ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.20
Committed: Wed Nov 8 09:40:22 1995 UTC (28 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.19: +17 -4 lines
Log Message:
added check for input line exceeding MG_MAXLINE

File Contents

# Content
1 /* Copyright (c) 1995 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Parse an MGF file, converting or discarding unsupported entities
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <ctype.h>
14 #include <string.h>
15 #include "parser.h"
16 #include "lookup.h"
17 #include "messages.h"
18
19 /*
20 * Global definitions of variables declared in parser.h
21 */
22 /* entity names */
23
24 char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25
26 /* Handler routines for each entity */
27
28 int (*mg_ehand[MG_NENTITIES])();
29
30 /* Handler routine for unknown entities */
31
32 int (*mg_uhand)() = mg_defuhand;
33
34 unsigned mg_nunknown; /* count of unknown entities */
35
36 /* error messages */
37
38 char *mg_err[MG_NERRS] = MG_ERRLIST;
39
40 MG_FCTXT *mg_file; /* current file context pointer */
41
42 int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
43
44 /*
45 * The idea with this parser is to compensate for any missing entries in
46 * mg_ehand with alternate handlers that express these entities in terms
47 * of others that the calling program can handle.
48 *
49 * In some cases, no alternate handler is possible because the entity
50 * has no approximate equivalent. These entities are simply discarded.
51 *
52 * Certain entities are dependent on others, and mg_init() will fail
53 * if the supported entities are not consistent.
54 *
55 * Some alternate entity handlers require that earlier entities be
56 * noted in some fashion, and we therefore keep another array of
57 * parallel support handlers to assist in this effort.
58 */
59
60 /* temporary settings for testing */
61 #define e_ies e_any_toss
62 /* alternate handler routines */
63
64 static int e_any_toss(), /* discard unneeded entity */
65 e_ies(), /* IES luminaire file */
66 e_include(), /* include file */
67 e_sph(), /* sphere */
68 e_cct(), /* color temperature */
69 e_cmix(), /* color mixtures */
70 e_cspec(), /* color spectra */
71 e_cyl(), /* cylinder */
72 e_cone(), /* cone */
73 e_prism(), /* prism */
74 e_ring(), /* ring */
75 e_torus(); /* torus */
76
77 /* alternate handler support functions */
78
79 static int (*e_supp[MG_NENTITIES])();
80
81 static char FLTFMT[] = "%.12g";
82
83 static int warpconends; /* hack for generating good normals */
84
85
86 void
87 mg_init() /* initialize alternate entity handlers */
88 {
89 unsigned long ineed = 0, uneed = 0;
90 register int i;
91 /* pick up slack */
92 if (mg_ehand[MG_E_IES] == NULL)
93 mg_ehand[MG_E_IES] = e_ies;
94 if (mg_ehand[MG_E_INCLUDE] == NULL)
95 mg_ehand[MG_E_INCLUDE] = e_include;
96 if (mg_ehand[MG_E_SPH] == NULL) {
97 mg_ehand[MG_E_SPH] = e_sph;
98 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
99 } else
100 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
101 if (mg_ehand[MG_E_CYL] == NULL) {
102 mg_ehand[MG_E_CYL] = e_cyl;
103 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
104 } else
105 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
106 if (mg_ehand[MG_E_CONE] == NULL) {
107 mg_ehand[MG_E_CONE] = e_cone;
108 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
109 } else
110 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
111 if (mg_ehand[MG_E_RING] == NULL) {
112 mg_ehand[MG_E_RING] = e_ring;
113 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
114 } else
115 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
116 if (mg_ehand[MG_E_PRISM] == NULL) {
117 mg_ehand[MG_E_PRISM] = e_prism;
118 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
119 } else
120 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
121 if (mg_ehand[MG_E_TORUS] == NULL) {
122 mg_ehand[MG_E_TORUS] = e_torus;
123 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
124 } else
125 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
126 if (mg_ehand[MG_E_COLOR] != NULL) {
127 if (mg_ehand[MG_E_CMIX] == NULL) {
128 mg_ehand[MG_E_CMIX] = e_cmix;
129 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
130 }
131 if (mg_ehand[MG_E_CSPEC] == NULL) {
132 mg_ehand[MG_E_CSPEC] = e_cspec;
133 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
134 }
135 if (mg_ehand[MG_E_CCT] == NULL) {
136 mg_ehand[MG_E_CCT] = e_cct;
137 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
138 }
139 }
140 /* check for consistency */
141 if (mg_ehand[MG_E_FACE] != NULL)
142 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
143 if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
144 mg_ehand[MG_E_CMIX] != NULL)
145 uneed |= 1L<<MG_E_COLOR;
146 if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
147 mg_ehand[MG_E_IR] != NULL ||
148 mg_ehand[MG_E_ED] != NULL ||
149 mg_ehand[MG_E_RS] != NULL ||
150 mg_ehand[MG_E_TS] != NULL ||
151 mg_ehand[MG_E_SIDES] != NULL)
152 uneed |= 1L<<MG_E_MATERIAL;
153 for (i = 0; i < MG_NENTITIES; i++)
154 if (uneed & 1L<<i && mg_ehand[i] == NULL) {
155 fprintf(stderr, "Missing support for \"%s\" entity\n",
156 mg_ename[i]);
157 exit(1);
158 }
159 /* add support as needed */
160 if (ineed & 1L<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
161 e_supp[MG_E_VERTEX] = c_hvertex;
162 if (ineed & 1L<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
163 e_supp[MG_E_POINT] = c_hvertex;
164 if (ineed & 1L<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
165 e_supp[MG_E_NORMAL] = c_hvertex;
166 if (ineed & 1L<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
167 e_supp[MG_E_COLOR] = c_hcolor;
168 if (ineed & 1L<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
169 e_supp[MG_E_CXY] = c_hcolor;
170 if (ineed & 1L<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
171 e_supp[MG_E_CSPEC] = c_hcolor;
172 if (ineed & 1L<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
173 e_supp[MG_E_CMIX] = c_hcolor;
174 if (ineed & 1L<<MG_E_CCT && mg_ehand[MG_E_CCT] != c_hcolor)
175 e_supp[MG_E_CCT] = c_hcolor;
176 /* discard remaining entities */
177 for (i = 0; i < MG_NENTITIES; i++)
178 if (mg_ehand[i] == NULL)
179 mg_ehand[i] = e_any_toss;
180 }
181
182
183 int
184 mg_entity(name) /* get entity number from its name */
185 char *name;
186 {
187 static LUTAB ent_tab = LU_SINIT(NULL,NULL); /* lookup table */
188 register char *cp;
189
190 if (!ent_tab.tsiz) { /* initialize hash table */
191 if (!lu_init(&ent_tab, MG_NENTITIES))
192 return(-1); /* what to do? */
193 for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
194 cp -= sizeof(mg_ename[0]))
195 lu_find(&ent_tab, cp)->key = cp;
196 }
197 cp = lu_find(&ent_tab, name)->key;
198 if (cp == NULL)
199 return(-1);
200 return((cp - mg_ename[0])/sizeof(mg_ename[0]));
201 }
202
203
204 int
205 mg_handle(en, ac, av) /* pass entity to appropriate handler */
206 register int en;
207 int ac;
208 char **av;
209 {
210 int rv;
211
212 if (en < 0 && (en = mg_entity(av[0])) < 0) { /* unknown entity */
213 if (mg_uhand != NULL)
214 return((*mg_uhand)(ac, av));
215 return(MG_EUNK);
216 }
217 if (e_supp[en] != NULL) { /* support handler */
218 if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
219 return(rv);
220 }
221 return((*mg_ehand[en])(ac, av)); /* assigned handler */
222 }
223
224
225 int
226 mg_open(ctx, fn) /* open new input file */
227 register MG_FCTXT *ctx;
228 char *fn;
229 {
230 static int nfids;
231 register char *cp;
232
233 ctx->fid = ++nfids;
234 ctx->lineno = 0;
235 if (fn == NULL) {
236 strcpy(ctx->fname, "<stdin>");
237 ctx->fp = stdin;
238 ctx->prev = mg_file;
239 mg_file = ctx;
240 return(MG_OK);
241 }
242 /* get name relative to this context */
243 if (mg_file != NULL && (cp = strrchr(mg_file->fname, '/')) != NULL) {
244 strcpy(ctx->fname, mg_file->fname);
245 strcpy(ctx->fname+(cp-mg_file->fname+1), fn);
246 } else
247 strcpy(ctx->fname, fn);
248 ctx->fp = fopen(ctx->fname, "r");
249 if (ctx->fp == NULL)
250 return(MG_ENOFILE);
251 ctx->prev = mg_file; /* establish new context */
252 mg_file = ctx;
253 return(MG_OK);
254 }
255
256
257 void
258 mg_close() /* close input file */
259 {
260 register MG_FCTXT *ctx = mg_file;
261
262 mg_file = ctx->prev; /* restore enclosing context */
263 if (ctx->fp == stdin)
264 return; /* don't close standard input */
265 fclose(ctx->fp);
266 }
267
268
269 void
270 mg_fgetpos(pos) /* get current position in input file */
271 register MG_FPOS *pos;
272 {
273 extern long ftell();
274
275 pos->fid = mg_file->fid;
276 pos->lineno = mg_file->lineno;
277 pos->offset = ftell(mg_file->fp);
278 }
279
280
281 int
282 mg_fgoto(pos) /* reposition input file pointer */
283 register MG_FPOS *pos;
284 {
285 if (pos->fid != mg_file->fid)
286 return(MG_ESEEK);
287 if (pos->lineno == mg_file->lineno)
288 return(MG_OK);
289 if (mg_file->fp == stdin)
290 return(MG_ESEEK); /* cannot seek on standard input */
291 if (fseek(mg_file->fp, pos->offset, 0) == EOF)
292 return(MG_ESEEK);
293 mg_file->lineno = pos->lineno;
294 return(MG_OK);
295 }
296
297
298 int
299 mg_read() /* read next line from file */
300 {
301 register int len = 0;
302
303 do {
304 if (fgets(mg_file->inpline+len,
305 MG_MAXLINE-len, mg_file->fp) == NULL)
306 return(len);
307 mg_file->lineno++;
308 len += strlen(mg_file->inpline+len);
309 if (len > 1 && mg_file->inpline[len-2] == '\\')
310 mg_file->inpline[--len-1] = ' ';
311 } while (mg_file->inpline[len]);
312
313 return(len);
314 }
315
316
317 int
318 mg_parse() /* parse current input line */
319 {
320 char abuf[MG_MAXLINE];
321 char *argv[MG_MAXARGC];
322 int en;
323 register char *cp, **ap;
324
325 strcpy(cp=abuf, mg_file->inpline);
326 ap = argv; /* break into words */
327 for ( ; ; ) {
328 while (isspace(*cp))
329 *cp++ = '\0';
330 if (!*cp)
331 break;
332 if (ap - argv >= MG_MAXARGC-1)
333 return(MG_EARGC);
334 *ap++ = cp;
335 while (*++cp && !isspace(*cp))
336 ;
337 }
338 if (ap == argv)
339 return(MG_OK); /* no words in line */
340 *ap = NULL;
341 /* else handle it */
342 return(mg_handle(-1, ap-argv, argv));
343 }
344
345
346 int
347 mg_load(fn) /* load an MGF file */
348 char *fn;
349 {
350 MG_FCTXT cntxt;
351 register int rval;
352
353 if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
354 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
355 return(rval);
356 }
357 while ((rval = mg_read()) > 0) { /* parse each line */
358 if (rval >= MG_MAXLINE-1 && cntxt.inpline[rval-1] != '\n') {
359 fprintf(stderr, "%s: %d: %s\n", cntxt.fname,
360 cntxt.lineno, mg_err[rval=MG_ELINE]);
361 break;
362 }
363 if ((rval = mg_parse()) != MG_OK) {
364 fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
365 cntxt.lineno, mg_err[rval],
366 cntxt.inpline);
367 break;
368 }
369 }
370 mg_close();
371 return(rval);
372 }
373
374
375 int
376 mg_defuhand(ac, av) /* default handler for unknown entities */
377 int ac;
378 char **av;
379 {
380 if (mg_nunknown++ == 0) /* report first incident */
381 fprintf(stderr, "%s: %d: %s: %s\n", mg_file->fname,
382 mg_file->lineno, mg_err[MG_EUNK], av[0]);
383 return(MG_OK);
384 }
385
386
387 void
388 mg_clear() /* clear parser history */
389 {
390 c_clearall(); /* clear context tables */
391 mg_file = NULL; /* reset our context */
392 }
393
394
395 /****************************************************************************
396 * The following routines handle unsupported entities
397 */
398
399
400 static int
401 e_any_toss(ac, av) /* discard an unwanted entity */
402 int ac;
403 char **av;
404 {
405 return(MG_OK);
406 }
407
408
409 static int
410 e_include(ac, av) /* include file */
411 int ac;
412 char **av;
413 {
414 char *xfarg[MG_MAXARGC];
415 MG_FCTXT ictx;
416 XF_SPEC *xf_orig = xf_context;
417 register int rv;
418
419 if (ac < 2)
420 return(MG_EARGC);
421 if ((rv = mg_open(&ictx, av[1])) != MG_OK)
422 return(rv);
423 if (ac > 2) {
424 register int i;
425
426 xfarg[0] = mg_ename[MG_E_XF];
427 for (i = 1; i < ac-1; i++)
428 xfarg[i] = av[i+1];
429 xfarg[ac-1] = NULL;
430 if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK)
431 return(rv);
432 }
433 do {
434 while ((rv = mg_read()) > 0) {
435 if (rv >= MG_MAXLINE-1 && ictx.inpline[rv-1] != '\n') {
436 fprintf(stderr, "%s: %d: %s\n", ictx.fname,
437 ictx.lineno, mg_err[MG_ELINE]);
438 mg_close();
439 return(MG_EINCL);
440 }
441 if ((rv = mg_parse()) != MG_OK) {
442 fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
443 ictx.lineno, mg_err[rv],
444 ictx.inpline);
445 mg_close();
446 return(MG_EINCL);
447 }
448 }
449 if (ac > 2)
450 if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK)
451 return(rv);
452 } while (xf_context != xf_orig);
453 mg_close();
454 return(MG_OK);
455 }
456
457
458 static void
459 make_axes(u, v, w) /* compute u and v given w (normalized) */
460 FVECT u, v, w;
461 {
462 register int i;
463
464 v[0] = v[1] = v[2] = 0.;
465 for (i = 0; i < 3; i++)
466 if (w[i] < .6 && w[i] > -.6)
467 break;
468 v[i] = 1.;
469 fcross(u, v, w);
470 normalize(u);
471 fcross(v, w, u);
472 }
473
474
475 static int
476 e_sph(ac, av) /* expand a sphere into cones */
477 int ac;
478 char **av;
479 {
480 static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
481 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
482 static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
483 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
484 static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
485 register C_VERTEX *cv;
486 register int i;
487 int rval;
488 double rad;
489 double theta;
490
491 if (ac != 3)
492 return(MG_EARGC);
493 if ((cv = c_getvert(av[1])) == NULL)
494 return(MG_EUNDEF);
495 if (!isflt(av[2]))
496 return(MG_ETYPE);
497 rad = atof(av[2]);
498 /* initialize */
499 warpconends = 1;
500 if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
501 return(rval);
502 sprintf(p2x, FLTFMT, cv->p[0]);
503 sprintf(p2y, FLTFMT, cv->p[1]);
504 sprintf(p2z, FLTFMT, cv->p[2]+rad);
505 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
506 return(rval);
507 r2[0] = '0'; r2[1] = '\0';
508 for (i = 1; i <= 2*mg_nqcdivs; i++) {
509 theta = i*(PI/2)/mg_nqcdivs;
510 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
511 return(rval);
512 sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
513 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
514 return(rval);
515 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
516 return(rval);
517 strcpy(r1, r2);
518 sprintf(r2, FLTFMT, rad*sin(theta));
519 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
520 return(rval);
521 }
522 warpconends = 0;
523 return(MG_OK);
524 }
525
526
527 static int
528 e_torus(ac, av) /* expand a torus into cones */
529 int ac;
530 char **av;
531 {
532 static char p2[3][24], r1[24], r2[24];
533 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
534 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
535 static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
536 static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
537 register C_VERTEX *cv;
538 register int i, j;
539 int rval;
540 int sgn;
541 double minrad, maxrad, avgrad;
542 double theta;
543
544 if (ac != 4)
545 return(MG_EARGC);
546 if ((cv = c_getvert(av[1])) == NULL)
547 return(MG_EUNDEF);
548 if (is0vect(cv->n))
549 return(MG_EILL);
550 if (!isflt(av[2]) || !isflt(av[3]))
551 return(MG_ETYPE);
552 minrad = atof(av[2]);
553 round0(minrad);
554 maxrad = atof(av[3]);
555 /* check orientation */
556 if (minrad > 0.)
557 sgn = 1;
558 else if (minrad < 0.)
559 sgn = -1;
560 else if (maxrad > 0.)
561 sgn = 1;
562 else if (maxrad < 0.)
563 sgn = -1;
564 else
565 return(MG_EILL);
566 if (sgn*(maxrad-minrad) <= 0.)
567 return(MG_EILL);
568 /* initialize */
569 warpconends = 1;
570 v2ent[3] = av[1];
571 for (j = 0; j < 3; j++)
572 sprintf(p2[j], FLTFMT, cv->p[j] +
573 .5*sgn*(maxrad-minrad)*cv->n[j]);
574 if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
575 return(rval);
576 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
577 return(rval);
578 sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
579 /* run outer section */
580 for (i = 1; i <= 2*mg_nqcdivs; i++) {
581 theta = i*(PI/2)/mg_nqcdivs;
582 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
583 return(rval);
584 for (j = 0; j < 3; j++)
585 sprintf(p2[j], FLTFMT, cv->p[j] +
586 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
587 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
588 return(rval);
589 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
590 return(rval);
591 strcpy(r1, r2);
592 sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
593 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
594 return(rval);
595 }
596 /* run inner section */
597 sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
598 for ( ; i <= 4*mg_nqcdivs; i++) {
599 theta = i*(PI/2)/mg_nqcdivs;
600 for (j = 0; j < 3; j++)
601 sprintf(p2[j], FLTFMT, cv->p[j] +
602 .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
603 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
604 return(rval);
605 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
606 return(rval);
607 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
608 return(rval);
609 strcpy(r1, r2);
610 sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
611 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
612 return(rval);
613 }
614 warpconends = 0;
615 return(MG_OK);
616 }
617
618
619 static int
620 e_cyl(ac, av) /* replace a cylinder with equivalent cone */
621 int ac;
622 char **av;
623 {
624 static char *avnew[6] = {mg_ename[MG_E_CONE]};
625
626 if (ac != 4)
627 return(MG_EARGC);
628 avnew[1] = av[1];
629 avnew[2] = av[2];
630 avnew[3] = av[3];
631 avnew[4] = av[2];
632 return(mg_handle(MG_E_CONE, 5, avnew));
633 }
634
635
636 static int
637 e_ring(ac, av) /* turn a ring into polygons */
638 int ac;
639 char **av;
640 {
641 static char p3[3][24], p4[3][24];
642 static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
643 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
644 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
645 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
646 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
647 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
648 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
649 static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
650 register C_VERTEX *cv;
651 register int i, j;
652 FVECT u, v;
653 double minrad, maxrad;
654 int rv;
655 double theta, d;
656
657 if (ac != 4)
658 return(MG_EARGC);
659 if ((cv = c_getvert(av[1])) == NULL)
660 return(MG_EUNDEF);
661 if (is0vect(cv->n))
662 return(MG_EILL);
663 if (!isflt(av[2]) || !isflt(av[3]))
664 return(MG_ETYPE);
665 minrad = atof(av[2]);
666 round0(minrad);
667 maxrad = atof(av[3]);
668 if (minrad < 0. || maxrad <= minrad)
669 return(MG_EILL);
670 /* initialize */
671 make_axes(u, v, cv->n);
672 for (j = 0; j < 3; j++)
673 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
674 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
675 return(rv);
676 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
677 return(rv);
678 if (minrad == 0.) { /* closed */
679 v1ent[3] = av[1];
680 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
681 return(rv);
682 if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
683 return(rv);
684 for (i = 1; i <= 4*mg_nqcdivs; i++) {
685 theta = i*(PI/2)/mg_nqcdivs;
686 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
687 return(rv);
688 for (j = 0; j < 3; j++)
689 sprintf(p3[j], FLTFMT, cv->p[j] +
690 maxrad*u[j]*cos(theta) +
691 maxrad*v[j]*sin(theta));
692 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
693 return(rv);
694 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
695 return(rv);
696 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
697 return(rv);
698 }
699 } else { /* open */
700 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
701 return(rv);
702 for (j = 0; j < 3; j++)
703 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
704 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
705 return(rv);
706 v1ent[3] = "_rv4";
707 for (i = 1; i <= 4*mg_nqcdivs; i++) {
708 theta = i*(PI/2)/mg_nqcdivs;
709 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
710 return(rv);
711 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
712 return(rv);
713 for (j = 0; j < 3; j++) {
714 d = u[j]*cos(theta) + v[j]*sin(theta);
715 sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
716 sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
717 }
718 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
719 return(rv);
720 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
721 return(rv);
722 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
723 return(rv);
724 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
725 return(rv);
726 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
727 return(rv);
728 }
729 }
730 return(MG_OK);
731 }
732
733
734 static int
735 e_cone(ac, av) /* turn a cone into polygons */
736 int ac;
737 char **av;
738 {
739 static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
740 static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
741 static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
742 static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
743 static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
744 static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
745 static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
746 static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
747 static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
748 static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
749 char *v1n;
750 register C_VERTEX *cv1, *cv2;
751 register int i, j;
752 FVECT u, v, w;
753 double rad1, rad2;
754 int sgn;
755 double n1off, n2off;
756 double d;
757 int rv;
758 double theta;
759
760 if (ac != 5)
761 return(MG_EARGC);
762 if ((cv1 = c_getvert(av[1])) == NULL ||
763 (cv2 = c_getvert(av[3])) == NULL)
764 return(MG_EUNDEF);
765 v1n = av[1];
766 if (!isflt(av[2]) || !isflt(av[4]))
767 return(MG_ETYPE);
768 rad1 = atof(av[2]);
769 round0(rad1);
770 rad2 = atof(av[4]);
771 round0(rad2);
772 if (rad1 == 0.) {
773 if (rad2 == 0.)
774 return(MG_EILL);
775 } else if (rad2 != 0.) {
776 if (rad1 < 0. ^ rad2 < 0.)
777 return(MG_EILL);
778 } else { /* swap */
779 C_VERTEX *cv;
780
781 cv = cv1;
782 cv1 = cv2;
783 cv2 = cv;
784 v1n = av[3];
785 d = rad1;
786 rad1 = rad2;
787 rad2 = d;
788 }
789 sgn = rad2 < 0. ? -1 : 1;
790 /* initialize */
791 for (j = 0; j < 3; j++)
792 w[j] = cv1->p[j] - cv2->p[j];
793 if ((d = normalize(w)) == 0.)
794 return(MG_EILL);
795 n1off = n2off = (rad2 - rad1)/d;
796 if (warpconends) { /* hack for e_sph and e_torus */
797 d = atan(n2off) - (PI/4)/mg_nqcdivs;
798 if (d <= -PI/2+FTINY)
799 n2off = -FHUGE;
800 else
801 n2off = tan(d);
802 }
803 make_axes(u, v, w);
804 for (j = 0; j < 3; j++) {
805 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
806 if (n2off <= -FHUGE)
807 sprintf(n3[j], FLTFMT, -w[j]);
808 else
809 sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
810 }
811 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
812 return(rv);
813 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
814 return(rv);
815 if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
816 return(rv);
817 if (rad1 == 0.) { /* triangles */
818 v1ent[3] = v1n;
819 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
820 return(rv);
821 for (j = 0; j < 3; j++)
822 sprintf(n4[j], FLTFMT, w[j]);
823 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
824 return(rv);
825 for (i = 1; i <= 4*mg_nqcdivs; i++) {
826 theta = sgn*i*(PI/2)/mg_nqcdivs;
827 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
828 return(rv);
829 for (j = 0; j < 3; j++) {
830 d = u[j]*cos(theta) + v[j]*sin(theta);
831 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
832 if (n2off > -FHUGE)
833 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
834 }
835 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
836 return(rv);
837 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
838 return(rv);
839 if (n2off > -FHUGE &&
840 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
841 return(rv);
842 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
843 return(rv);
844 }
845 } else { /* quads */
846 v1ent[3] = "_cv4";
847 if (warpconends) { /* hack for e_sph and e_torus */
848 d = atan(n1off) + (PI/4)/mg_nqcdivs;
849 if (d >= PI/2-FTINY)
850 n1off = FHUGE;
851 else
852 n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
853 }
854 for (j = 0; j < 3; j++) {
855 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
856 if (n1off >= FHUGE)
857 sprintf(n4[j], FLTFMT, w[j]);
858 else
859 sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
860 }
861 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
862 return(rv);
863 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
864 return(rv);
865 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
866 return(rv);
867 for (i = 1; i <= 4*mg_nqcdivs; i++) {
868 theta = sgn*i*(PI/2)/mg_nqcdivs;
869 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
870 return(rv);
871 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
872 return(rv);
873 for (j = 0; j < 3; j++) {
874 d = u[j]*cos(theta) + v[j]*sin(theta);
875 sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
876 if (n2off > -FHUGE)
877 sprintf(n3[j], FLTFMT, d + w[j]*n2off);
878 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
879 if (n1off < FHUGE)
880 sprintf(n4[j], FLTFMT, d + w[j]*n1off);
881 }
882 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
883 return(rv);
884 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
885 return(rv);
886 if (n2off > -FHUGE &&
887 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
888 return(rv);
889 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
890 return(rv);
891 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
892 return(rv);
893 if (n1off < FHUGE &&
894 (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
895 return(rv);
896 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
897 return(rv);
898 }
899 }
900 return(MG_OK);
901 }
902
903
904 static int
905 e_prism(ac, av) /* turn a prism into polygons */
906 int ac;
907 char **av;
908 {
909 static char p[3][24];
910 static char *vent[5] = {mg_ename[MG_E_VERTEX],NULL,"="};
911 static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
912 static char *znorm[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
913 char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
914 double length;
915 int hasnorm;
916 FVECT v1, v2, v3, norm;
917 register C_VERTEX *cv;
918 C_VERTEX *cv0;
919 int rv;
920 register int i, j;
921 /* check arguments */
922 if (ac < 5)
923 return(MG_EARGC);
924 if (!isflt(av[ac-1]))
925 return(MG_ETYPE);
926 length = atof(av[ac-1]);
927 if (length <= FTINY && length >= -FTINY)
928 return(MG_EILL);
929 /* compute face normal */
930 if ((cv0 = c_getvert(av[1])) == NULL)
931 return(MG_EUNDEF);
932 hasnorm = 0;
933 norm[0] = norm[1] = norm[2] = 0.;
934 v1[0] = v1[1] = v1[2] = 0.;
935 for (i = 2; i < ac-1; i++) {
936 if ((cv = c_getvert(av[i])) == NULL)
937 return(MG_EUNDEF);
938 hasnorm += !is0vect(cv->n);
939 v2[0] = cv->p[0] - cv0->p[0];
940 v2[1] = cv->p[1] - cv0->p[1];
941 v2[2] = cv->p[2] - cv0->p[2];
942 fcross(v3, v1, v2);
943 norm[0] += v3[0];
944 norm[1] += v3[1];
945 norm[2] += v3[2];
946 VCOPY(v1, v2);
947 }
948 if (normalize(norm) == 0.)
949 return(MG_EILL);
950 /* create moved vertices */
951 for (i = 1; i < ac-1; i++) {
952 sprintf(nvn[i-1], "_pv%d", i);
953 vent[1] = nvn[i-1];
954 vent[3] = av[i];
955 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
956 return(rv);
957 cv = c_getvert(av[i]); /* checked above */
958 for (j = 0; j < 3; j++)
959 sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
960 if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
961 return(rv);
962 }
963 /* make faces */
964 newav[0] = mg_ename[MG_E_FACE];
965 /* do the side faces */
966 newav[5] = NULL;
967 newav[3] = av[ac-2];
968 newav[4] = nvn[ac-3];
969 for (i = 1; i < ac-1; i++) {
970 newav[1] = nvn[i-1];
971 newav[2] = av[i];
972 if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
973 return(rv);
974 newav[3] = newav[2];
975 newav[4] = newav[1];
976 }
977 /* do top face */
978 for (i = 1; i < ac-1; i++) {
979 if (hasnorm) { /* zero normals */
980 vent[1] = nvn[i-1];
981 if ((rv = mg_handle(MG_E_VERTEX, 2, vent)) != MG_OK)
982 return(rv);
983 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
984 return(rv);
985 }
986 newav[ac-1-i] = nvn[i-1]; /* reverse */
987 }
988 if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
989 return(rv);
990 /* do bottom face */
991 if (hasnorm)
992 for (i = 1; i < ac-1; i++) {
993 vent[1] = nvn[i-1];
994 vent[3] = av[i];
995 if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
996 return(rv);
997 if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
998 return(rv);
999 newav[i] = nvn[i-1];
1000 }
1001 else
1002 for (i = 1; i < ac-1; i++)
1003 newav[i] = av[i];
1004 newav[i] = NULL;
1005 if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
1006 return(rv);
1007 return(MG_OK);
1008 }
1009
1010
1011 static int
1012 put_cxy() /* put out current xy chromaticities */
1013 {
1014 static char xbuf[24], ybuf[24];
1015 static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};
1016 int rv;
1017
1018 sprintf(xbuf, "%.4f", c_ccolor->cx);
1019 sprintf(ybuf, "%.4f", c_ccolor->cy);
1020 if ((rv = mg_handle(MG_E_CXY, 3, ccom)) != MG_OK)
1021 return(rv);
1022 return(MG_OK);
1023 }
1024
1025
1026 static int
1027 put_cspec() /* put out current color spectrum */
1028 {
1029 char wl[2][6], vbuf[C_CNSS][24];
1030 char *newav[C_CNSS+4];
1031 double sf;
1032 register int i;
1033
1034 if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
1035 sprintf(wl[0], "%d", C_CMINWL);
1036 sprintf(wl[1], "%d", C_CMAXWL);
1037 newav[0] = mg_ename[MG_E_CSPEC];
1038 newav[1] = wl[0];
1039 newav[2] = wl[1];
1040 sf = (double)C_CNSS / c_ccolor->ssum;
1041 for (i = 0; i < C_CNSS; i++) {
1042 sprintf(vbuf[i], "%.4f", sf*c_ccolor->ssamp[i]);
1043 newav[i+3] = vbuf[i];
1044 }
1045 newav[C_CNSS+3] = NULL;
1046 if ((i = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
1047 return(i);
1048 }
1049 return(MG_OK);
1050 }
1051
1052
1053 static int
1054 e_cspec(ac, av) /* handle spectral color */
1055 int ac;
1056 char **av;
1057 {
1058 /* convert to xy chromaticity */
1059 c_ccvt(c_ccolor, C_CSXY);
1060 /* if it's really their handler, use it */
1061 if (mg_ehand[MG_E_CXY] != c_hcolor)
1062 return(put_cxy());
1063 return(MG_OK);
1064 }
1065
1066
1067 static int
1068 e_cmix(ac, av) /* handle mixing of colors */
1069 int ac;
1070 char **av;
1071 {
1072 /*
1073 * Contorted logic works as follows:
1074 * 1. the colors are already mixed in c_hcolor() support function
1075 * 2. if we would handle a spectral result, make sure it's not
1076 * 3. if c_hcolor() would handle a spectral result, don't bother
1077 * 4. otherwise, make cspec entity and pass it to their handler
1078 * 5. if we have only xy results, handle it as c_spec() would
1079 */
1080 if (mg_ehand[MG_E_CSPEC] == e_cspec)
1081 c_ccvt(c_ccolor, C_CSXY);
1082 else if (c_ccolor->flags & C_CDSPEC)
1083 return(put_cspec());
1084 if (mg_ehand[MG_E_CXY] != c_hcolor)
1085 return(put_cxy());
1086 return(MG_OK);
1087 }
1088
1089
1090 static int
1091 e_cct(ac, av) /* handle color temperature */
1092 int ac;
1093 char **av;
1094 {
1095 /*
1096 * Logic is similar to e_cmix here. Support handler has already
1097 * converted temperature to spectral color. Put it out as such
1098 * if they support it, otherwise convert to xy chromaticity and
1099 * put it out if they handle it.
1100 */
1101 if (mg_ehand[MG_E_CSPEC] != e_cspec)
1102 return(put_cspec());
1103 c_ccvt(c_ccolor, C_CSXY);
1104 if (mg_ehand[MG_E_CXY] != c_hcolor)
1105 return(put_cxy());
1106 return(MG_OK);
1107 }