1 |
/* Copyright (c) 1995 Regents of the University of California */ |
2 |
|
3 |
/* SCCSid "$SunId$ LBL" */ |
4 |
|
5 |
/* |
6 |
* Header file for MGF interpreter |
7 |
*/ |
8 |
|
9 |
/* must include stdio.h before us */ |
10 |
|
11 |
#define MG_VMAJOR 1 /* major version number */ |
12 |
#define MG_VMINOR 0 /* minor version number */ |
13 |
|
14 |
/* Entities (list is only appended, never modified) */ |
15 |
#define MG_E_COMMENT 0 /* # */ |
16 |
#define MG_E_COLOR 1 /* c */ |
17 |
#define MG_E_CCT 2 /* cct */ |
18 |
#define MG_E_CONE 3 /* cone */ |
19 |
#define MG_E_CMIX 4 /* cmix */ |
20 |
#define MG_E_CSPEC 5 /* cspec */ |
21 |
#define MG_E_CXY 6 /* cxy */ |
22 |
#define MG_E_CYL 7 /* cyl */ |
23 |
#define MG_E_ED 8 /* ed */ |
24 |
#define MG_E_FACE 9 /* f */ |
25 |
#define MG_E_INCLUDE 10 /* i */ |
26 |
#define MG_E_IES 11 /* ies */ |
27 |
#define MG_E_IR 12 /* ir */ |
28 |
#define MG_E_MATERIAL 13 /* m */ |
29 |
#define MG_E_NORMAL 14 /* n */ |
30 |
#define MG_E_OBJECT 15 /* o */ |
31 |
#define MG_E_POINT 16 /* p */ |
32 |
#define MG_E_PRISM 17 /* prism */ |
33 |
#define MG_E_RD 18 /* rd */ |
34 |
#define MG_E_RING 19 /* ring */ |
35 |
#define MG_E_RS 20 /* rs */ |
36 |
#define MG_E_SIDES 21 /* sides */ |
37 |
#define MG_E_SPH 22 /* sph */ |
38 |
#define MG_E_TD 23 /* td */ |
39 |
#define MG_E_TORUS 24 /* torus */ |
40 |
#define MG_E_TS 25 /* ts */ |
41 |
#define MG_E_VERTEX 26 /* v */ |
42 |
#define MG_E_XF 27 /* xf */ |
43 |
/* end of Version 1 entities */ |
44 |
|
45 |
#define MG_NENTITIES 28 /* total # entities */ |
46 |
|
47 |
#define MG_NELIST {28} /* entity count for version 1 and up */ |
48 |
|
49 |
#define MG_NAMELIST {"#","c","cct","cone","cmix","cspec","cxy","cyl","ed",\ |
50 |
"f","i","ies","ir","m","n","o","p","prism","rd",\ |
51 |
"ring","rs","sides","sph","td","torus","ts","v","xf"} |
52 |
|
53 |
#define MG_MAXELEN 6 |
54 |
|
55 |
extern char mg_ename[MG_NENTITIES][MG_MAXELEN]; |
56 |
|
57 |
/* Handler routines for each entity and unknown ones */ |
58 |
#ifdef NOPROTO |
59 |
extern int (*mg_ehand[MG_NENTITIES])(); |
60 |
extern int (*mg_uhand)(); |
61 |
extern int mg_defuhand(); |
62 |
#else |
63 |
extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv); |
64 |
extern int (*mg_uhand)(int argc, char **argv); |
65 |
extern int mg_defuhand(int, char **); |
66 |
#endif |
67 |
|
68 |
extern unsigned mg_nunknown; /* count of unknown entities */ |
69 |
|
70 |
/* Error codes */ |
71 |
#define MG_OK 0 /* normal return value */ |
72 |
#define MG_EUNK 1 /* unknown entity */ |
73 |
#define MG_EARGC 2 /* wrong number of arguments */ |
74 |
#define MG_ETYPE 3 /* argument type error */ |
75 |
#define MG_EILL 4 /* illegal argument value */ |
76 |
#define MG_EUNDEF 5 /* undefined reference */ |
77 |
#define MG_ENOFILE 6 /* cannot open input file */ |
78 |
#define MG_EINCL 7 /* error in included file */ |
79 |
#define MG_EMEM 8 /* out of memory */ |
80 |
#define MG_ESEEK 9 /* file seek error */ |
81 |
#define MG_EBADMAT 10 /* bad material specification */ |
82 |
#define MG_ELINE 11 /* input line too long */ |
83 |
|
84 |
#define MG_NERRS 12 |
85 |
|
86 |
extern char *mg_err[MG_NERRS]; /* list of error messages */ |
87 |
|
88 |
/* |
89 |
* The general process for running the parser is to fill in the mg_ehand |
90 |
* array with handlers for each entity you know how to handle. |
91 |
* Then, call mg_init to fill in the rest. This function will report |
92 |
* an error and quit if you try to support an inconsistent set of entities. |
93 |
* For each file you want to parse, call mg_load with the file name. |
94 |
* To read from standard input, use NULL as the file name. |
95 |
* For additional control over error reporting and file management, |
96 |
* use mg_open, mg_read, mg_parse and mg_close instead of mg_load. |
97 |
* To pass an entity of your own construction to the parser, use |
98 |
* the mg_handle function rather than the mg_ehand routines directly. |
99 |
* (The first argument to mg_handle is the entity #, or -1.) |
100 |
* To free any data structures and clear the parser, use mg_clear. |
101 |
* If there is an error, mg_load, mg_open, mg_parse, mg_handle and |
102 |
* mg_fgoto will return an error from the list above. In addition, |
103 |
* mg_load will report the error to stderr. The mg_read routine |
104 |
* returns 0 when the end of file has been reached. |
105 |
*/ |
106 |
|
107 |
#define MG_MAXLINE 4096 /* maximum input line length */ |
108 |
#define MG_MAXARGC (MG_MAXLINE/4) /* maximum argument count */ |
109 |
|
110 |
typedef struct mg_fctxt { |
111 |
char fname[96]; /* file name */ |
112 |
FILE *fp; /* stream pointer */ |
113 |
int fid; /* unique file context id */ |
114 |
char inpline[MG_MAXLINE]; /* input line */ |
115 |
int lineno; /* line number */ |
116 |
struct mg_fctxt *prev; /* previous context */ |
117 |
} MG_FCTXT; |
118 |
|
119 |
typedef struct { |
120 |
int fid; /* file this position is for */ |
121 |
int lineno; /* line number in file */ |
122 |
long offset; /* offset from beginning */ |
123 |
} MG_FPOS; |
124 |
|
125 |
extern MG_FCTXT *mg_file; /* current file context */ |
126 |
|
127 |
#ifdef NOPROTO |
128 |
extern void mg_init(); /* fill in mg_ehand array */ |
129 |
extern int mg_load(); /* parse a file */ |
130 |
extern int mg_open(); /* open new input file */ |
131 |
extern int mg_read(); /* read next line */ |
132 |
extern int mg_parse(); /* parse current line */ |
133 |
extern void mg_fgetpos(); /* get position on input file */ |
134 |
extern int mg_fgoto(); /* go to position on input file */ |
135 |
extern void mg_close(); /* close input file */ |
136 |
extern void mg_clear(); /* clear parser */ |
137 |
extern int mg_handle(); /* handle an entity */ |
138 |
#else |
139 |
extern void mg_init(void); /* fill in mg_ehand array */ |
140 |
extern int mg_load(char *); /* parse a file */ |
141 |
extern int mg_open(MG_FCTXT *, char *); /* open new input file */ |
142 |
extern int mg_read(void); /* read next line */ |
143 |
extern int mg_parse(void); /* parse current line */ |
144 |
extern void mg_fgetpos(MG_FPOS *); /* get position on input file */ |
145 |
extern int mg_fgoto(MG_FPOS *); /* go to position on input file */ |
146 |
extern void mg_close(void); /* close input file */ |
147 |
extern void mg_clear(void); /* clear parser */ |
148 |
extern int mg_handle(int, int, char **); /* handle an entity */ |
149 |
#endif |
150 |
|
151 |
#ifndef MG_NQCD |
152 |
#define MG_NQCD 5 /* default number of divisions */ |
153 |
#endif |
154 |
|
155 |
extern int mg_nqcdivs; /* divisions per quarter circle */ |
156 |
|
157 |
/* |
158 |
* The following library routines are included for your convenience: |
159 |
*/ |
160 |
|
161 |
#ifdef NOPROTO |
162 |
extern int mg_entity(); /* get entity number from its name */ |
163 |
extern int isint(); /* non-zero if integer format */ |
164 |
extern int isflt(); /* non-zero if floating point format */ |
165 |
extern int isname(); /* non-zero if legal identifier name */ |
166 |
#else |
167 |
extern int mg_entity(char *); /* get entity number from its name */ |
168 |
extern int isint(char *); /* non-zero if integer format */ |
169 |
extern int isflt(char *); /* non-zero if floating point format */ |
170 |
extern int isname(char *); /* non-zero if legal identifier name */ |
171 |
#endif |
172 |
|
173 |
/************************************************************************ |
174 |
* Definitions for 3-d vector manipulation functions |
175 |
*/ |
176 |
|
177 |
#ifdef SMLFLT |
178 |
#define FLOAT float |
179 |
#define FTINY (1e-3) |
180 |
#else |
181 |
#define FLOAT double |
182 |
#define FTINY (1e-6) |
183 |
#endif |
184 |
#define FHUGE (1e10) |
185 |
|
186 |
typedef FLOAT FVECT[3]; |
187 |
|
188 |
#define VCOPY(v1,v2) ((v1)[0]=(v2)[0],(v1)[1]=(v2)[1],(v1)[2]=(v2)[2]) |
189 |
#define DOT(v1,v2) ((v1)[0]*(v2)[0]+(v1)[1]*(v2)[1]+(v1)[2]*(v2)[2]) |
190 |
#define VSUM(vr,v1,v2,f) ((vr)[0]=(v1)[0]+(f)*(v2)[0], \ |
191 |
(vr)[1]=(v1)[1]+(f)*(v2)[1], \ |
192 |
(vr)[2]=(v1)[2]+(f)*(v2)[2]) |
193 |
|
194 |
#define is0vect(v) (DOT(v,v) <= FTINY*FTINY) |
195 |
|
196 |
#define round0(x) if (x <= FTINY && x >= -FTINY) x = 0 |
197 |
|
198 |
#ifdef NOPROTO |
199 |
extern double normalize(); /* normalize a vector */ |
200 |
#else |
201 |
extern double normalize(FVECT); /* normalize a vector */ |
202 |
#endif |
203 |
|
204 |
/************************************************************************ |
205 |
* Definitions for context handling routines |
206 |
* (materials, colors, vectors) |
207 |
*/ |
208 |
|
209 |
#define C_CMINWL 380 /* minimum wavelength */ |
210 |
#define C_CMAXWL 780 /* maximum wavelength */ |
211 |
#define C_CNSS 41 /* number of spectral samples */ |
212 |
#define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1)) |
213 |
#define C_CMAXV 10000 /* nominal maximum sample value */ |
214 |
#define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */ |
215 |
|
216 |
#define C_CSSPEC 01 /* flag if spectrum is set */ |
217 |
#define C_CDSPEC 02 /* flag if defined w/ spectrum */ |
218 |
#define C_CSXY 04 /* flag if xy is set */ |
219 |
#define C_CDXY 010 /* flag if defined w/ xy */ |
220 |
#define C_CSEFF 020 /* flag if efficacy set */ |
221 |
|
222 |
typedef struct { |
223 |
int clock; /* incremented each change */ |
224 |
short flags; /* what's been set */ |
225 |
short ssamp[C_CNSS]; /* spectral samples, min wl to max */ |
226 |
long ssum; /* straight sum of spectral values */ |
227 |
float cx, cy; /* xy chromaticity value */ |
228 |
float eff; /* efficacy (lumens/watt) */ |
229 |
} C_COLOR; |
230 |
|
231 |
#define C_DEFCOLOR { 1, C_CDXY|C_CSXY|C_CSSPEC|C_CSEFF,\ |
232 |
{C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
233 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
234 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
235 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
236 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
237 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
238 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV},\ |
239 |
(long)C_CNSS*C_CMAXV, 1./3., 1./3., 178.006 } |
240 |
|
241 |
#define c_cval(c,l) ((double)(c)->ssamp[((l)-C_MINWL)/C_CWLI] / (c)->ssum) |
242 |
|
243 |
#define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */ |
244 |
|
245 |
typedef struct { |
246 |
int clock; /* incremented each change -- resettable */ |
247 |
int sided; /* 1 if surface is 1-sided, 0 for 2-sided */ |
248 |
float nr, ni; /* index of refraction, real and imaginary */ |
249 |
float rd; /* diffuse reflectance */ |
250 |
C_COLOR rd_c; /* diffuse reflectance color */ |
251 |
float td; /* diffuse transmittance */ |
252 |
C_COLOR td_c; /* diffuse transmittance color */ |
253 |
float ed; /* diffuse emittance */ |
254 |
C_COLOR ed_c; /* diffuse emittance color */ |
255 |
float rs; /* specular reflectance */ |
256 |
C_COLOR rs_c; /* specular reflectance color */ |
257 |
float rs_a; /* specular reflectance roughness */ |
258 |
float ts; /* specular transmittance */ |
259 |
C_COLOR ts_c; /* specular transmittance color */ |
260 |
float ts_a; /* specular transmittance roughness */ |
261 |
} C_MATERIAL; /* material context */ |
262 |
|
263 |
typedef struct { |
264 |
int clock; /* incremented each change -- resettable */ |
265 |
FVECT p, n; /* point and normal */ |
266 |
} C_VERTEX; /* vertex context */ |
267 |
|
268 |
#define C_DEFMATERIAL {1,0,1.,0.,0.,C_DEFCOLOR,0.,C_DEFCOLOR,0.,C_DEFCOLOR,\ |
269 |
0.,C_DEFCOLOR,0.,0.,C_DEFCOLOR,0.} |
270 |
#define C_DEFVERTEX {1,{0.,0.,0.},{0.,0.,0.}} |
271 |
|
272 |
extern C_COLOR *c_ccolor; /* the current color */ |
273 |
extern char *c_ccname; /* current color name */ |
274 |
extern C_MATERIAL *c_cmaterial; /* the current material */ |
275 |
extern char *c_cmname; /* current material name */ |
276 |
extern C_VERTEX *c_cvertex; /* the current vertex */ |
277 |
extern char *c_cvname; /* current vertex name */ |
278 |
|
279 |
#ifdef NOPROTO |
280 |
extern int c_hcolor(); /* handle color entity */ |
281 |
extern int c_hmaterial(); /* handle material entity */ |
282 |
extern int c_hvertex(); /* handle vertex entity */ |
283 |
extern void c_clearall(); /* clear context tables */ |
284 |
extern C_MATERIAL *c_getmaterial(); /* get a named material */ |
285 |
extern C_VERTEX *c_getvert(); /* get a named vertex */ |
286 |
extern C_COLOR *c_getcolor(); /* get a named color */ |
287 |
extern void c_ccvt(); /* fix color representation */ |
288 |
extern int c_isgrey(); /* check if color is grey */ |
289 |
#else |
290 |
extern int c_hcolor(int, char **); /* handle color entity */ |
291 |
extern int c_hmaterial(int, char **); /* handle material entity */ |
292 |
extern int c_hvertex(int, char **); /* handle vertex entity */ |
293 |
extern void c_clearall(void); /* clear context tables */ |
294 |
extern C_MATERIAL *c_getmaterial(char *); /* get a named material */ |
295 |
extern C_VERTEX *c_getvert(char *); /* get a named vertex */ |
296 |
extern C_COLOR *c_getcolor(char *); /* get a named color */ |
297 |
extern void c_ccvt(C_COLOR *, int); /* fix color representation */ |
298 |
extern int c_isgrey(C_COLOR *); /* check if color is grey */ |
299 |
#endif |
300 |
|
301 |
/************************************************************************* |
302 |
* Definitions for hierarchical object name handler |
303 |
*/ |
304 |
|
305 |
extern int obj_nnames; /* depth of name hierarchy */ |
306 |
extern char **obj_name; /* names in hierarchy */ |
307 |
|
308 |
#ifdef NOPROTO |
309 |
extern int obj_handler(); /* handle an object entity */ |
310 |
extern void obj_clear(); /* clear object stack */ |
311 |
#else |
312 |
extern int obj_handler(int, char **); /* handle an object entity */ |
313 |
extern void obj_clear(void); /* clear object stack */ |
314 |
#endif |
315 |
|
316 |
/************************************************************************** |
317 |
* Definitions for hierarchical transformation handler |
318 |
*/ |
319 |
|
320 |
typedef FLOAT MAT4[4][4]; |
321 |
|
322 |
#ifdef BSD |
323 |
#define copymat4(m4a,m4b) bcopy((char *)m4b,(char *)m4a,sizeof(MAT4)) |
324 |
#else |
325 |
#define copymat4(m4a,m4b) (void)memcpy((char *)m4a,(char *)m4b,sizeof(MAT4)) |
326 |
#endif |
327 |
|
328 |
#define MAT4IDENT { {1.,0.,0.,0.}, {0.,1.,0.,0.}, \ |
329 |
{0.,0.,1.,0.}, {0.,0.,0.,1.} } |
330 |
|
331 |
extern MAT4 m4ident; |
332 |
|
333 |
#define setident4(m4) copymat4(m4, m4ident) |
334 |
|
335 |
/* regular transformation */ |
336 |
typedef struct { |
337 |
MAT4 xfm; /* transform matrix */ |
338 |
FLOAT sca; /* scalefactor */ |
339 |
} XF; |
340 |
|
341 |
#define identxf(xp) (void)(setident4((xp)->xfm),(xp)->sca=1.0) |
342 |
|
343 |
#define XF_MAXDIM 8 /* maximum array dimensions */ |
344 |
|
345 |
struct xf_array { |
346 |
MG_FPOS spos; /* starting position on input */ |
347 |
int ndim; /* number of array dimensions */ |
348 |
struct { |
349 |
short i, n; /* current count and maximum */ |
350 |
char arg[8]; /* string argument value */ |
351 |
} aarg[XF_MAXDIM]; |
352 |
}; |
353 |
|
354 |
typedef struct xf_spec { |
355 |
long xid; /* unique transform id */ |
356 |
short xac; /* context argument count */ |
357 |
short rev; /* boolean true if vertices reversed */ |
358 |
XF xf; /* cumulative transformation */ |
359 |
struct xf_array *xarr; /* transformation array pointer */ |
360 |
struct xf_spec *prev; /* previous transformation context */ |
361 |
} XF_SPEC; /* followed by argument buffer */ |
362 |
|
363 |
extern XF_SPEC *xf_context; /* current transform context */ |
364 |
extern char **xf_argend; /* last transform argument */ |
365 |
|
366 |
#define xf_ac(xf) ((xf)->xac) |
367 |
#define xf_av(xf) (xf_argend - (xf)->xac) |
368 |
|
369 |
#define xf_argc (xf_context==NULL ? 0 : xf_ac(xf_context)) |
370 |
#define xf_argv xf_av(xf_context) |
371 |
|
372 |
/* |
373 |
* The transformation handler should do most of the work that needs |
374 |
* doing. Just pass it any xf entities, then use the associated |
375 |
* functions to transform and translate points, transform vectors |
376 |
* (without translation), rotate vectors (without scaling) and scale |
377 |
* values appropriately. |
378 |
* |
379 |
* The routines xf_xfmpoint, xf_xfmvect and xf_rotvect take two |
380 |
* 3-D vectors (which may be identical), transforms the second and |
381 |
* puts the result into the first. |
382 |
*/ |
383 |
|
384 |
#ifdef NOPROTO |
385 |
|
386 |
extern int xf_handler(); /* handle xf entity */ |
387 |
extern void xf_xfmpoint(); /* transform point */ |
388 |
extern void xf_xfmvect(); /* transform vector */ |
389 |
extern void xf_rotvect(); /* rotate vector */ |
390 |
extern double xf_scale(); /* scale a value */ |
391 |
extern void xf_clear(); /* clear xf stack */ |
392 |
|
393 |
/* The following are support routines you probably won't call directly */ |
394 |
|
395 |
extern void multmat4(); /* m4a = m4b X m4c */ |
396 |
extern void multv3(); /* v3a = v3b X m4 (vectors) */ |
397 |
extern void multp3(); /* p3a = p3b X m4 (points) */ |
398 |
extern int xf(); /* interpret transform spec. */ |
399 |
|
400 |
#else |
401 |
|
402 |
extern int xf_handler(int, char **); /* handle xf entity */ |
403 |
extern void xf_xfmpoint(FVECT, FVECT); /* transform point */ |
404 |
extern void xf_xfmvect(FVECT, FVECT); /* transform vector */ |
405 |
extern void xf_rotvect(FVECT, FVECT); /* rotate vector */ |
406 |
extern double xf_scale(double); /* scale a value */ |
407 |
extern void xf_clear(void); /* clear xf stack */ |
408 |
|
409 |
/* The following are support routines you probably won't call directly */ |
410 |
|
411 |
extern void multmat4(MAT4, MAT4, MAT4); /* m4a = m4b X m4c */ |
412 |
extern void multv3(FVECT, FVECT, MAT4); /* v3a = v3b X m4 (vectors) */ |
413 |
extern void multp3(FVECT, FVECT, MAT4); /* p3a = p3b X m4 (points) */ |
414 |
extern int xf(XF *, int, char **); /* interpret transform spec. */ |
415 |
|
416 |
#endif |
417 |
|
418 |
/************************************************************************ |
419 |
* Miscellaneous definitions |
420 |
*/ |
421 |
|
422 |
#ifdef M_PI |
423 |
#define PI M_PI |
424 |
#else |
425 |
#define PI 3.14159265358979323846 |
426 |
#endif |
427 |
|
428 |
#ifdef DCL_ATOF |
429 |
extern double atof(); |
430 |
#endif |
431 |
|
432 |
#ifndef MEM_PTR |
433 |
#define MEM_PTR void * |
434 |
#endif |
435 |
|
436 |
extern MEM_PTR malloc(); |
437 |
extern MEM_PTR calloc(); |
438 |
extern MEM_PTR realloc(); |
439 |
extern void free(); |