ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.25
Committed: Fri Mar 21 12:32:41 1997 UTC (27 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.24: +1 -2 lines
Log Message:
small cleanup suggested by Philippe B.

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Parse an MGF file, converting or discarding unsupported entities
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <ctype.h>
14 #include <string.h>
15 #include "parser.h"
16 #include "lookup.h"
17 #include "messages.h"
18
19 /*
20 * Global definitions of variables declared in parser.h
21 */
22 /* entity names */
23
24 char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25
26 /* Handler routines for each entity */
27
28 int (*mg_ehand[MG_NENTITIES])();
29
30 /* Handler routine for unknown entities */
31
32 int (*mg_uhand)() = mg_defuhand;
33
34 unsigned mg_nunknown; /* count of unknown entities */
35
36 /* error messages */
37
38 char *mg_err[MG_NERRS] = MG_ERRLIST;
39
40 MG_FCTXT *mg_file; /* current file context pointer */
41
42 int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
43
44 /*
45 * The idea with this parser is to compensate for any missing entries in
46 * mg_ehand with alternate handlers that express these entities in terms
47 * of others that the calling program can handle.
48 *
49 * In some cases, no alternate handler is possible because the entity
50 * has no approximate equivalent. These entities are simply discarded.
51 *
52 * Certain entities are dependent on others, and mg_init() will fail
53 * if the supported entities are not consistent.
54 *
55 * Some alternate entity handlers require that earlier entities be
56 * noted in some fashion, and we therefore keep another array of
57 * parallel support handlers to assist in this effort.
58 */
59
60 /* temporary settings for testing */
61 #define e_ies e_any_toss
62 /* alternate handler routines */
63
64 static int e_any_toss(), /* discard unneeded entity */
65 e_ies(), /* IES luminaire file */
66 e_cct(), /* color temperature */
67 e_cmix(), /* color mixtures */
68 e_cspec(); /* color spectra */
69
70 /* alternate handler support functions */
71
72 static int (*e_supp[MG_NENTITIES])();
73
74 static char FLTFMT[] = "%.12g";
75
76 static int warpconends; /* hack for generating good normals */
77
78
79 void
80 mg_init() /* initialize alternate entity handlers */
81 {
82 unsigned long ineed = 0, uneed = 0;
83 register int i;
84 /* pick up slack */
85 if (mg_ehand[MG_E_IES] == NULL)
86 mg_ehand[MG_E_IES] = e_ies;
87 if (mg_ehand[MG_E_INCLUDE] == NULL)
88 mg_ehand[MG_E_INCLUDE] = e_include;
89 if (mg_ehand[MG_E_SPH] == NULL) {
90 mg_ehand[MG_E_SPH] = e_sph;
91 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
92 } else
93 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
94 if (mg_ehand[MG_E_CYL] == NULL) {
95 mg_ehand[MG_E_CYL] = e_cyl;
96 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
97 } else
98 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
99 if (mg_ehand[MG_E_CONE] == NULL) {
100 mg_ehand[MG_E_CONE] = e_cone;
101 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
102 } else
103 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
104 if (mg_ehand[MG_E_RING] == NULL) {
105 mg_ehand[MG_E_RING] = e_ring;
106 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
107 } else
108 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
109 if (mg_ehand[MG_E_PRISM] == NULL) {
110 mg_ehand[MG_E_PRISM] = e_prism;
111 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
112 } else
113 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
114 if (mg_ehand[MG_E_TORUS] == NULL) {
115 mg_ehand[MG_E_TORUS] = e_torus;
116 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
117 } else
118 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
119 if (mg_ehand[MG_E_FACE] == NULL)
120 mg_ehand[MG_E_FACE] = mg_ehand[MG_E_FACEH];
121 else if (mg_ehand[MG_E_FACEH] == NULL)
122 mg_ehand[MG_E_FACEH] = e_faceh;
123 if (mg_ehand[MG_E_COLOR] != NULL) {
124 if (mg_ehand[MG_E_CMIX] == NULL) {
125 mg_ehand[MG_E_CMIX] = e_cmix;
126 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
127 }
128 if (mg_ehand[MG_E_CSPEC] == NULL) {
129 mg_ehand[MG_E_CSPEC] = e_cspec;
130 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
131 }
132 if (mg_ehand[MG_E_CCT] == NULL) {
133 mg_ehand[MG_E_CCT] = e_cct;
134 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
135 }
136 }
137 /* check for consistency */
138 if (mg_ehand[MG_E_FACE] != NULL)
139 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
140 if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
141 mg_ehand[MG_E_CMIX] != NULL)
142 uneed |= 1L<<MG_E_COLOR;
143 if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
144 mg_ehand[MG_E_IR] != NULL ||
145 mg_ehand[MG_E_ED] != NULL ||
146 mg_ehand[MG_E_RS] != NULL ||
147 mg_ehand[MG_E_TS] != NULL ||
148 mg_ehand[MG_E_SIDES] != NULL)
149 uneed |= 1L<<MG_E_MATERIAL;
150 for (i = 0; i < MG_NENTITIES; i++)
151 if (uneed & 1L<<i && mg_ehand[i] == NULL) {
152 fprintf(stderr, "Missing support for \"%s\" entity\n",
153 mg_ename[i]);
154 exit(1);
155 }
156 /* add support as needed */
157 if (ineed & 1L<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
158 e_supp[MG_E_VERTEX] = c_hvertex;
159 if (ineed & 1L<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
160 e_supp[MG_E_POINT] = c_hvertex;
161 if (ineed & 1L<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
162 e_supp[MG_E_NORMAL] = c_hvertex;
163 if (ineed & 1L<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
164 e_supp[MG_E_COLOR] = c_hcolor;
165 if (ineed & 1L<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
166 e_supp[MG_E_CXY] = c_hcolor;
167 if (ineed & 1L<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
168 e_supp[MG_E_CSPEC] = c_hcolor;
169 if (ineed & 1L<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
170 e_supp[MG_E_CMIX] = c_hcolor;
171 if (ineed & 1L<<MG_E_CCT && mg_ehand[MG_E_CCT] != c_hcolor)
172 e_supp[MG_E_CCT] = c_hcolor;
173 /* discard remaining entities */
174 for (i = 0; i < MG_NENTITIES; i++)
175 if (mg_ehand[i] == NULL)
176 mg_ehand[i] = e_any_toss;
177 }
178
179
180 int
181 mg_entity(name) /* get entity number from its name */
182 char *name;
183 {
184 static LUTAB ent_tab = LU_SINIT(NULL,NULL); /* lookup table */
185 register char *cp;
186
187 if (!ent_tab.tsiz) { /* initialize hash table */
188 if (!lu_init(&ent_tab, MG_NENTITIES))
189 return(-1); /* what to do? */
190 for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
191 cp -= sizeof(mg_ename[0]))
192 lu_find(&ent_tab, cp)->key = cp;
193 }
194 cp = lu_find(&ent_tab, name)->key;
195 if (cp == NULL)
196 return(-1);
197 return((cp - mg_ename[0])/sizeof(mg_ename[0]));
198 }
199
200
201 int
202 mg_handle(en, ac, av) /* pass entity to appropriate handler */
203 register int en;
204 int ac;
205 char **av;
206 {
207 int rv;
208
209 if (en < 0 && (en = mg_entity(av[0])) < 0) { /* unknown entity */
210 if (mg_uhand != NULL)
211 return((*mg_uhand)(ac, av));
212 return(MG_EUNK);
213 }
214 if (e_supp[en] != NULL) { /* support handler */
215 if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
216 return(rv);
217 }
218 return((*mg_ehand[en])(ac, av)); /* assigned handler */
219 }
220
221
222 int
223 mg_open(ctx, fn) /* open new input file */
224 register MG_FCTXT *ctx;
225 char *fn;
226 {
227 static int nfids;
228 register char *cp;
229
230 ctx->fid = ++nfids;
231 ctx->lineno = 0;
232 if (fn == NULL) {
233 strcpy(ctx->fname, "<stdin>");
234 ctx->fp = stdin;
235 ctx->prev = mg_file;
236 mg_file = ctx;
237 return(MG_OK);
238 }
239 /* get name relative to this context */
240 if (mg_file != NULL && (cp = strrchr(mg_file->fname, '/')) != NULL) {
241 strcpy(ctx->fname, mg_file->fname);
242 strcpy(ctx->fname+(cp-mg_file->fname+1), fn);
243 } else
244 strcpy(ctx->fname, fn);
245 ctx->fp = fopen(ctx->fname, "r");
246 if (ctx->fp == NULL)
247 return(MG_ENOFILE);
248 ctx->prev = mg_file; /* establish new context */
249 mg_file = ctx;
250 return(MG_OK);
251 }
252
253
254 void
255 mg_close() /* close input file */
256 {
257 register MG_FCTXT *ctx = mg_file;
258
259 mg_file = ctx->prev; /* restore enclosing context */
260 if (ctx->fp != stdin) /* close file if it's a file */
261 fclose(ctx->fp);
262 }
263
264
265 void
266 mg_fgetpos(pos) /* get current position in input file */
267 register MG_FPOS *pos;
268 {
269 extern long ftell();
270
271 pos->fid = mg_file->fid;
272 pos->lineno = mg_file->lineno;
273 pos->offset = ftell(mg_file->fp);
274 }
275
276
277 int
278 mg_fgoto(pos) /* reposition input file pointer */
279 register MG_FPOS *pos;
280 {
281 if (pos->fid != mg_file->fid)
282 return(MG_ESEEK);
283 if (pos->lineno == mg_file->lineno)
284 return(MG_OK);
285 if (mg_file->fp == stdin)
286 return(MG_ESEEK); /* cannot seek on standard input */
287 if (fseek(mg_file->fp, pos->offset, 0) == EOF)
288 return(MG_ESEEK);
289 mg_file->lineno = pos->lineno;
290 return(MG_OK);
291 }
292
293
294 int
295 mg_read() /* read next line from file */
296 {
297 register int len = 0;
298
299 do {
300 if (fgets(mg_file->inpline+len,
301 MG_MAXLINE-len, mg_file->fp) == NULL)
302 return(len);
303 len += strlen(mg_file->inpline+len);
304 if (len >= MG_MAXLINE-1)
305 return(len);
306 mg_file->lineno++;
307 } while (len > 1 && mg_file->inpline[len-2] == '\\');
308
309 return(len);
310 }
311
312
313 int
314 mg_parse() /* parse current input line */
315 {
316 char abuf[MG_MAXLINE];
317 char *argv[MG_MAXARGC];
318 register char *cp, *cp2, **ap;
319 /* copy line, removing escape chars */
320 cp = abuf; cp2 = mg_file->inpline;
321 while ((*cp++ = *cp2++))
322 if (cp2[0] == '\n' && cp2[-1] == '\\')
323 cp--;
324 cp = abuf; ap = argv; /* break into words */
325 for ( ; ; ) {
326 while (isspace(*cp))
327 *cp++ = '\0';
328 if (!*cp)
329 break;
330 if (ap - argv >= MG_MAXARGC-1)
331 return(MG_EARGC);
332 *ap++ = cp;
333 while (*++cp && !isspace(*cp))
334 ;
335 }
336 if (ap == argv)
337 return(MG_OK); /* no words in line */
338 *ap = NULL;
339 /* else handle it */
340 return(mg_handle(-1, ap-argv, argv));
341 }
342
343
344 int
345 mg_load(fn) /* load an MGF file */
346 char *fn;
347 {
348 MG_FCTXT cntxt;
349 int rval;
350 register int nbr;
351
352 if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
353 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
354 return(rval);
355 }
356 while ((nbr = mg_read()) > 0) { /* parse each line */
357 if (nbr >= MG_MAXLINE-1) {
358 fprintf(stderr, "%s: %d: %s\n", cntxt.fname,
359 cntxt.lineno, mg_err[rval=MG_ELINE]);
360 break;
361 }
362 if ((rval = mg_parse()) != MG_OK) {
363 fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
364 cntxt.lineno, mg_err[rval],
365 cntxt.inpline);
366 break;
367 }
368 }
369 mg_close();
370 return(rval);
371 }
372
373
374 int
375 mg_defuhand(ac, av) /* default handler for unknown entities */
376 int ac;
377 char **av;
378 {
379 if (mg_nunknown++ == 0) /* report first incident */
380 fprintf(stderr, "%s: %d: %s: %s\n", mg_file->fname,
381 mg_file->lineno, mg_err[MG_EUNK], av[0]);
382 return(MG_OK);
383 }
384
385
386 void
387 mg_clear() /* clear parser history */
388 {
389 c_clearall(); /* clear context tables */
390 while (mg_file != NULL) /* reset our file context */
391 mg_close();
392 }
393
394
395 /****************************************************************************
396 * The following routines handle unsupported entities
397 */
398
399
400 static int
401 e_any_toss(ac, av) /* discard an unwanted entity */
402 int ac;
403 char **av;
404 {
405 return(MG_OK);
406 }
407
408
409 int
410 e_include(ac, av) /* include file */
411 int ac;
412 char **av;
413 {
414 char *xfarg[MG_MAXARGC];
415 MG_FCTXT ictx;
416 XF_SPEC *xf_orig = xf_context;
417 register int rv;
418
419 if (ac < 2)
420 return(MG_EARGC);
421 if ((rv = mg_open(&ictx, av[1])) != MG_OK)
422 return(rv);
423 if (ac > 2) {
424 register int i;
425
426 xfarg[0] = mg_ename[MG_E_XF];
427 for (i = 1; i < ac-1; i++)
428 xfarg[i] = av[i+1];
429 xfarg[ac-1] = NULL;
430 if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK) {
431 mg_close();
432 return(rv);
433 }
434 }
435 do {
436 while ((rv = mg_read()) > 0) {
437 if (rv >= MG_MAXLINE-1) {
438 fprintf(stderr, "%s: %d: %s\n", ictx.fname,
439 ictx.lineno, mg_err[MG_ELINE]);
440 mg_close();
441 return(MG_EINCL);
442 }
443 if ((rv = mg_parse()) != MG_OK) {
444 fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
445 ictx.lineno, mg_err[rv],
446 ictx.inpline);
447 mg_close();
448 return(MG_EINCL);
449 }
450 }
451 if (ac > 2)
452 if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK) {
453 mg_close();
454 return(rv);
455 }
456 } while (xf_context != xf_orig);
457 mg_close();
458 return(MG_OK);
459 }
460
461
462 int
463 e_faceh(ac, av) /* replace face+holes with single contour */
464 int ac;
465 char **av;
466 {
467 char *newav[MG_MAXARGC];
468 int lastp = 0;
469 register int i, j;
470
471 newav[0] = mg_ename[MG_E_FACE];
472 for (i = 1; i < ac; i++)
473 if (av[i][0] == '-') {
474 if (i < 4)
475 return(MG_EARGC);
476 if (i >= ac-1)
477 break;
478 if (!lastp)
479 lastp = i-1;
480 for (j = i+1; j < ac-1 && av[j+1][0] != '-'; j++)
481 ;
482 if (j - i < 3)
483 return(MG_EARGC);
484 newav[i] = av[j]; /* connect hole loop */
485 } else
486 newav[i] = av[i]; /* hole or perimeter vertex */
487 if (lastp)
488 newav[i++] = av[lastp]; /* finish seam to outside */
489 newav[i] = NULL;
490 return(mg_handle(MG_E_FACE, i, newav));
491 }
492
493
494 static void
495 make_axes(u, v, w) /* compute u and v given w (normalized) */
496 FVECT u, v, w;
497 {
498 register int i;
499
500 v[0] = v[1] = v[2] = 0.;
501 for (i = 0; i < 3; i++)
502 if (w[i] < .6 && w[i] > -.6)
503 break;
504 v[i] = 1.;
505 fcross(u, v, w);
506 normalize(u);
507 fcross(v, w, u);
508 }
509
510
511 int
512 e_sph(ac, av) /* expand a sphere into cones */
513 int ac;
514 char **av;
515 {
516 static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
517 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
518 static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
519 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
520 static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
521 register C_VERTEX *cv;
522 register int i;
523 int rval;
524 double rad;
525 double theta;
526
527 if (ac != 3)
528 return(MG_EARGC);
529 if ((cv = c_getvert(av[1])) == NULL)
530 return(MG_EUNDEF);
531 if (!isflt(av[2]))
532 return(MG_ETYPE);
533 rad = atof(av[2]);
534 /* initialize */
535 warpconends = 1;
536 if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
537 return(rval);
538 sprintf(p2x, FLTFMT, cv->p[0]);
539 sprintf(p2y, FLTFMT, cv->p[1]);
540 sprintf(p2z, FLTFMT, cv->p[2]+rad);
541 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
542 return(rval);
543 r2[0] = '0'; r2[1] = '\0';
544 for (i = 1; i <= 2*mg_nqcdivs; i++) {
545 theta = i*(PI/2)/mg_nqcdivs;
546 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
547 return(rval);
548 sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
549 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
550 return(rval);
551 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
552 return(rval);
553 strcpy(r1, r2);
554 sprintf(r2, FLTFMT, rad*sin(theta));
555 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
556 return(rval);
557 }
558 warpconends = 0;
559 return(MG_OK);
560 }
561
562
563 int
564 e_torus(ac, av) /* expand a torus into cones */
565 int ac;
566 char **av;
567 {
568 static char p2[3][24], r1[24], r2[24];
569 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
570 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
571 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
572 static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
573 register C_VERTEX *cv;
574 register int i, j;
575 int rval;
576 int sgn;
577 double minrad, maxrad, avgrad;
578 double theta;
579
580 if (ac != 4)
581 return(MG_EARGC);
582 if ((cv = c_getvert(av[1])) == NULL)
583 return(MG_EUNDEF);
584 if (is0vect(cv->n))
585 return(MG_EILL);
586 if (!isflt(av[2]) || !isflt(av[3]))
587 return(MG_ETYPE);
588 minrad = atof(av[2]);
589 round0(minrad);
590 maxrad = atof(av[3]);
591 /* check orientation */
592 if (minrad > 0.)
593 sgn = 1;
594 else if (minrad < 0.)
595 sgn = -1;
596 else if (maxrad > 0.)
597 sgn = 1;
598 else if (maxrad < 0.)
599 sgn = -1;
600 else
601 return(MG_EILL);
602 if (sgn*(maxrad-minrad) <= 0.)
603 return(MG_EILL);
604 /* initialize */
605 warpconends = 1;
606 v2ent[3] = av[1];
607 for (j = 0; j < 3; j++)
608 sprintf(p2[j], FLTFMT, cv->p[j] +
609 .5*sgn*(maxrad-minrad)*cv->n[j]);
610 if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
611 return(rval);
612 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
613 return(rval);
614 sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
615 /* run outer section */
616 for (i = 1; i <= 2*mg_nqcdivs; i++) {
617 theta = i*(PI/2)/mg_nqcdivs;
618 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
619 return(rval);
620 for (j = 0; j < 3; j++)
621 sprintf(p2[j], FLTFMT, cv->p[j] +
622 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
623 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
624 return(rval);
625 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
626 return(rval);
627 strcpy(r1, r2);
628 sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
629 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
630 return(rval);
631 }
632 /* run inner section */
633 sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
634 for ( ; i <= 4*mg_nqcdivs; i++) {
635 theta = i*(PI/2)/mg_nqcdivs;
636 for (j = 0; j < 3; j++)
637 sprintf(p2[j], FLTFMT, cv->p[j] +
638 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
639 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
640 return(rval);
641 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
642 return(rval);
643 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
644 return(rval);
645 strcpy(r1, r2);
646 sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
647 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
648 return(rval);
649 }
650 warpconends = 0;
651 return(MG_OK);
652 }
653
654
655 int
656 e_cyl(ac, av) /* replace a cylinder with equivalent cone */
657 int ac;
658 char **av;
659 {
660 static char *avnew[6] = {mg_ename[MG_E_CONE]};
661
662 if (ac != 4)
663 return(MG_EARGC);
664 avnew[1] = av[1];
665 avnew[2] = av[2];
666 avnew[3] = av[3];
667 avnew[4] = av[2];
668 return(mg_handle(MG_E_CONE, 5, avnew));
669 }
670
671
672 int
673 e_ring(ac, av) /* turn a ring into polygons */
674 int ac;
675 char **av;
676 {
677 static char p3[3][24], p4[3][24];
678 static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
679 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
680 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
681 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
682 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
683 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
684 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
685 static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
686 register C_VERTEX *cv;
687 register int i, j;
688 FVECT u, v;
689 double minrad, maxrad;
690 int rv;
691 double theta, d;
692
693 if (ac != 4)
694 return(MG_EARGC);
695 if ((cv = c_getvert(av[1])) == NULL)
696 return(MG_EUNDEF);
697 if (is0vect(cv->n))
698 return(MG_EILL);
699 if (!isflt(av[2]) || !isflt(av[3]))
700 return(MG_ETYPE);
701 minrad = atof(av[2]);
702 round0(minrad);
703 maxrad = atof(av[3]);
704 if (minrad < 0. || maxrad <= minrad)
705 return(MG_EILL);
706 /* initialize */
707 make_axes(u, v, cv->n);
708 for (j = 0; j < 3; j++)
709 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
710 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
711 return(rv);
712 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
713 return(rv);
714 if (minrad == 0.) { /* closed */
715 v1ent[3] = av[1];
716 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
717 return(rv);
718 if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
719 return(rv);
720 for (i = 1; i <= 4*mg_nqcdivs; i++) {
721 theta = i*(PI/2)/mg_nqcdivs;
722 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
723 return(rv);
724 for (j = 0; j < 3; j++)
725 sprintf(p3[j], FLTFMT, cv->p[j] +
726 maxrad*u[j]*cos(theta) +
727 maxrad*v[j]*sin(theta));
728 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
729 return(rv);
730 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
731 return(rv);
732 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
733 return(rv);
734 }
735 } else { /* open */
736 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
737 return(rv);
738 for (j = 0; j < 3; j++)
739 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
740 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
741 return(rv);
742 v1ent[3] = "_rv4";
743 for (i = 1; i <= 4*mg_nqcdivs; i++) {
744 theta = i*(PI/2)/mg_nqcdivs;
745 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
746 return(rv);
747 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
748 return(rv);
749 for (j = 0; j < 3; j++) {
750 d = u[j]*cos(theta) + v[j]*sin(theta);
751 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
752 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
753 }
754 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
755 return(rv);
756 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
757 return(rv);
758 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
759 return(rv);
760 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
761 return(rv);
762 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
763 return(rv);
764 }
765 }
766 return(MG_OK);
767 }
768
769
770 int
771 e_cone(ac, av) /* turn a cone into polygons */
772 int ac;
773 char **av;
774 {
775 static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
776 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
777 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
778 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
779 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
780 static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
781 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
782 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
783 static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
784 static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
785 char *v1n;
786 register C_VERTEX *cv1, *cv2;
787 register int i, j;
788 FVECT u, v, w;
789 double rad1, rad2;
790 int sgn;
791 double n1off, n2off;
792 double d;
793 int rv;
794 double theta;
795
796 if (ac != 5)
797 return(MG_EARGC);
798 if ((cv1 = c_getvert(av[1])) == NULL ||
799 (cv2 = c_getvert(av[3])) == NULL)
800 return(MG_EUNDEF);
801 v1n = av[1];
802 if (!isflt(av[2]) || !isflt(av[4]))
803 return(MG_ETYPE);
804 rad1 = atof(av[2]);
805 round0(rad1);
806 rad2 = atof(av[4]);
807 round0(rad2);
808 if (rad1 == 0.) {
809 if (rad2 == 0.)
810 return(MG_EILL);
811 } else if (rad2 != 0.) {
812 if ((rad1 < 0.) ^ (rad2 < 0.))
813 return(MG_EILL);
814 } else { /* swap */
815 C_VERTEX *cv;
816
817 cv = cv1;
818 cv1 = cv2;
819 cv2 = cv;
820 v1n = av[3];
821 d = rad1;
822 rad1 = rad2;
823 rad2 = d;
824 }
825 sgn = rad2 < 0. ? -1 : 1;
826 /* initialize */
827 for (j = 0; j < 3; j++)
828 w[j] = cv1->p[j] - cv2->p[j];
829 if ((d = normalize(w)) == 0.)
830 return(MG_EILL);
831 n1off = n2off = (rad2 - rad1)/d;
832 if (warpconends) { /* hack for e_sph and e_torus */
833 d = atan(n2off) - (PI/4)/mg_nqcdivs;
834 if (d <= -PI/2+FTINY)
835 n2off = -FHUGE;
836 else
837 n2off = tan(d);
838 }
839 make_axes(u, v, w);
840 for (j = 0; j < 3; j++) {
841 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
842 if (n2off <= -FHUGE)
843 sprintf(n3[j], FLTFMT, -w[j]);
844 else
845 sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
846 }
847 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
848 return(rv);
849 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
850 return(rv);
851 if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
852 return(rv);
853 if (rad1 == 0.) { /* triangles */
854 v1ent[3] = v1n;
855 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
856 return(rv);
857 for (j = 0; j < 3; j++)
858 sprintf(n4[j], FLTFMT, w[j]);
859 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
860 return(rv);
861 for (i = 1; i <= 4*mg_nqcdivs; i++) {
862 theta = sgn*i*(PI/2)/mg_nqcdivs;
863 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
864 return(rv);
865 for (j = 0; j < 3; j++) {
866 d = u[j]*cos(theta) + v[j]*sin(theta);
867 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
868 if (n2off > -FHUGE)
869 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
870 }
871 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
872 return(rv);
873 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
874 return(rv);
875 if (n2off > -FHUGE &&
876 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
877 return(rv);
878 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
879 return(rv);
880 }
881 } else { /* quads */
882 v1ent[3] = "_cv4";
883 if (warpconends) { /* hack for e_sph and e_torus */
884 d = atan(n1off) + (PI/4)/mg_nqcdivs;
885 if (d >= PI/2-FTINY)
886 n1off = FHUGE;
887 else
888 n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
889 }
890 for (j = 0; j < 3; j++) {
891 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
892 if (n1off >= FHUGE)
893 sprintf(n4[j], FLTFMT, w[j]);
894 else
895 sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
896 }
897 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
898 return(rv);
899 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
900 return(rv);
901 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
902 return(rv);
903 for (i = 1; i <= 4*mg_nqcdivs; i++) {
904 theta = sgn*i*(PI/2)/mg_nqcdivs;
905 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
906 return(rv);
907 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
908 return(rv);
909 for (j = 0; j < 3; j++) {
910 d = u[j]*cos(theta) + v[j]*sin(theta);
911 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
912 if (n2off > -FHUGE)
913 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
914 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
915 if (n1off < FHUGE)
916 sprintf(n4[j], FLTFMT, d + w[j]*n1off);
917 }
918 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
919 return(rv);
920 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
921 return(rv);
922 if (n2off > -FHUGE &&
923 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
924 return(rv);
925 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
926 return(rv);
927 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
928 return(rv);
929 if (n1off < FHUGE &&
930 (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
931 return(rv);
932 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
933 return(rv);
934 }
935 }
936 return(MG_OK);
937 }
938
939
940 int
941 e_prism(ac, av) /* turn a prism into polygons */
942 int ac;
943 char **av;
944 {
945 static char p[3][24];
946 static char *vent[5] = {mg_ename[MG_E_VERTEX],NULL,"="};
947 static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
948 static char *znorm[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
949 char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
950 double length;
951 int hasnorm;
952 FVECT v1, v2, v3, norm;
953 register C_VERTEX *cv;
954 C_VERTEX *cv0;
955 int rv;
956 register int i, j;
957 /* check arguments */
958 if (ac < 5)
959 return(MG_EARGC);
960 if (!isflt(av[ac-1]))
961 return(MG_ETYPE);
962 length = atof(av[ac-1]);
963 if (length <= FTINY && length >= -FTINY)
964 return(MG_EILL);
965 /* compute face normal */
966 if ((cv0 = c_getvert(av[1])) == NULL)
967 return(MG_EUNDEF);
968 hasnorm = 0;
969 norm[0] = norm[1] = norm[2] = 0.;
970 v1[0] = v1[1] = v1[2] = 0.;
971 for (i = 2; i < ac-1; i++) {
972 if ((cv = c_getvert(av[i])) == NULL)
973 return(MG_EUNDEF);
974 hasnorm += !is0vect(cv->n);
975 v2[0] = cv->p[0] - cv0->p[0];
976 v2[1] = cv->p[1] - cv0->p[1];
977 v2[2] = cv->p[2] - cv0->p[2];
978 fcross(v3, v1, v2);
979 norm[0] += v3[0];
980 norm[1] += v3[1];
981 norm[2] += v3[2];
982 VCOPY(v1, v2);
983 }
984 if (normalize(norm) == 0.)
985 return(MG_EILL);
986 /* create moved vertices */
987 for (i = 1; i < ac-1; i++) {
988 sprintf(nvn[i-1], "_pv%d", i);
989 vent[1] = nvn[i-1];
990 vent[3] = av[i];
991 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
992 return(rv);
993 cv = c_getvert(av[i]); /* checked above */
994 for (j = 0; j < 3; j++)
995 sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
996 if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
997 return(rv);
998 }
999 /* make faces */
1000 newav[0] = mg_ename[MG_E_FACE];
1001 /* do the side faces */
1002 newav[5] = NULL;
1003 newav[3] = av[ac-2];
1004 newav[4] = nvn[ac-3];
1005 for (i = 1; i < ac-1; i++) {
1006 newav[1] = nvn[i-1];
1007 newav[2] = av[i];
1008 if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
1009 return(rv);
1010 newav[3] = newav[2];
1011 newav[4] = newav[1];
1012 }
1013 /* do top face */
1014 for (i = 1; i < ac-1; i++) {
1015 if (hasnorm) { /* zero normals */
1016 vent[1] = nvn[i-1];
1017 if ((rv = mg_handle(MG_E_VERTEX, 2, vent)) != MG_OK)
1018 return(rv);
1019 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1020 return(rv);
1021 }
1022 newav[ac-1-i] = nvn[i-1]; /* reverse */
1023 }
1024 if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
1025 return(rv);
1026 /* do bottom face */
1027 if (hasnorm)
1028 for (i = 1; i < ac-1; i++) {
1029 vent[1] = nvn[i-1];
1030 vent[3] = av[i];
1031 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
1032 return(rv);
1033 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1034 return(rv);
1035 newav[i] = nvn[i-1];
1036 }
1037 else
1038 for (i = 1; i < ac-1; i++)
1039 newav[i] = av[i];
1040 newav[i] = NULL;
1041 if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
1042 return(rv);
1043 return(MG_OK);
1044 }
1045
1046
1047 static int
1048 put_cxy() /* put out current xy chromaticities */
1049 {
1050 static char xbuf[24], ybuf[24];
1051 static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};
1052
1053 sprintf(xbuf, "%.4f", c_ccolor->cx);
1054 sprintf(ybuf, "%.4f", c_ccolor->cy);
1055 return(mg_handle(MG_E_CXY, 3, ccom));
1056 }
1057
1058
1059 static int
1060 put_cspec() /* put out current color spectrum */
1061 {
1062 char wl[2][6], vbuf[C_CNSS][24];
1063 char *newav[C_CNSS+4];
1064 double sf;
1065 register int i;
1066
1067 if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
1068 sprintf(wl[0], "%d", C_CMINWL);
1069 sprintf(wl[1], "%d", C_CMAXWL);
1070 newav[0] = mg_ename[MG_E_CSPEC];
1071 newav[1] = wl[0];
1072 newav[2] = wl[1];
1073 sf = (double)C_CNSS / c_ccolor->ssum;
1074 for (i = 0; i < C_CNSS; i++) {
1075 sprintf(vbuf[i], "%.4f", sf*c_ccolor->ssamp[i]);
1076 newav[i+3] = vbuf[i];
1077 }
1078 newav[C_CNSS+3] = NULL;
1079 if ((i = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
1080 return(i);
1081 }
1082 return(MG_OK);
1083 }
1084
1085
1086 static int
1087 e_cspec(ac, av) /* handle spectral color */
1088 int ac;
1089 char **av;
1090 {
1091 /* convert to xy chromaticity */
1092 c_ccvt(c_ccolor, C_CSXY);
1093 /* if it's really their handler, use it */
1094 if (mg_ehand[MG_E_CXY] != c_hcolor)
1095 return(put_cxy());
1096 return(MG_OK);
1097 }
1098
1099
1100 static int
1101 e_cmix(ac, av) /* handle mixing of colors */
1102 int ac;
1103 char **av;
1104 {
1105 /*
1106 * Contorted logic works as follows:
1107 * 1. the colors are already mixed in c_hcolor() support function
1108 * 2. if we would handle a spectral result, make sure it's not
1109 * 3. if c_hcolor() would handle a spectral result, don't bother
1110 * 4. otherwise, make cspec entity and pass it to their handler
1111 * 5. if we have only xy results, handle it as c_spec() would
1112 */
1113 if (mg_ehand[MG_E_CSPEC] == e_cspec)
1114 c_ccvt(c_ccolor, C_CSXY);
1115 else if (c_ccolor->flags & C_CDSPEC)
1116 return(put_cspec());
1117 if (mg_ehand[MG_E_CXY] != c_hcolor)
1118 return(put_cxy());
1119 return(MG_OK);
1120 }
1121
1122
1123 static int
1124 e_cct(ac, av) /* handle color temperature */
1125 int ac;
1126 char **av;
1127 {
1128 /*
1129 * Logic is similar to e_cmix here. Support handler has already
1130 * converted temperature to spectral color. Put it out as such
1131 * if they support it, otherwise convert to xy chromaticity and
1132 * put it out if they handle it.
1133 */
1134 if (mg_ehand[MG_E_CSPEC] != e_cspec)
1135 return(put_cspec());
1136 c_ccvt(c_ccolor, C_CSXY);
1137 if (mg_ehand[MG_E_CXY] != c_hcolor)
1138 return(put_cxy());
1139 return(MG_OK);
1140 }