1 |
/* Copyright (c) 1994 Regents of the University of California */ |
2 |
|
3 |
/* SCCSid "$SunId$ LBL" */ |
4 |
|
5 |
/* |
6 |
* Header file for MGF interpreter |
7 |
*/ |
8 |
|
9 |
/* must include stdio.h before us */ |
10 |
|
11 |
/* Entities (order doesn't really matter) */ |
12 |
#define MG_E_COMMENT 0 |
13 |
#define MG_E_COLOR 1 |
14 |
#define MG_E_CONE 2 |
15 |
#define MG_E_CMIX 3 |
16 |
#define MG_E_CSPEC 4 |
17 |
#define MG_E_CXY 5 |
18 |
#define MG_E_CYL 6 |
19 |
#define MG_E_ED 7 |
20 |
#define MG_E_FACE 8 |
21 |
#define MG_E_INCLUDE 9 |
22 |
#define MG_E_IES 10 |
23 |
#define MG_E_MATERIAL 11 |
24 |
#define MG_E_NORMAL 12 |
25 |
#define MG_E_OBJECT 13 |
26 |
#define MG_E_POINT 14 |
27 |
#define MG_E_PRISM 15 |
28 |
#define MG_E_RD 16 |
29 |
#define MG_E_RING 17 |
30 |
#define MG_E_RS 18 |
31 |
#define MG_E_SPH 19 |
32 |
#define MG_E_TD 20 |
33 |
#define MG_E_TORUS 21 |
34 |
#define MG_E_TS 22 |
35 |
#define MG_E_VERTEX 23 |
36 |
#define MG_E_XF 24 |
37 |
|
38 |
#define MG_NENTITIES 25 |
39 |
|
40 |
#define MG_NAMELIST {"#","c","cone","cmix","cspec","cxy","cyl","ed","f",\ |
41 |
"i","ies","m","n","o","p","prism","rd","ring","rs",\ |
42 |
"sph","td","torus","ts","v","xf"} |
43 |
|
44 |
#define MG_MAXELEN 6 |
45 |
|
46 |
extern char mg_ename[MG_NENTITIES][MG_MAXELEN]; |
47 |
|
48 |
/* Handler routines for each entity */ |
49 |
|
50 |
#ifdef NOPROTO |
51 |
extern int (*mg_ehand[MG_NENTITIES])(); |
52 |
#else |
53 |
extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv); |
54 |
#endif |
55 |
|
56 |
/* Error codes */ |
57 |
#define MG_OK 0 /* normal return value */ |
58 |
#define MG_EUNK 1 /* unknown entity */ |
59 |
#define MG_EARGC 2 /* wrong number of arguments */ |
60 |
#define MG_ETYPE 3 /* argument type error */ |
61 |
#define MG_EILL 4 /* illegal argument value */ |
62 |
#define MG_EUNDEF 5 /* undefined reference */ |
63 |
#define MG_ENOFILE 6 /* cannot open input file */ |
64 |
#define MG_EINCL 7 /* error in included file */ |
65 |
#define MG_EMEM 8 /* out of memory */ |
66 |
#define MG_ESEEK 9 /* file seek error */ |
67 |
#define MG_EBADMAT 10 /* bad material specification */ |
68 |
|
69 |
#define MG_NERRS 11 |
70 |
|
71 |
extern char *mg_err[MG_NERRS]; |
72 |
|
73 |
/* |
74 |
* The general process for running the parser is to fill in the mg_ehand |
75 |
* array with handlers for each entity you know how to handle. |
76 |
* Then, call mg_init to fill in the rest. This function will report |
77 |
* an error and quit if you try to support an inconsistent set of entities. |
78 |
* For each file you want to parse, call mg_load with the file name. |
79 |
* To read from standard input, use NULL as the file name. |
80 |
* For additional control over error reporting and file management, |
81 |
* use mg_open, mg_read, mg_parse and mg_close instead of mg_load. |
82 |
* To free any data structures and clear the parser, use mg_clear. |
83 |
* If there is an error, mg_load, mg_open, mg_parse, and mg_rewind |
84 |
* will return an error from the list above. In addition, mg_load |
85 |
* will report the error to stderr. The mg_read routine returns 0 |
86 |
* when the end of file has been reached. |
87 |
*/ |
88 |
|
89 |
#define MG_MAXLINE 512 /* maximum input line length */ |
90 |
#define MG_MAXARGC (MG_MAXLINE/4) /* maximum argument count */ |
91 |
|
92 |
typedef struct mg_fctxt { |
93 |
char fname[96]; /* file name */ |
94 |
FILE *fp; /* stream pointer */ |
95 |
char inpline[MG_MAXLINE]; /* input line */ |
96 |
int lineno; /* line number */ |
97 |
struct mg_fctxt *prev; /* previous context */ |
98 |
} MG_FCTXT; |
99 |
|
100 |
extern MG_FCTXT *mg_file; /* current file context */ |
101 |
|
102 |
#ifdef NOPROTO |
103 |
extern void mg_init(); /* fill in mg_ehand array */ |
104 |
extern int mg_load(); /* parse a file */ |
105 |
extern int mg_open(); /* open new input file */ |
106 |
extern int mg_read(); /* read next line */ |
107 |
extern int mg_parse(); /* parse current line */ |
108 |
extern int mg_rewind(); /* rewind input file */ |
109 |
extern void mg_close(); /* close input file */ |
110 |
extern void mg_clear(); /* clear parser */ |
111 |
extern int mg_iterate(); |
112 |
#else |
113 |
extern void mg_init(void); /* fill in mg_ehand array */ |
114 |
extern int mg_load(char *); /* parse a file */ |
115 |
extern int mg_open(MG_FCTXT *, char *); /* open new input file */ |
116 |
extern int mg_read(void); /* read next line */ |
117 |
extern int mg_parse(void); /* parse current line */ |
118 |
extern int mg_rewind(void); /* rewind input file */ |
119 |
extern void mg_close(void); /* close input file */ |
120 |
extern void mg_clear(void); /* clear parser */ |
121 |
extern int mg_iterate(int, char **, int (*)(void)); |
122 |
#endif |
123 |
|
124 |
#ifndef MG_NQCD |
125 |
#define MG_NQCD 5 /* default number of divisions */ |
126 |
#endif |
127 |
|
128 |
extern int mg_nqcdivs; /* divisions per quarter circle */ |
129 |
|
130 |
/* |
131 |
* The following library routines are included for your convenience: |
132 |
*/ |
133 |
|
134 |
#ifdef NOPROTO |
135 |
extern int mg_entity(); /* get entity number from its name */ |
136 |
extern int isint(); /* non-zero if integer format */ |
137 |
extern int isflt(); /* non-zero if floating point format */ |
138 |
#else |
139 |
extern int mg_entity(char *); /* get entity number from its name */ |
140 |
extern int isint(char *); /* non-zero if integer format */ |
141 |
extern int isflt(char *); /* non-zero if floating point format */ |
142 |
#endif |
143 |
|
144 |
/************************************************************************ |
145 |
* Definitions for 3-d vector manipulation functions |
146 |
*/ |
147 |
|
148 |
#ifdef SMLFLT |
149 |
#define FLOAT float |
150 |
#define FTINY (1e-3) |
151 |
#else |
152 |
#define FLOAT double |
153 |
#define FTINY (1e-6) |
154 |
#endif |
155 |
#define FHUGE (1e10) |
156 |
|
157 |
typedef FLOAT FVECT[3]; |
158 |
|
159 |
#define VCOPY(v1,v2) ((v1)[0]=(v2)[0],(v1)[1]=(v2)[1],(v1)[2]=(v2)[2]) |
160 |
#define DOT(v1,v2) ((v1)[0]*(v2)[0]+(v1)[1]*(v2)[1]+(v1)[2]*(v2)[2]) |
161 |
#define VSUM(vr,v1,v2,f) ((vr)[0]=(v1)[0]+(f)*(v2)[0], \ |
162 |
(vr)[1]=(v1)[1]+(f)*(v2)[1], \ |
163 |
(vr)[2]=(v1)[2]+(f)*(v2)[2]) |
164 |
|
165 |
#define is0vect(v) (DOT(v,v) <= FTINY*FTINY) |
166 |
|
167 |
#define round0(x) if (x <= FTINY && x >= -FTINY) x = 0 |
168 |
|
169 |
#ifdef NOPROTO |
170 |
extern double normalize(); /* normalize a vector */ |
171 |
#else |
172 |
extern double normalize(FVECT); /* normalize a vector */ |
173 |
#endif |
174 |
|
175 |
/************************************************************************ |
176 |
* Definitions for context handling routines |
177 |
* (materials, colors, vectors) |
178 |
*/ |
179 |
|
180 |
#define C_CMINWL 380 /* minimum wavelength */ |
181 |
#define C_CMAXWL 780 /* maximum wavelength */ |
182 |
#define C_CNSS 41 /* number of spectral samples */ |
183 |
#define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1)) |
184 |
#define C_CMAXV 10000 /* nominal maximum sample value */ |
185 |
|
186 |
#define C_CSSPEC 01 /* flag if spectrum is set */ |
187 |
#define C_CDSPEC 02 /* flag if defined w/ spectrum */ |
188 |
#define C_CSXY 04 /* flag if xy is set */ |
189 |
#define C_CDXY 010 /* flag if defined w/ xy */ |
190 |
|
191 |
typedef struct { |
192 |
short flags; /* what's been set */ |
193 |
short ssamp[C_CNSS]; /* spectral samples, min wl to max */ |
194 |
long ssum; /* straight sum of spectral values */ |
195 |
float cx, cy; /* xy chromaticity value */ |
196 |
} C_COLOR; |
197 |
|
198 |
#define C_DEFCOLOR { C_CDXY|C_CSXY|C_CSSPEC,\ |
199 |
{C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
200 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
201 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
202 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
203 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
204 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,\ |
205 |
C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV,C_CMAXV},\ |
206 |
(long)C_CNSS*C_CMAXV, 1./3., 1./3. } |
207 |
|
208 |
#define C_CIEX { C_CDSPEC|C_CSSPEC|C_CSXY,\ |
209 |
{14,42,143,435,1344,2839,3483,3362,2908,1954,956,\ |
210 |
320,49,93,633,1655,2904,4334,5945,7621,9163,10263,\ |
211 |
10622,10026,8544,6424,4479,2835,1649,874,468,227,\ |
212 |
114,58,29,14,7,3,2,1,0}, 106836L, .735, .265 } |
213 |
|
214 |
#define C_CIEY { C_CDSPEC|C_CSSPEC|C_CSXY,\ |
215 |
{0,1,4,12,40,116,230,380,600,910,1390,2080,3230,\ |
216 |
5030,7100,8620,9540,9950,9950,9520,8700,7570,6310,\ |
217 |
5030,3810,2650,1750,1070,610,320,170,82,41,21,10,\ |
218 |
5,2,1,1,0,0}, 106856L, .274, .717 } |
219 |
|
220 |
#define C_CIEZ { C_CDSPEC|C_CSSPEC|C_CSXY,\ |
221 |
{65,201,679,2074,6456,13856,17471,17721,16692,\ |
222 |
12876,8130,4652,2720,1582,782,422,203,87,39,21,17,\ |
223 |
11,8,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},\ |
224 |
106770L, .167, .009 } |
225 |
|
226 |
#define c_cval(c,l) ((double)(c)->ssamp[((l)-C_MINWL)/C_CWLI] / (c)->sum) |
227 |
|
228 |
typedef struct { |
229 |
char *name; /* material name */ |
230 |
int clock; /* incremented each change -- resettable */ |
231 |
float rd; /* diffuse reflectance */ |
232 |
C_COLOR rd_c; /* diffuse reflectance color */ |
233 |
float td; /* diffuse transmittance */ |
234 |
C_COLOR td_c; /* diffuse transmittance color */ |
235 |
float ed; /* diffuse emittance */ |
236 |
C_COLOR ed_c; /* diffuse emittance color */ |
237 |
float rs; /* specular reflectance */ |
238 |
C_COLOR rs_c; /* specular reflectance color */ |
239 |
float rs_a; /* specular reflectance roughness */ |
240 |
float ts; /* specular transmittance */ |
241 |
C_COLOR ts_c; /* specular transmittance color */ |
242 |
float ts_a; /* specular transmittance roughness */ |
243 |
} C_MATERIAL; /* material context */ |
244 |
|
245 |
typedef struct { |
246 |
FVECT p, n; /* point and normal */ |
247 |
} C_VERTEX; /* vertex context */ |
248 |
|
249 |
#define C_DEFMATERIAL {NULL,1,0.,C_DEFCOLOR,0.,C_DEFCOLOR,0.,C_DEFCOLOR,\ |
250 |
0.,C_DEFCOLOR,0.,0.,C_DEFCOLOR,0.} |
251 |
#define C_DEFVERTEX {{0.,0.,0.},{0.,0.,0.}} |
252 |
|
253 |
extern C_COLOR *c_ccolor; /* the current color */ |
254 |
extern C_MATERIAL *c_cmaterial; /* the current material */ |
255 |
extern C_VERTEX *c_cvertex; /* the current vertex */ |
256 |
|
257 |
#ifdef NOPROTO |
258 |
extern int c_hcolor(); /* handle color entity */ |
259 |
extern int c_hmaterial(); /* handle material entity */ |
260 |
extern int c_hvertex(); /* handle vertex entity */ |
261 |
extern void c_clearall(); /* clear context tables */ |
262 |
extern C_VERTEX *c_getvert(); /* get a named vertex */ |
263 |
extern C_COLOR *c_getcolor(); /* get a named color */ |
264 |
extern void c_ccvt(); /* fix color representation */ |
265 |
extern int c_isgrey(); /* check if color is grey */ |
266 |
#else |
267 |
extern int c_hcolor(int, char **); /* handle color entity */ |
268 |
extern int c_hmaterial(int, char **); /* handle material entity */ |
269 |
extern int c_hvertex(int, char **); /* handle vertex entity */ |
270 |
extern void c_clearall(void); /* clear context tables */ |
271 |
extern C_VERTEX *c_getvert(char *); /* get a named vertex */ |
272 |
extern C_COLOR *c_getcolor(char *); /* get a named color */ |
273 |
extern void c_ccvt(C_COLOR *, int); /* fix color representation */ |
274 |
extern int c_isgrey(C_COLOR *); /* check if color is grey */ |
275 |
#endif |
276 |
|
277 |
/************************************************************************* |
278 |
* Definitions for hierarchical object name handler |
279 |
*/ |
280 |
|
281 |
extern int obj_nnames; /* depth of name hierarchy */ |
282 |
extern char **obj_name; /* names in hierarchy */ |
283 |
|
284 |
#ifdef NOPROTO |
285 |
extern int obj_handler(); /* handle an object entity */ |
286 |
extern void obj_clear(); /* clear object stack */ |
287 |
#else |
288 |
extern int obj_handler(int, char **); /* handle an object entity */ |
289 |
extern void obj_clear(void); /* clear object stack */ |
290 |
#endif |
291 |
|
292 |
/************************************************************************** |
293 |
* Definitions for hierarchical transformation handler |
294 |
*/ |
295 |
|
296 |
typedef FLOAT MAT4[4][4]; |
297 |
|
298 |
#ifdef BSD |
299 |
#define copymat4(m4a,m4b) bcopy((char *)m4b,(char *)m4a,sizeof(MAT4)) |
300 |
#else |
301 |
#define copymat4(m4a,m4b) (void)memcpy((char *)m4a,(char *)m4b,sizeof(MAT4)) |
302 |
#endif |
303 |
|
304 |
#define MAT4IDENT { {1.,0.,0.,0.}, {0.,1.,0.,0.}, \ |
305 |
{0.,0.,1.,0.}, {0.,0.,0.,1.} } |
306 |
|
307 |
extern MAT4 m4ident; |
308 |
|
309 |
#define setident4(m4) copymat4(m4, m4ident) |
310 |
|
311 |
/* regular transformation */ |
312 |
typedef struct { |
313 |
MAT4 xfm; /* transform matrix */ |
314 |
FLOAT sca; /* scalefactor */ |
315 |
} XF; |
316 |
|
317 |
#define identxf(xp) (void)(setident4((xp)->xfm),(xp)->sca=1.0) |
318 |
|
319 |
typedef struct xf_spec { |
320 |
short xac; /* transform argument count */ |
321 |
short xav0; /* zeroeth argument in xf_argv array */ |
322 |
XF xf; /* cumulative transformation */ |
323 |
struct xf_spec *prev; /* previous transformation context */ |
324 |
} XF_SPEC; |
325 |
|
326 |
extern int xf_argc; /* total # transform args. */ |
327 |
extern char **xf_argv; /* transform arguments */ |
328 |
extern XF_SPEC *xf_context; /* current context */ |
329 |
|
330 |
/* |
331 |
* The transformation handler should do most of the work that needs |
332 |
* doing. Just pass it any xf entities, then use the associated |
333 |
* functions to transform and translate points, transform vectors |
334 |
* (without translation), rotate vectors (without scaling) and scale |
335 |
* values appropriately. |
336 |
* |
337 |
* The routines xf_xfmpoint, xf_xfmvect and xf_rotvect take two |
338 |
* 3-D vectors (which may be identical), transforms the second and |
339 |
* puts the result into the first. |
340 |
*/ |
341 |
|
342 |
#ifdef NOPROTO |
343 |
|
344 |
extern int xf_handler(); /* handle xf entity */ |
345 |
extern void xf_xfmpoint(); /* transform point */ |
346 |
extern void xf_xfmvect(); /* transform vector */ |
347 |
extern void xf_rotvect(); /* rotate vector */ |
348 |
extern double xf_scale(); /* scale a value */ |
349 |
extern void xf_clear(); /* clear xf stack */ |
350 |
|
351 |
/* The following are support routines you probably won't call directly */ |
352 |
|
353 |
extern void multmat4(); /* m4a = m4b X m4c */ |
354 |
extern void multv3(); /* v3a = v3b X m4 (vectors) */ |
355 |
extern void multp3(); /* p3a = p3b X m4 (points) */ |
356 |
extern int xf(); /* interpret transform spec. */ |
357 |
|
358 |
#else |
359 |
|
360 |
extern int xf_handler(int, char **); /* handle xf entity */ |
361 |
extern void xf_xfmpoint(FVECT, FVECT); /* transform point */ |
362 |
extern void xf_xfmvect(FVECT, FVECT); /* transform vector */ |
363 |
extern void xf_rotvect(FVECT, FVECT); /* rotate vector */ |
364 |
extern double xf_scale(double); /* scale a value */ |
365 |
extern void xf_clear(void); /* clear xf stack */ |
366 |
|
367 |
/* The following are support routines you probably won't call directly */ |
368 |
|
369 |
extern void multmat4(MAT4, MAT4, MAT4); /* m4a = m4b X m4c */ |
370 |
extern void multv3(FVECT, FVECT, MAT4); /* v3a = v3b X m4 (vectors) */ |
371 |
extern void multp3(FVECT, FVECT, MAT4); /* p3a = p3b X m4 (points) */ |
372 |
extern int xf(XF *, int, char **); /* interpret transform spec. */ |
373 |
|
374 |
#endif |
375 |
|
376 |
/************************************************************************ |
377 |
* Miscellaneous definitions |
378 |
*/ |
379 |
|
380 |
#ifdef M_PI |
381 |
#define PI M_PI |
382 |
#else |
383 |
#define PI 3.14159265358979323846 |
384 |
#endif |
385 |
|
386 |
#ifdef DCL_ATOF |
387 |
extern double atof(); |
388 |
#endif |
389 |
|
390 |
#ifndef MEM_PTR |
391 |
#define MEM_PTR void * |
392 |
#endif |
393 |
|
394 |
extern MEM_PTR malloc(); |
395 |
extern MEM_PTR calloc(); |
396 |
extern MEM_PTR realloc(); |
397 |
extern void free(); |