/* Copyright (c) 1995 Regents of the University of California */ /* SCCSid "$SunId$ LBL" */ /* * Header file for MGF interpreter */ #ifndef MG_VMAJOR /* must include stdio.h before us */ #define MG_VMAJOR 2 /* major version number */ #define MG_VMINOR 0 /* minor version number */ /* Entities (list is only appended, never modified) */ #define MG_E_COMMENT 0 /* # */ #define MG_E_COLOR 1 /* c */ #define MG_E_CCT 2 /* cct */ #define MG_E_CONE 3 /* cone */ #define MG_E_CMIX 4 /* cmix */ #define MG_E_CSPEC 5 /* cspec */ #define MG_E_CXY 6 /* cxy */ #define MG_E_CYL 7 /* cyl */ #define MG_E_ED 8 /* ed */ #define MG_E_FACE 9 /* f */ #define MG_E_INCLUDE 10 /* i */ #define MG_E_IES 11 /* ies */ #define MG_E_IR 12 /* ir */ #define MG_E_MATERIAL 13 /* m */ #define MG_E_NORMAL 14 /* n */ #define MG_E_OBJECT 15 /* o */ #define MG_E_POINT 16 /* p */ #define MG_E_PRISM 17 /* prism */ #define MG_E_RD 18 /* rd */ #define MG_E_RING 19 /* ring */ #define MG_E_RS 20 /* rs */ #define MG_E_SIDES 21 /* sides */ #define MG_E_SPH 22 /* sph */ #define MG_E_TD 23 /* td */ #define MG_E_TORUS 24 /* torus */ #define MG_E_TS 25 /* ts */ #define MG_E_VERTEX 26 /* v */ #define MG_E_XF 27 /* xf */ /* end of Version 1 entities */ #define MG_E_FACEH 28 /* fh */ /* end of Version 2 entities */ #define MG_NENTITIES 29 /* total # entities */ #define MG_NELIST {28,29} /* entity count for version 1 and up */ #define MG_NAMELIST {"#","c","cct","cone","cmix","cspec","cxy","cyl","ed",\ "f","i","ies","ir","m","n","o","p","prism","rd",\ "ring","rs","sides","sph","td","torus","ts","v","xf",\ "fh"} #define MG_MAXELEN 6 extern char mg_ename[MG_NENTITIES][MG_MAXELEN]; /* Handler routines for each entity and unknown ones */ #ifdef NOPROTO extern int (*mg_ehand[MG_NENTITIES])(); extern int (*mg_uhand)(); extern int mg_defuhand(); #else extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv); extern int (*mg_uhand)(int argc, char **argv); extern int mg_defuhand(int, char **); #endif extern unsigned mg_nunknown; /* count of unknown entities */ /* Error codes */ #define MG_OK 0 /* normal return value */ #define MG_EUNK 1 /* unknown entity */ #define MG_EARGC 2 /* wrong number of arguments */ #define MG_ETYPE 3 /* argument type error */ #define MG_EILL 4 /* illegal argument value */ #define MG_EUNDEF 5 /* undefined reference */ #define MG_ENOFILE 6 /* cannot open input file */ #define MG_EINCL 7 /* error in included file */ #define MG_EMEM 8 /* out of memory */ #define MG_ESEEK 9 /* file seek error */ #define MG_EBADMAT 10 /* bad material specification */ #define MG_ELINE 11 /* input line too long */ #define MG_ECNTXT 12 /* unmatched context close */ #define MG_NERRS 13 extern char *mg_err[MG_NERRS]; /* list of error messages */ /* * The general process for running the parser is to fill in the mg_ehand * array with handlers for each entity you know how to handle. * Then, call mg_init to fill in the rest. This function will report * an error and quit if you try to support an inconsistent set of entities. * For each file you want to parse, call mg_load with the file name. * To read from standard input, use NULL as the file name. * For additional control over error reporting and file management, * use mg_open, mg_read, mg_parse and mg_close instead of mg_load. * To pass an entity of your own construction to the parser, use * the mg_handle function rather than the mg_ehand routines directly. * (The first argument to mg_handle is the entity #, or -1.) * To free any data structures and clear the parser, use mg_clear. * If there is an error, mg_load, mg_open, mg_parse, mg_handle and * mg_fgoto will return an error from the list above. In addition, * mg_load will report the error to stderr. The mg_read routine * returns 0 when the end of file has been reached. */ #define MG_MAXLINE 4096 /* maximum input line length */ #define MG_MAXARGC (MG_MAXLINE/4) /* maximum argument count */ typedef struct mg_fctxt { char fname[96]; /* file name */ FILE *fp; /* stream pointer */ int fid; /* unique file context id */ char inpline[MG_MAXLINE]; /* input line */ int lineno; /* line number */ struct mg_fctxt *prev; /* previous context */ } MG_FCTXT; typedef struct { int fid; /* file this position is for */ int lineno; /* line number in file */ long offset; /* offset from beginning */ } MG_FPOS; extern MG_FCTXT *mg_file; /* current file context */ #ifdef NOPROTO extern void mg_init(); /* fill in mg_ehand array */ extern int mg_load(); /* parse a file */ extern int mg_open(); /* open new input file */ extern int mg_read(); /* read next line */ extern int mg_parse(); /* parse current line */ extern void mg_fgetpos(); /* get position on input file */ extern int mg_fgoto(); /* go to position on input file */ extern void mg_close(); /* close input file */ extern void mg_clear(); /* clear parser */ extern int mg_handle(); /* handle an entity */ #else extern void mg_init(void); /* fill in mg_ehand array */ extern int mg_load(char *); /* parse a file */ extern int mg_open(MG_FCTXT *, char *); /* open new input file */ extern int mg_read(void); /* read next line */ extern int mg_parse(void); /* parse current line */ extern void mg_fgetpos(MG_FPOS *); /* get position on input file */ extern int mg_fgoto(MG_FPOS *); /* go to position on input file */ extern void mg_close(void); /* close input file */ extern void mg_clear(void); /* clear parser */ extern int mg_handle(int, int, char **); /* handle an entity */ #endif #ifndef MG_NQCD #define MG_NQCD 5 /* default number of divisions */ #endif extern int mg_nqcdivs; /* divisions per quarter circle */ /* * The following library routines are included for your convenience: */ #ifdef NOPROTO extern int mg_entity(); /* get entity number from its name */ extern int isint(); /* non-zero if integer format */ extern int isintd(); /* same with delimiter set */ extern int isflt(); /* non-zero if floating point format */ extern int isfltd(); /* same with delimiter set */ extern int isname(); /* non-zero if legal identifier name */ extern int badarg(); /* check argument format */ extern int e_include(); /* expand include entity */ extern int e_pipe(); /* expand piped command */ extern int e_sph(); /* expand sphere as other entities */ extern int e_torus(); /* expand torus as other entities */ extern int e_cyl(); /* expand cylinder as other entities */ extern int e_ring(); /* expand ring as other entities */ extern int e_cone(); /* expand cone as other entities */ extern int e_prism(); /* expand prism as other entities */ extern int e_faceh(); /* expand face w/ holes as face */ #else extern int mg_entity(char *); /* get entity number from its name */ extern int isint(char *); /* non-zero if integer format */ extern int isintd(char *, char *); /* same with delimiter set */ extern int isflt(char *); /* non-zero if floating point format */ extern int isfltd(char *, char *); /* same with delimiter set */ extern int isname(char *); /* non-zero if legal identifier name */ extern int badarg(int, char **, char *);/* check argument format */ extern int e_include(int, char **); /* expand include entity */ extern int e_pipe(int, char **); /* expand piped command */ extern int e_sph(int, char **); /* expand sphere as other entities */ extern int e_torus(int, char **); /* expand torus as other entities */ extern int e_cyl(int, char **); /* expand cylinder as other entities */ extern int e_ring(int, char **); /* expand ring as other entities */ extern int e_cone(int, char **); /* expand cone as other entities */ extern int e_prism(int, char **); /* expand prism as other entities */ extern int e_faceh(int, char **); /* expand face w/ holes as face */ #endif /************************************************************************ * Definitions for 3-d vector manipulation functions */ #ifdef SMLFLT #define FLOAT float #define FTINY (1e-3) #else #define FLOAT double #define FTINY (1e-6) #endif #define FHUGE (1e10) typedef FLOAT FVECT[3]; #define VCOPY(v1,v2) ((v1)[0]=(v2)[0],(v1)[1]=(v2)[1],(v1)[2]=(v2)[2]) #define DOT(v1,v2) ((v1)[0]*(v2)[0]+(v1)[1]*(v2)[1]+(v1)[2]*(v2)[2]) #define VSUM(vr,v1,v2,f) ((vr)[0]=(v1)[0]+(f)*(v2)[0], \ (vr)[1]=(v1)[1]+(f)*(v2)[1], \ (vr)[2]=(v1)[2]+(f)*(v2)[2]) #define is0vect(v) (DOT(v,v) <= FTINY*FTINY) #define round0(x) if (x <= FTINY && x >= -FTINY) x = 0 #ifdef NOPROTO extern double normalize(); /* normalize a vector */ #else extern double normalize(FVECT); /* normalize a vector */ extern void fcross(FVECT,FVECT,FVECT);/* cross product of two vectors */ #endif /************************************************************************ * Definitions for context handling routines * (materials, colors, vectors) */ #define C_CMINWL 380 /* minimum wavelength */ #define C_CMAXWL 780 /* maximum wavelength */ #define C_CNSS 41 /* number of spectral samples */ #define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1)) #define C_CMAXV 10000 /* nominal maximum sample value */ #define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */ #define C_CSSPEC 01 /* flag if spectrum is set */ #define C_CDSPEC 02 /* flag if defined w/ spectrum */ #define C_CSXY 04 /* flag if xy is set */ #define C_CDXY 010 /* flag if defined w/ xy */ #define C_CSEFF 020 /* flag if efficacy set */ typedef struct { int clock; /* incremented each change */ char *client_data; /* pointer to private client-owned data */ short flags; /* what's been set */ short ssamp[C_CNSS]; /* spectral samples, min wl to max */ long ssum; /* straight sum of spectral values */ float cx, cy; /* xy chromaticity value */ float eff; /* efficacy (lumens/watt) */ } C_COLOR; #define C_DEFCOLOR { 1, NULL, C_CDXY|C_CSXY|C_CSSPEC|C_CSEFF,\ {C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV},\ (long)C_CNSS*C_CMAXV, 1./3., 1./3., 178.006 } #define c_cval(c,l) ((double)(c)->ssamp[((l)-C_MINWL)/C_CWLI] / (c)->ssum) #define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */ typedef struct { int clock; /* incremented each change -- resettable */ char *client_data; /* pointer to private client-owned data */ int sided; /* 1 if surface is 1-sided, 0 for 2-sided */ float nr, ni; /* index of refraction, real and imaginary */ float rd; /* diffuse reflectance */ C_COLOR rd_c; /* diffuse reflectance color */ float td; /* diffuse transmittance */ C_COLOR td_c; /* diffuse transmittance color */ float ed; /* diffuse emittance */ C_COLOR ed_c; /* diffuse emittance color */ float rs; /* specular reflectance */ C_COLOR rs_c; /* specular reflectance color */ float rs_a; /* specular reflectance roughness */ float ts; /* specular transmittance */ C_COLOR ts_c; /* specular transmittance color */ float ts_a; /* specular transmittance roughness */ } C_MATERIAL; /* material context */ typedef struct { int clock; /* incremented each change -- resettable */ char *client_data; /* pointer to private client-owned data */ FVECT p, n; /* point and normal */ } C_VERTEX; /* vertex context */ #define C_DEFMATERIAL {1,NULL,0,1.,0.,0.,C_DEFCOLOR,0.,C_DEFCOLOR,0.,\ C_DEFCOLOR,0.,C_DEFCOLOR,0.,0.,C_DEFCOLOR,0.} #define C_DEFVERTEX {1,NULL,{0.,0.,0.},{0.,0.,0.}} extern C_COLOR *c_ccolor; /* the current color */ extern char *c_ccname; /* current color name */ extern C_MATERIAL *c_cmaterial; /* the current material */ extern char *c_cmname; /* current material name */ extern C_VERTEX *c_cvertex; /* the current vertex */ extern char *c_cvname; /* current vertex name */ #ifdef NOPROTO extern int c_hcolor(); /* handle color entity */ extern int c_hmaterial(); /* handle material entity */ extern int c_hvertex(); /* handle vertex entity */ extern void c_clearall(); /* clear context tables */ extern C_MATERIAL *c_getmaterial(); /* get a named material */ extern C_VERTEX *c_getvert(); /* get a named vertex */ extern C_COLOR *c_getcolor(); /* get a named color */ extern void c_ccvt(); /* fix color representation */ extern int c_isgrey(); /* check if color is grey */ #else extern int c_hcolor(int, char **); /* handle color entity */ extern int c_hmaterial(int, char **); /* handle material entity */ extern int c_hvertex(int, char **); /* handle vertex entity */ extern void c_clearall(void); /* clear context tables */ extern C_MATERIAL *c_getmaterial(char *); /* get a named material */ extern C_VERTEX *c_getvert(char *); /* get a named vertex */ extern C_COLOR *c_getcolor(char *); /* get a named color */ extern void c_ccvt(C_COLOR *, int); /* fix color representation */ extern int c_isgrey(C_COLOR *); /* check if color is grey */ #endif /************************************************************************* * Definitions for hierarchical object name handler */ extern int obj_nnames; /* depth of name hierarchy */ extern char **obj_name; /* names in hierarchy */ #ifdef NOPROTO extern int obj_handler(); /* handle an object entity */ extern void obj_clear(); /* clear object stack */ #else extern int obj_handler(int, char **); /* handle an object entity */ extern void obj_clear(void); /* clear object stack */ #endif /************************************************************************** * Definitions for hierarchical transformation handler */ typedef FLOAT MAT4[4][4]; #ifdef BSD #define copymat4(m4a,m4b) bcopy((char *)m4b,(char *)m4a,sizeof(MAT4)) #else #define copymat4(m4a,m4b) (void)memcpy((char *)m4a,(char *)m4b,sizeof(MAT4)) #endif #define MAT4IDENT { {1.,0.,0.,0.}, {0.,1.,0.,0.}, \ {0.,0.,1.,0.}, {0.,0.,0.,1.} } extern MAT4 m4ident; #define setident4(m4) copymat4(m4, m4ident) /* regular transformation */ typedef struct { MAT4 xfm; /* transform matrix */ FLOAT sca; /* scalefactor */ } XF; #define identxf(xp) (void)(setident4((xp)->xfm),(xp)->sca=1.0) #define XF_MAXDIM 8 /* maximum array dimensions */ struct xf_array { MG_FPOS spos; /* starting position on input */ int ndim; /* number of array dimensions */ struct { short i, n; /* current count and maximum */ char arg[8]; /* string argument value */ } aarg[XF_MAXDIM]; }; typedef struct xf_spec { long xid; /* unique transform id */ short xac; /* context argument count */ short rev; /* boolean true if vertices reversed */ XF xf; /* cumulative transformation */ struct xf_array *xarr; /* transformation array pointer */ struct xf_spec *prev; /* previous transformation context */ } XF_SPEC; /* followed by argument buffer */ extern XF_SPEC *xf_context; /* current transform context */ extern char **xf_argend; /* last transform argument */ #define xf_ac(xf) ((xf)==NULL ? 0 : (xf)->xac) #define xf_av(xf) (xf_argend - (xf)->xac) #define xf_argc xf_ac(xf_context) #define xf_argv xf_av(xf_context) /* * The transformation handler should do most of the work that needs * doing. Just pass it any xf entities, then use the associated * functions to transform and translate points, transform vectors * (without translation), rotate vectors (without scaling) and scale * values appropriately. * * The routines xf_xfmpoint, xf_xfmvect and xf_rotvect take two * 3-D vectors (which may be identical), transforms the second and * puts the result into the first. */ #ifdef NOPROTO extern int xf_handler(); /* handle xf entity */ extern void xf_xfmpoint(); /* transform point */ extern void xf_xfmvect(); /* transform vector */ extern void xf_rotvect(); /* rotate vector */ extern double xf_scale(); /* scale a value */ extern void xf_clear(); /* clear xf stack */ /* The following are support routines you probably won't call directly */ XF_SPEC *new_xf(); /* allocate new transform */ void free_xf(); /* free a transform */ int xf_aname(); /* name this instance */ long comp_xfid(); /* compute unique ID */ extern void multmat4(); /* m4a = m4b X m4c */ extern void multv3(); /* v3a = v3b X m4 (vectors) */ extern void multp3(); /* p3a = p3b X m4 (points) */ extern int xf(); /* interpret transform spec. */ #else extern int xf_handler(int, char **); /* handle xf entity */ extern void xf_xfmpoint(FVECT, FVECT); /* transform point */ extern void xf_xfmvect(FVECT, FVECT); /* transform vector */ extern void xf_rotvect(FVECT, FVECT); /* rotate vector */ extern double xf_scale(double); /* scale a value */ extern void xf_clear(void); /* clear xf stack */ /* The following are support routines you probably won't call directly */ XF_SPEC *new_xf(int, char **); /* allocate new transform */ void free_xf(XF_SPEC *); /* free a transform */ int xf_aname(struct xf_array *); /* name this instance */ long comp_xfid(MAT4); /* compute unique ID */ extern void multmat4(MAT4, MAT4, MAT4); /* m4a = m4b X m4c */ extern void multv3(FVECT, FVECT, MAT4); /* v3a = v3b X m4 (vectors) */ extern void multp3(FVECT, FVECT, MAT4); /* p3a = p3b X m4 (points) */ extern int xf(XF *, int, char **); /* interpret transform spec. */ #endif /************************************************************************ * Miscellaneous definitions */ #ifndef PI #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif #endif #ifdef DCL_ATOF extern double atof(); #endif #ifndef MEM_PTR #define MEM_PTR void * #endif extern MEM_PTR malloc(); extern MEM_PTR calloc(); extern MEM_PTR realloc(); extern void free(); #endif /*MG_VMAJOR*/