ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.24
Committed: Tue Mar 18 11:17:24 1997 UTC (27 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.23: +36 -8 lines
Log Message:
added fh entity and general cleanup

File Contents

# Content
1 /* Copyright (c) 1996 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Parse an MGF file, converting or discarding unsupported entities
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <ctype.h>
14 #include <string.h>
15 #include "parser.h"
16 #include "lookup.h"
17 #include "messages.h"
18
19 /*
20 * Global definitions of variables declared in parser.h
21 */
22 /* entity names */
23
24 char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25
26 /* Handler routines for each entity */
27
28 int (*mg_ehand[MG_NENTITIES])();
29
30 /* Handler routine for unknown entities */
31
32 int (*mg_uhand)() = mg_defuhand;
33
34 unsigned mg_nunknown; /* count of unknown entities */
35
36 /* error messages */
37
38 char *mg_err[MG_NERRS] = MG_ERRLIST;
39
40 MG_FCTXT *mg_file; /* current file context pointer */
41
42 int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
43
44 /*
45 * The idea with this parser is to compensate for any missing entries in
46 * mg_ehand with alternate handlers that express these entities in terms
47 * of others that the calling program can handle.
48 *
49 * In some cases, no alternate handler is possible because the entity
50 * has no approximate equivalent. These entities are simply discarded.
51 *
52 * Certain entities are dependent on others, and mg_init() will fail
53 * if the supported entities are not consistent.
54 *
55 * Some alternate entity handlers require that earlier entities be
56 * noted in some fashion, and we therefore keep another array of
57 * parallel support handlers to assist in this effort.
58 */
59
60 /* temporary settings for testing */
61 #define e_ies e_any_toss
62 /* alternate handler routines */
63
64 static int e_any_toss(), /* discard unneeded entity */
65 e_ies(), /* IES luminaire file */
66 e_cct(), /* color temperature */
67 e_cmix(), /* color mixtures */
68 e_cspec(); /* color spectra */
69
70 /* alternate handler support functions */
71
72 static int (*e_supp[MG_NENTITIES])();
73
74 static char FLTFMT[] = "%.12g";
75
76 static int warpconends; /* hack for generating good normals */
77
78
79 void
80 mg_init() /* initialize alternate entity handlers */
81 {
82 unsigned long ineed = 0, uneed = 0;
83 register int i;
84 /* pick up slack */
85 if (mg_ehand[MG_E_IES] == NULL)
86 mg_ehand[MG_E_IES] = e_ies;
87 if (mg_ehand[MG_E_INCLUDE] == NULL)
88 mg_ehand[MG_E_INCLUDE] = e_include;
89 if (mg_ehand[MG_E_SPH] == NULL) {
90 mg_ehand[MG_E_SPH] = e_sph;
91 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
92 } else
93 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
94 if (mg_ehand[MG_E_CYL] == NULL) {
95 mg_ehand[MG_E_CYL] = e_cyl;
96 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
97 } else
98 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
99 if (mg_ehand[MG_E_CONE] == NULL) {
100 mg_ehand[MG_E_CONE] = e_cone;
101 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
102 } else
103 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
104 if (mg_ehand[MG_E_RING] == NULL) {
105 mg_ehand[MG_E_RING] = e_ring;
106 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
107 } else
108 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
109 if (mg_ehand[MG_E_PRISM] == NULL) {
110 mg_ehand[MG_E_PRISM] = e_prism;
111 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
112 } else
113 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
114 if (mg_ehand[MG_E_TORUS] == NULL) {
115 mg_ehand[MG_E_TORUS] = e_torus;
116 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
117 } else
118 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
119 if (mg_ehand[MG_E_FACE] == NULL)
120 mg_ehand[MG_E_FACE] = mg_ehand[MG_E_FACEH];
121 else if (mg_ehand[MG_E_FACEH] == NULL)
122 mg_ehand[MG_E_FACEH] = e_faceh;
123 if (mg_ehand[MG_E_COLOR] != NULL) {
124 if (mg_ehand[MG_E_CMIX] == NULL) {
125 mg_ehand[MG_E_CMIX] = e_cmix;
126 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
127 }
128 if (mg_ehand[MG_E_CSPEC] == NULL) {
129 mg_ehand[MG_E_CSPEC] = e_cspec;
130 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
131 }
132 if (mg_ehand[MG_E_CCT] == NULL) {
133 mg_ehand[MG_E_CCT] = e_cct;
134 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
135 }
136 }
137 /* check for consistency */
138 if (mg_ehand[MG_E_FACE] != NULL)
139 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
140 if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
141 mg_ehand[MG_E_CMIX] != NULL)
142 uneed |= 1L<<MG_E_COLOR;
143 if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
144 mg_ehand[MG_E_IR] != NULL ||
145 mg_ehand[MG_E_ED] != NULL ||
146 mg_ehand[MG_E_RS] != NULL ||
147 mg_ehand[MG_E_TS] != NULL ||
148 mg_ehand[MG_E_SIDES] != NULL)
149 uneed |= 1L<<MG_E_MATERIAL;
150 for (i = 0; i < MG_NENTITIES; i++)
151 if (uneed & 1L<<i && mg_ehand[i] == NULL) {
152 fprintf(stderr, "Missing support for \"%s\" entity\n",
153 mg_ename[i]);
154 exit(1);
155 }
156 /* add support as needed */
157 if (ineed & 1L<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
158 e_supp[MG_E_VERTEX] = c_hvertex;
159 if (ineed & 1L<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
160 e_supp[MG_E_POINT] = c_hvertex;
161 if (ineed & 1L<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
162 e_supp[MG_E_NORMAL] = c_hvertex;
163 if (ineed & 1L<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
164 e_supp[MG_E_COLOR] = c_hcolor;
165 if (ineed & 1L<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
166 e_supp[MG_E_CXY] = c_hcolor;
167 if (ineed & 1L<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
168 e_supp[MG_E_CSPEC] = c_hcolor;
169 if (ineed & 1L<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
170 e_supp[MG_E_CMIX] = c_hcolor;
171 if (ineed & 1L<<MG_E_CCT && mg_ehand[MG_E_CCT] != c_hcolor)
172 e_supp[MG_E_CCT] = c_hcolor;
173 /* discard remaining entities */
174 for (i = 0; i < MG_NENTITIES; i++)
175 if (mg_ehand[i] == NULL)
176 mg_ehand[i] = e_any_toss;
177 }
178
179
180 int
181 mg_entity(name) /* get entity number from its name */
182 char *name;
183 {
184 static LUTAB ent_tab = LU_SINIT(NULL,NULL); /* lookup table */
185 register char *cp;
186
187 if (!ent_tab.tsiz) { /* initialize hash table */
188 if (!lu_init(&ent_tab, MG_NENTITIES))
189 return(-1); /* what to do? */
190 for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
191 cp -= sizeof(mg_ename[0]))
192 lu_find(&ent_tab, cp)->key = cp;
193 }
194 cp = lu_find(&ent_tab, name)->key;
195 if (cp == NULL)
196 return(-1);
197 return((cp - mg_ename[0])/sizeof(mg_ename[0]));
198 }
199
200
201 int
202 mg_handle(en, ac, av) /* pass entity to appropriate handler */
203 register int en;
204 int ac;
205 char **av;
206 {
207 int rv;
208
209 if (en < 0 && (en = mg_entity(av[0])) < 0) { /* unknown entity */
210 if (mg_uhand != NULL)
211 return((*mg_uhand)(ac, av));
212 return(MG_EUNK);
213 }
214 if (e_supp[en] != NULL) { /* support handler */
215 if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
216 return(rv);
217 }
218 return((*mg_ehand[en])(ac, av)); /* assigned handler */
219 }
220
221
222 int
223 mg_open(ctx, fn) /* open new input file */
224 register MG_FCTXT *ctx;
225 char *fn;
226 {
227 static int nfids;
228 register char *cp;
229
230 ctx->fid = ++nfids;
231 ctx->lineno = 0;
232 if (fn == NULL) {
233 strcpy(ctx->fname, "<stdin>");
234 ctx->fp = stdin;
235 ctx->prev = mg_file;
236 mg_file = ctx;
237 return(MG_OK);
238 }
239 /* get name relative to this context */
240 if (mg_file != NULL && (cp = strrchr(mg_file->fname, '/')) != NULL) {
241 strcpy(ctx->fname, mg_file->fname);
242 strcpy(ctx->fname+(cp-mg_file->fname+1), fn);
243 } else
244 strcpy(ctx->fname, fn);
245 ctx->fp = fopen(ctx->fname, "r");
246 if (ctx->fp == NULL)
247 return(MG_ENOFILE);
248 ctx->prev = mg_file; /* establish new context */
249 mg_file = ctx;
250 return(MG_OK);
251 }
252
253
254 void
255 mg_close() /* close input file */
256 {
257 register MG_FCTXT *ctx = mg_file;
258
259 mg_file = ctx->prev; /* restore enclosing context */
260 if (ctx->fp != stdin) /* close file if it's a file */
261 fclose(ctx->fp);
262 }
263
264
265 void
266 mg_fgetpos(pos) /* get current position in input file */
267 register MG_FPOS *pos;
268 {
269 extern long ftell();
270
271 pos->fid = mg_file->fid;
272 pos->lineno = mg_file->lineno;
273 pos->offset = ftell(mg_file->fp);
274 }
275
276
277 int
278 mg_fgoto(pos) /* reposition input file pointer */
279 register MG_FPOS *pos;
280 {
281 if (pos->fid != mg_file->fid)
282 return(MG_ESEEK);
283 if (pos->lineno == mg_file->lineno)
284 return(MG_OK);
285 if (mg_file->fp == stdin)
286 return(MG_ESEEK); /* cannot seek on standard input */
287 if (fseek(mg_file->fp, pos->offset, 0) == EOF)
288 return(MG_ESEEK);
289 mg_file->lineno = pos->lineno;
290 return(MG_OK);
291 }
292
293
294 int
295 mg_read() /* read next line from file */
296 {
297 register int len = 0;
298
299 do {
300 if (fgets(mg_file->inpline+len,
301 MG_MAXLINE-len, mg_file->fp) == NULL)
302 return(len);
303 len += strlen(mg_file->inpline+len);
304 if (len >= MG_MAXLINE-1)
305 return(len);
306 mg_file->lineno++;
307 } while (len > 1 && mg_file->inpline[len-2] == '\\');
308
309 return(len);
310 }
311
312
313 int
314 mg_parse() /* parse current input line */
315 {
316 char abuf[MG_MAXLINE];
317 char *argv[MG_MAXARGC];
318 int en;
319 register char *cp, *cp2, **ap;
320 /* copy line, removing escape chars */
321 cp = abuf; cp2 = mg_file->inpline;
322 while ((*cp++ = *cp2++))
323 if (cp2[0] == '\n' && cp2[-1] == '\\')
324 cp--;
325 cp = abuf; ap = argv; /* break into words */
326 for ( ; ; ) {
327 while (isspace(*cp))
328 *cp++ = '\0';
329 if (!*cp)
330 break;
331 if (ap - argv >= MG_MAXARGC-1)
332 return(MG_EARGC);
333 *ap++ = cp;
334 while (*++cp && !isspace(*cp))
335 ;
336 }
337 if (ap == argv)
338 return(MG_OK); /* no words in line */
339 *ap = NULL;
340 /* else handle it */
341 return(mg_handle(-1, ap-argv, argv));
342 }
343
344
345 int
346 mg_load(fn) /* load an MGF file */
347 char *fn;
348 {
349 MG_FCTXT cntxt;
350 int rval;
351 register int nbr;
352
353 if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
354 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
355 return(rval);
356 }
357 while ((nbr = mg_read()) > 0) { /* parse each line */
358 if (nbr >= MG_MAXLINE-1) {
359 fprintf(stderr, "%s: %d: %s\n", cntxt.fname,
360 cntxt.lineno, mg_err[rval=MG_ELINE]);
361 break;
362 }
363 if ((rval = mg_parse()) != MG_OK) {
364 fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
365 cntxt.lineno, mg_err[rval],
366 cntxt.inpline);
367 break;
368 }
369 }
370 mg_close();
371 return(rval);
372 }
373
374
375 int
376 mg_defuhand(ac, av) /* default handler for unknown entities */
377 int ac;
378 char **av;
379 {
380 if (mg_nunknown++ == 0) /* report first incident */
381 fprintf(stderr, "%s: %d: %s: %s\n", mg_file->fname,
382 mg_file->lineno, mg_err[MG_EUNK], av[0]);
383 return(MG_OK);
384 }
385
386
387 void
388 mg_clear() /* clear parser history */
389 {
390 c_clearall(); /* clear context tables */
391 while (mg_file != NULL) /* reset our file context */
392 mg_close();
393 }
394
395
396 /****************************************************************************
397 * The following routines handle unsupported entities
398 */
399
400
401 static int
402 e_any_toss(ac, av) /* discard an unwanted entity */
403 int ac;
404 char **av;
405 {
406 return(MG_OK);
407 }
408
409
410 int
411 e_include(ac, av) /* include file */
412 int ac;
413 char **av;
414 {
415 char *xfarg[MG_MAXARGC];
416 MG_FCTXT ictx;
417 XF_SPEC *xf_orig = xf_context;
418 register int rv;
419
420 if (ac < 2)
421 return(MG_EARGC);
422 if ((rv = mg_open(&ictx, av[1])) != MG_OK)
423 return(rv);
424 if (ac > 2) {
425 register int i;
426
427 xfarg[0] = mg_ename[MG_E_XF];
428 for (i = 1; i < ac-1; i++)
429 xfarg[i] = av[i+1];
430 xfarg[ac-1] = NULL;
431 if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK) {
432 mg_close();
433 return(rv);
434 }
435 }
436 do {
437 while ((rv = mg_read()) > 0) {
438 if (rv >= MG_MAXLINE-1) {
439 fprintf(stderr, "%s: %d: %s\n", ictx.fname,
440 ictx.lineno, mg_err[MG_ELINE]);
441 mg_close();
442 return(MG_EINCL);
443 }
444 if ((rv = mg_parse()) != MG_OK) {
445 fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
446 ictx.lineno, mg_err[rv],
447 ictx.inpline);
448 mg_close();
449 return(MG_EINCL);
450 }
451 }
452 if (ac > 2)
453 if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK) {
454 mg_close();
455 return(rv);
456 }
457 } while (xf_context != xf_orig);
458 mg_close();
459 return(MG_OK);
460 }
461
462
463 int
464 e_faceh(ac, av) /* replace face+holes with single contour */
465 int ac;
466 char **av;
467 {
468 char *newav[MG_MAXARGC];
469 int lastp = 0;
470 register int i, j;
471
472 newav[0] = mg_ename[MG_E_FACE];
473 for (i = 1; i < ac; i++)
474 if (av[i][0] == '-') {
475 if (i < 4)
476 return(MG_EARGC);
477 if (i >= ac-1)
478 break;
479 if (!lastp)
480 lastp = i-1;
481 for (j = i+1; j < ac-1 && av[j+1][0] != '-'; j++)
482 ;
483 if (j - i < 3)
484 return(MG_EARGC);
485 newav[i] = av[j]; /* connect hole loop */
486 } else
487 newav[i] = av[i]; /* hole or perimeter vertex */
488 if (lastp)
489 newav[i++] = av[lastp]; /* finish seam to outside */
490 newav[i] = NULL;
491 return(mg_handle(MG_E_FACE, i, newav));
492 }
493
494
495 static void
496 make_axes(u, v, w) /* compute u and v given w (normalized) */
497 FVECT u, v, w;
498 {
499 register int i;
500
501 v[0] = v[1] = v[2] = 0.;
502 for (i = 0; i < 3; i++)
503 if (w[i] < .6 && w[i] > -.6)
504 break;
505 v[i] = 1.;
506 fcross(u, v, w);
507 normalize(u);
508 fcross(v, w, u);
509 }
510
511
512 int
513 e_sph(ac, av) /* expand a sphere into cones */
514 int ac;
515 char **av;
516 {
517 static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
518 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
519 static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
520 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
521 static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
522 register C_VERTEX *cv;
523 register int i;
524 int rval;
525 double rad;
526 double theta;
527
528 if (ac != 3)
529 return(MG_EARGC);
530 if ((cv = c_getvert(av[1])) == NULL)
531 return(MG_EUNDEF);
532 if (!isflt(av[2]))
533 return(MG_ETYPE);
534 rad = atof(av[2]);
535 /* initialize */
536 warpconends = 1;
537 if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
538 return(rval);
539 sprintf(p2x, FLTFMT, cv->p[0]);
540 sprintf(p2y, FLTFMT, cv->p[1]);
541 sprintf(p2z, FLTFMT, cv->p[2]+rad);
542 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
543 return(rval);
544 r2[0] = '0'; r2[1] = '\0';
545 for (i = 1; i <= 2*mg_nqcdivs; i++) {
546 theta = i*(PI/2)/mg_nqcdivs;
547 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
548 return(rval);
549 sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
550 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
551 return(rval);
552 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
553 return(rval);
554 strcpy(r1, r2);
555 sprintf(r2, FLTFMT, rad*sin(theta));
556 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
557 return(rval);
558 }
559 warpconends = 0;
560 return(MG_OK);
561 }
562
563
564 int
565 e_torus(ac, av) /* expand a torus into cones */
566 int ac;
567 char **av;
568 {
569 static char p2[3][24], r1[24], r2[24];
570 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
571 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
572 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
573 static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
574 register C_VERTEX *cv;
575 register int i, j;
576 int rval;
577 int sgn;
578 double minrad, maxrad, avgrad;
579 double theta;
580
581 if (ac != 4)
582 return(MG_EARGC);
583 if ((cv = c_getvert(av[1])) == NULL)
584 return(MG_EUNDEF);
585 if (is0vect(cv->n))
586 return(MG_EILL);
587 if (!isflt(av[2]) || !isflt(av[3]))
588 return(MG_ETYPE);
589 minrad = atof(av[2]);
590 round0(minrad);
591 maxrad = atof(av[3]);
592 /* check orientation */
593 if (minrad > 0.)
594 sgn = 1;
595 else if (minrad < 0.)
596 sgn = -1;
597 else if (maxrad > 0.)
598 sgn = 1;
599 else if (maxrad < 0.)
600 sgn = -1;
601 else
602 return(MG_EILL);
603 if (sgn*(maxrad-minrad) <= 0.)
604 return(MG_EILL);
605 /* initialize */
606 warpconends = 1;
607 v2ent[3] = av[1];
608 for (j = 0; j < 3; j++)
609 sprintf(p2[j], FLTFMT, cv->p[j] +
610 .5*sgn*(maxrad-minrad)*cv->n[j]);
611 if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
612 return(rval);
613 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
614 return(rval);
615 sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
616 /* run outer section */
617 for (i = 1; i <= 2*mg_nqcdivs; i++) {
618 theta = i*(PI/2)/mg_nqcdivs;
619 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
620 return(rval);
621 for (j = 0; j < 3; j++)
622 sprintf(p2[j], FLTFMT, cv->p[j] +
623 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
624 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
625 return(rval);
626 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
627 return(rval);
628 strcpy(r1, r2);
629 sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
630 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
631 return(rval);
632 }
633 /* run inner section */
634 sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
635 for ( ; i <= 4*mg_nqcdivs; i++) {
636 theta = i*(PI/2)/mg_nqcdivs;
637 for (j = 0; j < 3; j++)
638 sprintf(p2[j], FLTFMT, cv->p[j] +
639 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
640 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
641 return(rval);
642 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
643 return(rval);
644 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
645 return(rval);
646 strcpy(r1, r2);
647 sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
648 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
649 return(rval);
650 }
651 warpconends = 0;
652 return(MG_OK);
653 }
654
655
656 int
657 e_cyl(ac, av) /* replace a cylinder with equivalent cone */
658 int ac;
659 char **av;
660 {
661 static char *avnew[6] = {mg_ename[MG_E_CONE]};
662
663 if (ac != 4)
664 return(MG_EARGC);
665 avnew[1] = av[1];
666 avnew[2] = av[2];
667 avnew[3] = av[3];
668 avnew[4] = av[2];
669 return(mg_handle(MG_E_CONE, 5, avnew));
670 }
671
672
673 int
674 e_ring(ac, av) /* turn a ring into polygons */
675 int ac;
676 char **av;
677 {
678 static char p3[3][24], p4[3][24];
679 static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
680 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
681 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
682 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
683 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
684 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
685 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
686 static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
687 register C_VERTEX *cv;
688 register int i, j;
689 FVECT u, v;
690 double minrad, maxrad;
691 int rv;
692 double theta, d;
693
694 if (ac != 4)
695 return(MG_EARGC);
696 if ((cv = c_getvert(av[1])) == NULL)
697 return(MG_EUNDEF);
698 if (is0vect(cv->n))
699 return(MG_EILL);
700 if (!isflt(av[2]) || !isflt(av[3]))
701 return(MG_ETYPE);
702 minrad = atof(av[2]);
703 round0(minrad);
704 maxrad = atof(av[3]);
705 if (minrad < 0. || maxrad <= minrad)
706 return(MG_EILL);
707 /* initialize */
708 make_axes(u, v, cv->n);
709 for (j = 0; j < 3; j++)
710 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
711 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
712 return(rv);
713 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
714 return(rv);
715 if (minrad == 0.) { /* closed */
716 v1ent[3] = av[1];
717 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
718 return(rv);
719 if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
720 return(rv);
721 for (i = 1; i <= 4*mg_nqcdivs; i++) {
722 theta = i*(PI/2)/mg_nqcdivs;
723 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
724 return(rv);
725 for (j = 0; j < 3; j++)
726 sprintf(p3[j], FLTFMT, cv->p[j] +
727 maxrad*u[j]*cos(theta) +
728 maxrad*v[j]*sin(theta));
729 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
730 return(rv);
731 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
732 return(rv);
733 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
734 return(rv);
735 }
736 } else { /* open */
737 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
738 return(rv);
739 for (j = 0; j < 3; j++)
740 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
741 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
742 return(rv);
743 v1ent[3] = "_rv4";
744 for (i = 1; i <= 4*mg_nqcdivs; i++) {
745 theta = i*(PI/2)/mg_nqcdivs;
746 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
747 return(rv);
748 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
749 return(rv);
750 for (j = 0; j < 3; j++) {
751 d = u[j]*cos(theta) + v[j]*sin(theta);
752 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
753 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
754 }
755 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
756 return(rv);
757 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
758 return(rv);
759 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
760 return(rv);
761 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
762 return(rv);
763 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
764 return(rv);
765 }
766 }
767 return(MG_OK);
768 }
769
770
771 int
772 e_cone(ac, av) /* turn a cone into polygons */
773 int ac;
774 char **av;
775 {
776 static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
777 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
778 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
779 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
780 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
781 static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
782 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
783 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
784 static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
785 static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
786 char *v1n;
787 register C_VERTEX *cv1, *cv2;
788 register int i, j;
789 FVECT u, v, w;
790 double rad1, rad2;
791 int sgn;
792 double n1off, n2off;
793 double d;
794 int rv;
795 double theta;
796
797 if (ac != 5)
798 return(MG_EARGC);
799 if ((cv1 = c_getvert(av[1])) == NULL ||
800 (cv2 = c_getvert(av[3])) == NULL)
801 return(MG_EUNDEF);
802 v1n = av[1];
803 if (!isflt(av[2]) || !isflt(av[4]))
804 return(MG_ETYPE);
805 rad1 = atof(av[2]);
806 round0(rad1);
807 rad2 = atof(av[4]);
808 round0(rad2);
809 if (rad1 == 0.) {
810 if (rad2 == 0.)
811 return(MG_EILL);
812 } else if (rad2 != 0.) {
813 if (rad1 < 0. ^ rad2 < 0.)
814 return(MG_EILL);
815 } else { /* swap */
816 C_VERTEX *cv;
817
818 cv = cv1;
819 cv1 = cv2;
820 cv2 = cv;
821 v1n = av[3];
822 d = rad1;
823 rad1 = rad2;
824 rad2 = d;
825 }
826 sgn = rad2 < 0. ? -1 : 1;
827 /* initialize */
828 for (j = 0; j < 3; j++)
829 w[j] = cv1->p[j] - cv2->p[j];
830 if ((d = normalize(w)) == 0.)
831 return(MG_EILL);
832 n1off = n2off = (rad2 - rad1)/d;
833 if (warpconends) { /* hack for e_sph and e_torus */
834 d = atan(n2off) - (PI/4)/mg_nqcdivs;
835 if (d <= -PI/2+FTINY)
836 n2off = -FHUGE;
837 else
838 n2off = tan(d);
839 }
840 make_axes(u, v, w);
841 for (j = 0; j < 3; j++) {
842 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
843 if (n2off <= -FHUGE)
844 sprintf(n3[j], FLTFMT, -w[j]);
845 else
846 sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
847 }
848 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
849 return(rv);
850 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
851 return(rv);
852 if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
853 return(rv);
854 if (rad1 == 0.) { /* triangles */
855 v1ent[3] = v1n;
856 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
857 return(rv);
858 for (j = 0; j < 3; j++)
859 sprintf(n4[j], FLTFMT, w[j]);
860 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
861 return(rv);
862 for (i = 1; i <= 4*mg_nqcdivs; i++) {
863 theta = sgn*i*(PI/2)/mg_nqcdivs;
864 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
865 return(rv);
866 for (j = 0; j < 3; j++) {
867 d = u[j]*cos(theta) + v[j]*sin(theta);
868 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
869 if (n2off > -FHUGE)
870 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
871 }
872 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
873 return(rv);
874 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
875 return(rv);
876 if (n2off > -FHUGE &&
877 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
878 return(rv);
879 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
880 return(rv);
881 }
882 } else { /* quads */
883 v1ent[3] = "_cv4";
884 if (warpconends) { /* hack for e_sph and e_torus */
885 d = atan(n1off) + (PI/4)/mg_nqcdivs;
886 if (d >= PI/2-FTINY)
887 n1off = FHUGE;
888 else
889 n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
890 }
891 for (j = 0; j < 3; j++) {
892 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
893 if (n1off >= FHUGE)
894 sprintf(n4[j], FLTFMT, w[j]);
895 else
896 sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
897 }
898 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
899 return(rv);
900 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
901 return(rv);
902 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
903 return(rv);
904 for (i = 1; i <= 4*mg_nqcdivs; i++) {
905 theta = sgn*i*(PI/2)/mg_nqcdivs;
906 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
907 return(rv);
908 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
909 return(rv);
910 for (j = 0; j < 3; j++) {
911 d = u[j]*cos(theta) + v[j]*sin(theta);
912 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
913 if (n2off > -FHUGE)
914 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
915 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
916 if (n1off < FHUGE)
917 sprintf(n4[j], FLTFMT, d + w[j]*n1off);
918 }
919 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
920 return(rv);
921 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
922 return(rv);
923 if (n2off > -FHUGE &&
924 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
925 return(rv);
926 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
927 return(rv);
928 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
929 return(rv);
930 if (n1off < FHUGE &&
931 (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
932 return(rv);
933 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
934 return(rv);
935 }
936 }
937 return(MG_OK);
938 }
939
940
941 int
942 e_prism(ac, av) /* turn a prism into polygons */
943 int ac;
944 char **av;
945 {
946 static char p[3][24];
947 static char *vent[5] = {mg_ename[MG_E_VERTEX],NULL,"="};
948 static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
949 static char *znorm[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
950 char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
951 double length;
952 int hasnorm;
953 FVECT v1, v2, v3, norm;
954 register C_VERTEX *cv;
955 C_VERTEX *cv0;
956 int rv;
957 register int i, j;
958 /* check arguments */
959 if (ac < 5)
960 return(MG_EARGC);
961 if (!isflt(av[ac-1]))
962 return(MG_ETYPE);
963 length = atof(av[ac-1]);
964 if (length <= FTINY && length >= -FTINY)
965 return(MG_EILL);
966 /* compute face normal */
967 if ((cv0 = c_getvert(av[1])) == NULL)
968 return(MG_EUNDEF);
969 hasnorm = 0;
970 norm[0] = norm[1] = norm[2] = 0.;
971 v1[0] = v1[1] = v1[2] = 0.;
972 for (i = 2; i < ac-1; i++) {
973 if ((cv = c_getvert(av[i])) == NULL)
974 return(MG_EUNDEF);
975 hasnorm += !is0vect(cv->n);
976 v2[0] = cv->p[0] - cv0->p[0];
977 v2[1] = cv->p[1] - cv0->p[1];
978 v2[2] = cv->p[2] - cv0->p[2];
979 fcross(v3, v1, v2);
980 norm[0] += v3[0];
981 norm[1] += v3[1];
982 norm[2] += v3[2];
983 VCOPY(v1, v2);
984 }
985 if (normalize(norm) == 0.)
986 return(MG_EILL);
987 /* create moved vertices */
988 for (i = 1; i < ac-1; i++) {
989 sprintf(nvn[i-1], "_pv%d", i);
990 vent[1] = nvn[i-1];
991 vent[3] = av[i];
992 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
993 return(rv);
994 cv = c_getvert(av[i]); /* checked above */
995 for (j = 0; j < 3; j++)
996 sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
997 if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
998 return(rv);
999 }
1000 /* make faces */
1001 newav[0] = mg_ename[MG_E_FACE];
1002 /* do the side faces */
1003 newav[5] = NULL;
1004 newav[3] = av[ac-2];
1005 newav[4] = nvn[ac-3];
1006 for (i = 1; i < ac-1; i++) {
1007 newav[1] = nvn[i-1];
1008 newav[2] = av[i];
1009 if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
1010 return(rv);
1011 newav[3] = newav[2];
1012 newav[4] = newav[1];
1013 }
1014 /* do top face */
1015 for (i = 1; i < ac-1; i++) {
1016 if (hasnorm) { /* zero normals */
1017 vent[1] = nvn[i-1];
1018 if ((rv = mg_handle(MG_E_VERTEX, 2, vent)) != MG_OK)
1019 return(rv);
1020 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1021 return(rv);
1022 }
1023 newav[ac-1-i] = nvn[i-1]; /* reverse */
1024 }
1025 if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
1026 return(rv);
1027 /* do bottom face */
1028 if (hasnorm)
1029 for (i = 1; i < ac-1; i++) {
1030 vent[1] = nvn[i-1];
1031 vent[3] = av[i];
1032 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
1033 return(rv);
1034 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1035 return(rv);
1036 newav[i] = nvn[i-1];
1037 }
1038 else
1039 for (i = 1; i < ac-1; i++)
1040 newav[i] = av[i];
1041 newav[i] = NULL;
1042 if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
1043 return(rv);
1044 return(MG_OK);
1045 }
1046
1047
1048 static int
1049 put_cxy() /* put out current xy chromaticities */
1050 {
1051 static char xbuf[24], ybuf[24];
1052 static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};
1053
1054 sprintf(xbuf, "%.4f", c_ccolor->cx);
1055 sprintf(ybuf, "%.4f", c_ccolor->cy);
1056 return(mg_handle(MG_E_CXY, 3, ccom));
1057 }
1058
1059
1060 static int
1061 put_cspec() /* put out current color spectrum */
1062 {
1063 char wl[2][6], vbuf[C_CNSS][24];
1064 char *newav[C_CNSS+4];
1065 double sf;
1066 register int i;
1067
1068 if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
1069 sprintf(wl[0], "%d", C_CMINWL);
1070 sprintf(wl[1], "%d", C_CMAXWL);
1071 newav[0] = mg_ename[MG_E_CSPEC];
1072 newav[1] = wl[0];
1073 newav[2] = wl[1];
1074 sf = (double)C_CNSS / c_ccolor->ssum;
1075 for (i = 0; i < C_CNSS; i++) {
1076 sprintf(vbuf[i], "%.4f", sf*c_ccolor->ssamp[i]);
1077 newav[i+3] = vbuf[i];
1078 }
1079 newav[C_CNSS+3] = NULL;
1080 if ((i = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
1081 return(i);
1082 }
1083 return(MG_OK);
1084 }
1085
1086
1087 static int
1088 e_cspec(ac, av) /* handle spectral color */
1089 int ac;
1090 char **av;
1091 {
1092 /* convert to xy chromaticity */
1093 c_ccvt(c_ccolor, C_CSXY);
1094 /* if it's really their handler, use it */
1095 if (mg_ehand[MG_E_CXY] != c_hcolor)
1096 return(put_cxy());
1097 return(MG_OK);
1098 }
1099
1100
1101 static int
1102 e_cmix(ac, av) /* handle mixing of colors */
1103 int ac;
1104 char **av;
1105 {
1106 /*
1107 * Contorted logic works as follows:
1108 * 1. the colors are already mixed in c_hcolor() support function
1109 * 2. if we would handle a spectral result, make sure it's not
1110 * 3. if c_hcolor() would handle a spectral result, don't bother
1111 * 4. otherwise, make cspec entity and pass it to their handler
1112 * 5. if we have only xy results, handle it as c_spec() would
1113 */
1114 if (mg_ehand[MG_E_CSPEC] == e_cspec)
1115 c_ccvt(c_ccolor, C_CSXY);
1116 else if (c_ccolor->flags & C_CDSPEC)
1117 return(put_cspec());
1118 if (mg_ehand[MG_E_CXY] != c_hcolor)
1119 return(put_cxy());
1120 return(MG_OK);
1121 }
1122
1123
1124 static int
1125 e_cct(ac, av) /* handle color temperature */
1126 int ac;
1127 char **av;
1128 {
1129 /*
1130 * Logic is similar to e_cmix here. Support handler has already
1131 * converted temperature to spectral color. Put it out as such
1132 * if they support it, otherwise convert to xy chromaticity and
1133 * put it out if they handle it.
1134 */
1135 if (mg_ehand[MG_E_CSPEC] != e_cspec)
1136 return(put_cspec());
1137 c_ccvt(c_ccolor, C_CSXY);
1138 if (mg_ehand[MG_E_CXY] != c_hcolor)
1139 return(put_cxy());
1140 return(MG_OK);
1141 }