     }
1233 greg 2.12 { /* else use triangle mesh */
1234 greg 2.10 unsigned char floodmap[GRIDRES][(GRIDRES+7)/8];
1235     int pstart[2];
1236 greg 2.15 RBFNODE *vother;
1237     MIGRATION *ej;
1238     int i;
1239 greg 2.10
1240     pos_from_vec(pstart, invec);
1241     memset(floodmap, 0, sizeof(floodmap));
1242     /* call flooding function */
1243     if (!identify_tri(miga, floodmap, pstart[0], pstart[1]))
1244     return(0); /* outside mesh */
1245     if ((miga[0] == NULL) | (miga[2] == NULL))
1246     return(0); /* should never happen */
1247     if (miga[1] == NULL)
1248     return(1); /* on edge */
1249 greg 2.15 /* verify triangle */
1250     if (!order_triangle(miga)) {
1251     #ifdef DEBUG
1252     fputs("Munged triangle in get_interp()\n", stderr);
1253     #endif
1254     vother = NULL; /* find triangle from edge */
1255     for (i = 3; i--; ) {
1256     RBFNODE *tpair[2];
1257     if (get_triangles(tpair, miga[i]) &&
1258     (vother = tpair[ is_rev_tri(
1259     miga[i]->rbfv[0]->invec,
1260     miga[i]->rbfv[1]->invec,
1261     invec) ]) != NULL)
1262     break;
1263     }
1264     if (vother == NULL) { /* couldn't find 3rd vertex */
1265     #ifdef DEBUG
1266     fputs("No triangle in get_interp()\n", stderr);
1267     #endif
1268     return(0);
1269     }
1270     /* reassign other two edges */
1271     for (ej = vother->ejl; ej != NULL;
1272     ej = nextedge(vother,ej)) {
1273     RBFNODE *vorig = opp_rbf(vother,ej);
1274     if (vorig == miga[i]->rbfv[0])
1275     miga[(i+1)%3] = ej;
1276     else if (vorig == miga[i]->rbfv[1])
1277     miga[(i+2)%3] = ej;
1278     }
1279     if (!order_triangle(miga)) {
1280     #ifdef DEBUG
1281     fputs("Bad triangle in get_interp()\n", stderr);
1282     #endif
1283     return(0);
1284     }
1285     }
1286     return(3); /* return in standard order */
1287 greg 2.10 }
1288     }
1289    
1290     /* Advect and allocate new RBF along edge */
1291     static RBFNODE *
1292     e_advect_rbf(const MIGRATION *mig, const FVECT invec)
1293     {
1294     RBFNODE *rbf;
1295     int n, i, j;
1296     double t, full_dist;
1297     /* get relative position */
1298     t = acos(DOT(invec, mig->rbfv[0]->invec));
1299     if (t < M_PI/GRIDRES) { /* near first DSF */
1300     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
1301     rbf = (RBFNODE *)malloc(n);
1302     if (rbf == NULL)
1303     goto memerr;
1304     memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
1305     return(rbf);
1306     }
1307     full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
1308     if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */
1309     n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
1310     rbf = (RBFNODE *)malloc(n);
1311     if (rbf == NULL)
1312     goto memerr;
1313     memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
1314     return(rbf);
1315     }
1316     t /= full_dist;
1317     n = 0; /* count migrating particles */
1318     for (i = 0; i < mtx_nrows(mig); i++)
1319     for (j = 0; j < mtx_ncols(mig); j++)
1320     n += (mig->mtx[mtx_ndx(mig,i,j)] > FTINY);
1321 greg 2.12 #ifdef DEBUG
1322     fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
1323     mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
1324     #endif
1325 greg 2.10 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
1326     if (rbf == NULL)
1327     goto memerr;
1328     rbf->next = NULL; rbf->ejl = NULL;
1329     VCOPY(rbf->invec, invec);
1330     rbf->nrbf = n;
1331     rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
1332     n = 0; /* advect RBF lobes */
1333     for (i = 0; i < mtx_nrows(mig); i++) {
1334     const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
1335     const float peak0 = rbf0i->peak;
1336     const double rad0 = R2ANG(rbf0i->crad);
1337     FVECT v0;
1338     float mv;
1339     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
1340     for (j = 0; j < mtx_ncols(mig); j++)
1341     if ((mv = mig->mtx[mtx_ndx(mig,i,j)]) > FTINY) {
1342     const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
1343     double rad1 = R2ANG(rbf1j->crad);
1344     FVECT v;
1345     int pos[2];
1346     rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal;
1347     rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) +
1348     rad1*rad1*t));
1349     ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
1350     geodesic(v, v0, v, t, GEOD_REL);
1351     pos_from_vec(pos, v);
1352     rbf->rbfa[n].gx = pos[0];
1353     rbf->rbfa[n].gy = pos[1];
1354     ++n;
1355     }
1356     }
1357     rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
1358     return(rbf);
1359     memerr:
1360     fputs("Out of memory in e_advect_rbf()\n", stderr);
1361     exit(1);
1362     return(NULL); /* pro forma return */
1363     }
1364    
1365     /* Partially advect between recorded incident angles and allocate new RBF */
1366     static RBFNODE *
1367     advect_rbf(const FVECT invec)
1368     {
1369     MIGRATION *miga[3];
1370     RBFNODE *rbf;
1371 greg 2.11 float mbfact, mcfact;
1372     int n, i, j, k;
1373     FVECT v0, v1, v2;
1374 greg 2.10 double s, t;
1375    
1376     if (!get_interp(miga, invec)) /* can't interpolate? */
1377     return(NULL);
1378 greg 2.13 if (miga[1] == NULL) /* advect along edge? */
1379 greg 2.10 return(e_advect_rbf(miga[0], invec));
1380 greg 2.12 #ifdef DEBUG
1381     if (miga[0]->rbfv[0] != miga[2]->rbfv[0] |
1382     miga[0]->rbfv[1] != miga[1]->rbfv[0] |
1383     miga[1]->rbfv[1] != miga[2]->rbfv[1]) {
1384     fputs("Triangle vertex screw-up!\n", stderr);
1385     exit(1);
1386     }
1387     #endif
1388 greg 2.10 /* figure out position */
1389 greg 2.11 fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
1390     normalize(v0);
1391     fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
1392     normalize(v2);
1393     fcross(v1, invec, miga[1]->rbfv[1]->invec);
1394     normalize(v1);
1395     s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
1396     geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
1397     s, GEOD_REL);
1398     t = acos(DOT(v1,invec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
1399     n = 0; /* count migrating particles */
1400     for (i = 0; i < mtx_nrows(miga[0]); i++)
1401     for (j = 0; j < mtx_ncols(miga[0]); j++)
1402     for (k = (miga[0]->mtx[mtx_ndx(miga[0],i,j)] > FTINY) *
1403     mtx_ncols(miga[2]); k--; )
1404     n += (miga[2]->mtx[mtx_ndx(miga[2],i,k)] > FTINY &&
1405     miga[1]->mtx[mtx_ndx(miga[1],j,k)] > FTINY);
1406 greg 2.12 #ifdef DEBUG
1407     fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
1408     miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
1409     miga[2]->rbfv[1]->nrbf, n);
1410     #endif
1411 greg 2.10 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
1412 greg 2.8 if (rbf == NULL) {
1413     fputs("Out of memory in advect_rbf()\n", stderr);
1414     exit(1);
1415     }
1416     rbf->next = NULL; rbf->ejl = NULL;
1417     VCOPY(rbf->invec, invec);
1418 greg 2.10 rbf->nrbf = n;
1419 greg 2.11 n = 0; /* compute RBF lobes */
1420     mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
1421     (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
1422     mcfact = (1.-s) *
1423     (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
1424     for (i = 0; i < mtx_nrows(miga[0]); i++) {
1425     const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
1426     const float w0i = rbf0i->peak;
1427     const double rad0i = R2ANG(rbf0i->crad);
1428     ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
1429     for (j = 0; j < mtx_ncols(miga[0]); j++) {
1430     const float ma = miga[0]->mtx[mtx_ndx(miga[0],i,j)];
1431     const RBFVAL *rbf1j;
1432     double rad1j, srad2;
1433     if (ma <= FTINY)
1434     continue;
1435     rbf1j = &miga[0]->rbfv[1]->rbfa[j];
1436     rad1j = R2ANG(rbf1j->crad);
1437     srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j;
1438     ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
1439     geodesic(v1, v0, v1, s, GEOD_REL);
1440     for (k = 0; k < mtx_ncols(miga[2]); k++) {
1441     float mb = miga[1]->mtx[mtx_ndx(miga[1],j,k)];
1442     float mc = miga[2]->mtx[mtx_ndx(miga[2],i,k)];
1443     const RBFVAL *rbf2k;
1444     double rad2k;
1445     FVECT vout;
1446     int pos[2];
1447     if ((mb <= FTINY) | (mc <= FTINY))
1448     continue;
1449     rbf2k = &miga[2]->rbfv[1]->rbfa[k];
1450     rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact);
1451     rad2k = R2ANG(rbf2k->crad);
1452 greg 2.12 rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k));
1453 greg 2.11 ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
1454     geodesic(vout, v1, v2, t, GEOD_REL);
1455     pos_from_vec(pos, vout);
1456     rbf->rbfa[n].gx = pos[0];
1457     rbf->rbfa[n].gy = pos[1];
1458     ++n;
1459     }
1460     }
1461     }
1462     rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
1463 greg 2.10 return(rbf);
1464 greg 2.8 }
1465 greg 2.1
1466 greg 2.12 /* Interpolate and output isotropic BSDF data */
1467     static void
1468     interp_isotropic()
1469     {
1470     const int sqres = 1<<samp_order;
1471     FILE *ofp = NULL;
1472     char cmd[128];
1473     int ix, ox, oy;
1474     FVECT ivec, ovec;
1475     double bsdf;
1476 greg 2.13 #if DEBUG
1477     fprintf(stderr, "Writing isotropic order %d ", samp_order);
1478     if (pctcull >= 0) fprintf(stderr, "data with %d%% culling\n", pctcull);
1479     else fputs("raw data\n", stderr);
1480     #endif
1481 greg 2.12 if (pctcull >= 0) { /* begin output */
1482     sprintf(cmd, "rttree_reduce -h -a -fd -r 3 -t %d -g %d",
1483     pctcull, samp_order);
1484     fflush(stdout);
1485     ofp = popen(cmd, "w");
1486     if (ofp == NULL) {
1487 greg 2.16 fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n",
1488     progname);
1489 greg 2.12 exit(1);
1490     }
1491     } else
1492     fputs("{\n", stdout);
1493     /* run through directions */
1494     for (ix = 0; ix < sqres/2; ix++) {
1495     RBFNODE *rbf;
1496     SDsquare2disk(ivec, (ix+.5)/sqres, .5);
1497     ivec[2] = input_orient *
1498     sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]);
1499     rbf = advect_rbf(ivec);
1500     for (ox = 0; ox < sqres; ox++)
1501     for (oy = 0; oy < sqres; oy++) {
1502     SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres);
1503     ovec[2] = output_orient *
1504     sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]);
1505     bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]);
1506     if (pctcull >= 0)
1507     fwrite(&bsdf, sizeof(bsdf), 1, ofp);
1508     else
1509     printf("\t%.3e\n", bsdf);
1510     }
1511     free(rbf);
1512     }
1513     if (pctcull >= 0) { /* finish output */
1514     if (pclose(ofp)) {
1515 greg 2.16 fprintf(stderr, "%s: error running '%s'\n",
1516     progname, cmd);
1517 greg 2.12 exit(1);
1518     }
1519     } else {
1520     for (ix = sqres*sqres*sqres/2; ix--; )
1521     fputs("\t0\n", stdout);
1522     fputs("}\n", stdout);
1523     }
1524     }
1525    
1526     /* Interpolate and output anisotropic BSDF data */
1527     static void
1528     interp_anisotropic()
1529     {
1530     const int sqres = 1<<samp_order;
1531     FILE *ofp = NULL;
1532     char cmd[128];
1533     int ix, iy, ox, oy;
1534     FVECT ivec, ovec;
1535     double bsdf;
1536 greg 2.13 #if DEBUG
1537     fprintf(stderr, "Writing anisotropic order %d ", samp_order);
1538     if (pctcull >= 0) fprintf(stderr, "data with %d%% culling\n", pctcull);
1539     else fputs("raw data\n", stderr);
1540     #endif
1541 greg 2.12 if (pctcull >= 0) { /* begin output */
1542     sprintf(cmd, "rttree_reduce -h -a -fd -r 4 -t %d -g %d",
1543     pctcull, samp_order);
1544     fflush(stdout);
1545     ofp = popen(cmd, "w");
1546     if (ofp == NULL) {
1547 greg 2.16 fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n",
1548     progname);
1549 greg 2.12 exit(1);
1550     }
1551     } else
1552     fputs("{\n", stdout);
1553     /* run through directions */
1554     for (ix = 0; ix < sqres; ix++)
1555     for (iy = 0; iy < sqres; iy++) {
1556     RBFNODE *rbf;
1557     SDsquare2disk(ivec, (ix+.5)/sqres, (iy+.5)/sqres);
1558     ivec[2] = input_orient *
1559     sqrt(1. - ivec[0]*ivec[0] - ivec[1]*ivec[1]);
1560     rbf = advect_rbf(ivec);
1561     for (ox = 0; ox < sqres; ox++)
1562     for (oy = 0; oy < sqres; oy++) {
1563     SDsquare2disk(ovec, (ox+.5)/sqres, (oy+.5)/sqres);
1564     ovec[2] = output_orient *
1565     sqrt(1. - ovec[0]*ovec[0] - ovec[1]*ovec[1]);
1566     bsdf = eval_rbfrep(rbf, ovec) / fabs(ovec[2]);
1567     if (pctcull >= 0)
1568     fwrite(&bsdf, sizeof(bsdf), 1, ofp);
1569     else
1570     printf("\t%.3e\n", bsdf);
1571     }
1572     free(rbf);
1573     }
1574     if (pctcull >= 0) { /* finish output */
1575     if (pclose(ofp)) {
1576 greg 2.16 fprintf(stderr, "%s: error running '%s'\n",
1577     progname, cmd);
1578 greg 2.12 exit(1);
1579     }
1580     } else
1581     fputs("}\n", stdout);
1582     }
1583    
1584 greg 2.1 #if 1
1585 greg 2.12 /* Read in BSDF files and interpolate as tensor tree representation */
1586     int
1587     main(int argc, char *argv[])
1588     {
1589     RBFNODE *rbf;
1590     double bsdf;
1591     int i;
1592    
1593 greg 2.16 progname = argv[0]; /* get options */
1594     while (argc > 2 && argv[1][0] == '-') {
1595     switch (argv[1][1]) {
1596     case 'n':
1597     nprocs = atoi(argv[2]);
1598     break;
1599     case 't':
1600     pctcull = atoi(argv[2]);
1601     break;
1602     default:
1603     goto userr;
1604     }
1605 greg 2.12 argv += 2; argc -= 2;
1606     }
1607 greg 2.16 if (argc < 3)
1608     goto userr;
1609     #ifdef _WIN32
1610     if (nprocs > 1) {
1611     fprintf(stderr, "%s: multiprocessing not supported\n",
1612 greg 2.12 progname);
1613     return(1);
1614     }
1615 greg 2.16 #endif
1616 greg 2.12 for (i = 1; i < argc; i++) { /* compile measurements */
1617     if (!load_pabopto_meas(argv[i]))
1618     return(1);
1619     compute_radii();
1620     cull_values();
1621     make_rbfrep();
1622     }
1623     build_mesh(); /* create interpolation */
1624     /* xml_prologue(); /* start XML output */
1625     if (single_plane_incident) /* resample dist. */
1626     interp_isotropic();
1627     else
1628     interp_anisotropic();
1629     /* xml_epilogue(); /* finish XML output */
1630     return(0);
1631 greg 2.16 userr:
1632     fprintf(stderr,
1633     "Usage: %s [-n nprocs][-t pctcull] meas1.dat meas2.dat .. > bsdf.xml\n",
1634     progname);
1635     return(1);
1636 greg 2.12 }
1637     #else
1638 greg 2.1 /* Test main produces a Radiance model from the given input file */
1639     int
1640     main(int argc, char *argv[])
1641     {
1642     char buf[128];
1643     FILE *pfp;
1644     double bsdf;
1645     FVECT dir;
1646     int i, j, n;
1647    
1648     if (argc != 2) {
1649     fprintf(stderr, "Usage: %s input.dat > output.rad\n", argv[0]);
1650     return(1);
1651     }
1652 greg 2.10 if (!load_pabopto_meas(argv[1]))
1653 greg 2.1 return(1);
1654    
1655     compute_radii();
1656     cull_values();
1657 greg 2.3 make_rbfrep();
1658     /* produce spheres at meas. */
1659     puts("void plastic yellow\n0\n0\n5 .6 .4 .01 .04 .08\n");
1660 greg 2.1 puts("void plastic pink\n0\n0\n5 .5 .05 .9 .04 .08\n");
1661     n = 0;
1662     for (i = 0; i < GRIDRES; i++)
1663     for (j = 0; j < GRIDRES; j++)
1664 greg 2.5 if (dsf_grid[i][j].vsum > .0f) {
1665 greg 2.10 ovec_from_pos(dir, i, j);
1666 greg 2.5 bsdf = dsf_grid[i][j].vsum / dir[2];
1667     if (dsf_grid[i][j].nval) {
1668 greg 2.3 printf("pink cone c%04d\n0\n0\n8\n", ++n);
1669     printf("\t%.6g %.6g %.6g\n",
1670 greg 2.1 dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1671 greg 2.3 printf("\t%.6g %.6g %.6g\n",
1672 greg 2.1 dir[0]*(bsdf+.005), dir[1]*(bsdf+.005),
1673     dir[2]*(bsdf+.005));
1674 greg 2.3 puts("\t.003\t0\n");
1675     } else {
1676 greg 2.10 ovec_from_pos(dir, i, j);
1677 greg 2.3 printf("yellow sphere s%04d\n0\n0\n", ++n);
1678     printf("4 %.6g %.6g %.6g .0015\n\n",
1679     dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1680     }
1681 greg 2.1 }
1682     /* output continuous surface */
1683     puts("void trans tgreen\n0\n0\n7 .7 1 .7 .04 .04 .9 .9\n");
1684     fflush(stdout);
1685 greg 2.5 sprintf(buf, "gensurf tgreen bsdf - - - %d %d", GRIDRES-1, GRIDRES-1);
1686 greg 2.1 pfp = popen(buf, "w");
1687     if (pfp == NULL) {
1688     fputs(buf, stderr);
1689     fputs(": cannot start command\n", stderr);
1690     return(1);
1691     }
1692     for (i = 0; i < GRIDRES; i++)
1693     for (j = 0; j < GRIDRES; j++) {
1694 greg 2.10 ovec_from_pos(dir, i, j);
1695 greg 2.5 bsdf = eval_rbfrep(dsf_list, dir) / dir[2];
1696 greg 2.1 fprintf(pfp, "%.8e %.8e %.8e\n",
1697     dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
1698     }
1699     return(pclose(pfp)==0 ? 0 : 1);
1700     }
1701     #endif