ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.5
Committed: Fri Jun 24 09:40:29 1994 UTC (29 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.4: +7 -7 lines
Log Message:
changed prism length from first argument to last

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1994 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Parse an MGF file, converting or discarding unsupported entities
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <ctype.h>
14     #include <string.h>
15     #include "parser.h"
16     #include "lookup.h"
17     #include "messages.h"
18    
19     /*
20     * Global definitions of variables declared in parser.h
21     */
22     /* entity names */
23    
24     char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25    
26     /* Handler routines for each entity */
27    
28     int (*mg_ehand[MG_NENTITIES])();
29    
30     /* error messages */
31    
32     char *mg_err[MG_NERRS] = MG_ERRLIST;
33    
34     MG_FCTXT *mg_file; /* current file context pointer */
35    
36     int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
37    
38     /*
39     * The idea with this parser is to compensate for any missing entries in
40     * mg_ehand with alternate handlers that express these entities in terms
41     * of others that the calling program can handle.
42     *
43     * In some cases, no alternate handler is possible because the entity
44     * has no approximate equivalent. These entities are simply discarded.
45     *
46     * Certain entities are dependent on others, and mg_init() will fail
47     * if the supported entities are not consistent.
48     *
49     * Some alternate entity handlers require that earlier entities be
50     * noted in some fashion, and we therefore keep another array of
51     * parallel support handlers to assist in this effort.
52     */
53    
54     /* temporary settings for testing */
55     #define e_ies e_any_toss
56 greg 1.4 #define e_cmix e_any_toss
57     #define e_cspec e_any_toss
58 greg 1.1 /* alternate handler routines */
59    
60     static int e_any_toss(), /* discard unneeded entity */
61 greg 1.2 e_ies(), /* IES luminaire file */
62 greg 1.1 e_include(), /* include file */
63     e_sph(), /* sphere */
64 greg 1.4 e_cmix(), /* color mixtures */
65     e_cspec(); /* color spectra */
66 greg 1.1 e_cyl(), /* cylinder */
67     e_cone(), /* cone */
68 greg 1.4 e_prism(), /* prism */
69 greg 1.1 e_ring(), /* ring */
70     e_torus(); /* torus */
71    
72     /* alternate handler support functions */
73    
74     static int (*e_supp[MG_NENTITIES])();
75    
76     static char FLTFMT[] = "%.12g";
77    
78     static int warpconends; /* hack for generating good normals */
79    
80    
81     void
82     mg_init() /* initialize alternate entity handlers */
83     {
84     unsigned long ineed = 0, uneed = 0;
85     register int i;
86     /* pick up slack */
87     if (mg_ehand[MG_E_IES] == NULL)
88     mg_ehand[MG_E_IES] = e_ies;
89     if (mg_ehand[MG_E_INCLUDE] == NULL)
90     mg_ehand[MG_E_INCLUDE] = e_include;
91     if (mg_ehand[MG_E_SPH] == NULL) {
92     mg_ehand[MG_E_SPH] = e_sph;
93     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
94     } else
95     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
96     if (mg_ehand[MG_E_CYL] == NULL) {
97     mg_ehand[MG_E_CYL] = e_cyl;
98     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
99     } else
100     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
101     if (mg_ehand[MG_E_CONE] == NULL) {
102     mg_ehand[MG_E_CONE] = e_cone;
103     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
104     } else
105     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
106     if (mg_ehand[MG_E_RING] == NULL) {
107     mg_ehand[MG_E_RING] = e_ring;
108     ineed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX;
109     } else
110     uneed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX|1<<MG_E_XF;
111 greg 1.4 if (mg_ehand[MG_E_PRISM] == NULL) {
112     mg_ehand[MG_E_PRISM] = e_prism;
113     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
114     } else
115     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
116 greg 1.1 if (mg_ehand[MG_E_TORUS] == NULL) {
117     mg_ehand[MG_E_TORUS] = e_torus;
118     ineed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX;
119     } else
120     uneed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX|1<<MG_E_XF;
121 greg 1.4 if (mg_ehand[MG_E_COLOR] != NULL) {
122     if (mg_ehand[MG_E_CMIX] == NULL)
123     mg_ehand[MG_E_CMIX] = e_cmix;
124     if (mg_ehand[MG_E_CSPEC] == NULL)
125     mg_ehand[MG_E_CSPEC] = e_cspec;
126     }
127 greg 1.1 /* check for consistency */
128     if (mg_ehand[MG_E_FACE] != NULL)
129     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
130     if (mg_ehand[MG_E_CXY] != NULL)
131     uneed |= 1<<MG_E_COLOR;
132     if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
133     mg_ehand[MG_E_ED] != NULL ||
134     mg_ehand[MG_E_RS] != NULL ||
135     mg_ehand[MG_E_TS] != NULL)
136     uneed |= 1<<MG_E_MATERIAL;
137     for (i = 0; i < MG_NENTITIES; i++)
138     if (uneed & 1<<i && mg_ehand[i] == NULL) {
139     fprintf(stderr, "Missing support for \"%s\" entity\n",
140     mg_ename[i]);
141     exit(1);
142     }
143     /* add support as needed */
144     if (ineed & 1<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
145     e_supp[MG_E_VERTEX] = c_hvertex;
146     if (ineed & 1<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
147     e_supp[MG_E_POINT] = c_hvertex;
148     if (ineed & 1<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
149     e_supp[MG_E_NORMAL] = c_hvertex;
150     /* discard remaining entities */
151     for (i = 0; i < MG_NENTITIES; i++)
152     if (mg_ehand[i] == NULL)
153     mg_ehand[i] = e_any_toss;
154     }
155    
156    
157    
158     int
159     mg_entity(name) /* get entity number from its name */
160     char *name;
161     {
162     static LUTAB ent_tab; /* entity lookup table */
163     register char *cp;
164    
165     if (!ent_tab.tsiz) { /* initialize hash table */
166     if (!lu_init(&ent_tab, MG_NENTITIES))
167     return(-1); /* what to do? */
168     for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
169     cp -= sizeof(mg_ename[0]))
170     lu_find(&ent_tab, cp)->key = cp;
171     }
172     cp = lu_find(&ent_tab, name)->key;
173     if (cp == NULL)
174     return(-1);
175     return((cp - mg_ename[0])/sizeof(mg_ename[0]));
176     }
177    
178    
179     static int
180     handle_it(en, ac, av) /* pass entity to appropriate handler */
181     register int en;
182     int ac;
183     char **av;
184     {
185     int rv;
186    
187     if (en < 0 && (en = mg_entity(av[0])) < 0)
188     return(MG_EUNK);
189     if (e_supp[en] != NULL) {
190     if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
191     return(rv);
192     }
193     return((*mg_ehand[en])(ac, av));
194     }
195    
196    
197     int
198     mg_open(ctx, fn) /* open new input file */
199     register MG_FCTXT *ctx;
200     char *fn;
201     {
202     int olen;
203     register char *cp;
204    
205     ctx->lineno = 0;
206     if (fn == NULL) {
207     ctx->fname = "<stdin>";
208     ctx->fp = stdin;
209     ctx->prev = mg_file;
210     mg_file = ctx;
211     return(MG_OK);
212     }
213     /* get name relative to this context */
214     if (mg_file != NULL &&
215     (cp = strrchr(mg_file->fname, '/')) != NULL)
216     olen = cp - mg_file->fname + 1;
217     else
218     olen = 0;
219     ctx->fname = (char *)malloc(olen+strlen(fn)+1);
220     if (ctx->fname == NULL)
221     return(MG_EMEM);
222     if (olen)
223     strcpy(ctx->fname, mg_file->fname);
224     strcpy(ctx->fname+olen, fn);
225     ctx->fp = fopen(ctx->fname, "r");
226     if (ctx->fp == NULL) {
227     free((MEM_PTR)ctx->fname);
228     return(MG_ENOFILE);
229     }
230     ctx->prev = mg_file; /* establish new context */
231     mg_file = ctx;
232     return(MG_OK);
233     }
234    
235    
236     void
237     mg_close() /* close input file */
238     {
239     register MG_FCTXT *ctx = mg_file;
240    
241     mg_file = ctx->prev; /* restore enclosing context */
242     if (ctx->fp == stdin)
243     return; /* don't close standard input */
244     fclose(ctx->fp);
245     free((MEM_PTR)ctx->fname);
246     }
247    
248    
249     int
250     mg_rewind() /* rewind input file */
251     {
252     if (mg_file->lineno == 0)
253     return(MG_OK);
254     if (mg_file->fp == stdin)
255     return(MG_ESEEK); /* cannot seek on standard input */
256     if (fseek(mg_file->fp, 0L, 0) == EOF)
257     return(MG_ESEEK);
258     mg_file->lineno = 0;
259     return(MG_OK);
260     }
261    
262    
263     int
264     mg_read() /* read next line from file */
265     {
266     register int len = 0;
267    
268     do {
269     if (fgets(mg_file->inpline+len,
270     MG_MAXLINE-len, mg_file->fp) == NULL)
271     return(len);
272     mg_file->lineno++;
273     len += strlen(mg_file->inpline+len);
274     if (len > 1 && mg_file->inpline[len-2] == '\\')
275     mg_file->inpline[--len-1] = ' ';
276     } while (mg_file->inpline[len]);
277    
278     return(len);
279     }
280    
281    
282     int
283     mg_parse() /* parse current input line */
284     {
285     char abuf[MG_MAXLINE];
286     char *argv[MG_MAXARGC];
287     int en;
288     register char *cp, **ap;
289    
290     strcpy(cp=abuf, mg_file->inpline);
291     ap = argv; /* break into words */
292     for ( ; ; ) {
293     while (isspace(*cp))
294     *cp++ = '\0';
295     if (!*cp)
296     break;
297     if (ap - argv >= MG_MAXARGC-1)
298     return(MG_EARGC);
299     *ap++ = cp;
300     while (*++cp && !isspace(*cp))
301     ;
302     }
303     if (ap == argv)
304     return(MG_OK); /* no words in line */
305     *ap = NULL;
306     /* else handle it */
307     return(handle_it(-1, ap-argv, argv));
308     }
309    
310    
311     int
312     mg_load(fn) /* load an MGF file */
313     char *fn;
314     {
315     MG_FCTXT cntxt;
316     int rval;
317    
318     if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
319 greg 1.2 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
320 greg 1.1 return(rval);
321     }
322     while (mg_read()) /* parse each line */
323     if ((rval = mg_parse()) != MG_OK) {
324     fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
325     cntxt.lineno, mg_err[rval],
326     cntxt.inpline);
327     break;
328     }
329     mg_close();
330     return(rval);
331     }
332    
333    
334     void
335     mg_clear() /* clear parser history */
336     {
337     c_clearall(); /* clear context tables */
338     mg_file = NULL; /* reset our context */
339     }
340    
341    
342     int
343     mg_iterate(ac, av, f) /* iterate on statement */
344     int ac;
345     register char **av;
346     int (*f)();
347     {
348     int niter, rval;
349     register int i, j;
350     char *argv[MG_MAXARGC];
351     char cntbuf[10];
352     /* build partial transformation */
353     for (i = 0; i < ac; i++) {
354     if (av[i][0] == '-' && av[i][1] == 'a' && av[i][2] == '\0')
355     break;
356     argv[i+1] = av[i];
357     }
358     argv[i+1] = NULL;
359     if (i) { /* handle transformation */
360     argv[0] = mg_ename[MG_E_XF];
361     if ((rval = handle_it(MG_E_XF, i+1, argv)) != MG_OK)
362     return(rval);
363     }
364     if (i < ac) { /* run array */
365     if (i+1 >= ac || !isint(av[i+1]))
366     return(MG_ETYPE);
367     niter = atoi(av[i+1]);
368 greg 1.2 argv[0] = mg_ename[MG_E_OBJECT];
369 greg 1.1 argv[1] = cntbuf;
370     for (j = 2; j+i < ac; j++)
371     argv[j] = av[j+i];
372     argv[j] = NULL;
373     for (j = 0; j < niter; j++) {
374     sprintf(cntbuf, "%d", j);
375 greg 1.2 if ((rval = handle_it(MG_E_OBJECT, 2, argv)) != MG_OK)
376     return(rval);
377     argv[0] = "-i";
378 greg 1.1 if ((rval = mg_iterate(ac-i, argv, f)) != MG_OK)
379 greg 1.2 return(rval);
380     argv[0] = mg_ename[MG_E_OBJECT];
381     if ((rval = handle_it(MG_E_OBJECT, 1, argv)) != MG_OK)
382 greg 1.1 return(rval);
383     }
384     } else if ((rval = (*f)()) != MG_OK) /* else do this instance */
385     return(rval);
386     if (i) { /* reset the transform */
387     argv[0] = mg_ename[MG_E_XF];
388     argv[1] = NULL;
389     (void)handle_it(MG_E_XF, 1, argv);
390     }
391     return(MG_OK);
392     }
393    
394    
395     /****************************************************************************
396     * The following routines handle unsupported entities
397     */
398    
399    
400     static int
401     e_any_toss(ac, av) /* discard an unwanted entity */
402     int ac;
403     char **av;
404     {
405     return(MG_OK);
406     }
407    
408    
409     static int
410     reload_file() /* reload current MGF file */
411     {
412     register int rval;
413    
414     if ((rval = mg_rewind()) != MG_OK)
415     return(rval);
416     while (mg_read())
417     if ((rval = mg_parse()) != MG_OK)
418     return(rval);
419     return(MG_OK);
420     }
421    
422    
423     static int
424     e_include(ac, av) /* include file */
425     int ac;
426     char **av;
427     {
428     MG_FCTXT ictx;
429     int rv;
430    
431     if (ac < 2)
432     return(MG_EARGC);
433     if ((rv = mg_open(&ictx, av[1])) != MG_OK)
434     return(rv);
435     if ((rv = mg_iterate(ac-2, av+2, reload_file)) != MG_OK) {
436     fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
437     ictx.lineno, mg_err[rv], ictx.inpline);
438     mg_close();
439     return(MG_EINCL);
440     }
441     mg_close();
442     return(MG_OK);
443     }
444    
445    
446     static void
447     make_axes(u, v, w) /* compute u and v given w (normalized) */
448     FVECT u, v, w;
449     {
450     register int i;
451    
452     v[0] = v[1] = v[2] = 0.;
453     for (i = 0; i < 3; i++)
454     if (w[i] < .6 && w[i] > -.6)
455     break;
456     v[i] = 1.;
457     fcross(u, v, w);
458     normalize(u);
459     fcross(v, w, u);
460     }
461    
462    
463     static int
464     e_sph(ac, av) /* expand a sphere into cones */
465     int ac;
466     char **av;
467     {
468     static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
469     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
470     static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
471     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
472     static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
473     register C_VERTEX *cv;
474     register int i;
475     int rval;
476     double rad;
477     double theta;
478    
479     if (ac != 3)
480     return(MG_EARGC);
481     if ((cv = c_getvert(av[1])) == NULL)
482     return(MG_EUNDEF);
483     if (!isflt(av[2]))
484     return(MG_ETYPE);
485     rad = atof(av[2]);
486     /* initialize */
487     warpconends = 1;
488     if ((rval = handle_it(MG_E_VERTEX, 3, v2ent)) != MG_OK)
489     return(rval);
490     sprintf(p2x, FLTFMT, cv->p[0]);
491     sprintf(p2y, FLTFMT, cv->p[1]);
492     sprintf(p2z, FLTFMT, cv->p[2]+rad);
493     if ((rval = handle_it(MG_E_POINT, 4, p2ent)) != MG_OK)
494     return(rval);
495     r2[0] = '0'; r2[1] = '\0';
496     for (i = 1; i <= 2*mg_nqcdivs; i++) {
497     theta = i*(PI/2)/mg_nqcdivs;
498     if ((rval = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
499     return(rval);
500     sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
501     if ((rval = handle_it(MG_E_VERTEX, 2, v2ent)) != MG_OK)
502     return(rval);
503     if ((rval = handle_it(MG_E_POINT, 4, p2ent)) != MG_OK)
504     return(rval);
505     strcpy(r1, r2);
506     sprintf(r2, FLTFMT, rad*sin(theta));
507     if ((rval = handle_it(MG_E_CONE, 5, conent)) != MG_OK)
508     return(rval);
509     }
510     warpconends = 0;
511     return(MG_OK);
512     }
513    
514    
515     static int
516     e_torus(ac, av) /* expand a torus into cones */
517     int ac;
518     char **av;
519     {
520     static char p2[3][24], r1[24], r2[24];
521     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
522     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
523     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
524     static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
525     register C_VERTEX *cv;
526     register int i, j;
527     int rval;
528     int sgn;
529     double minrad, maxrad, avgrad;
530     double theta;
531    
532     if (ac != 4)
533     return(MG_EARGC);
534     if ((cv = c_getvert(av[1])) == NULL)
535     return(MG_EUNDEF);
536 greg 1.3 if (is0vect(cv->n))
537 greg 1.1 return(MG_EILL);
538     if (!isflt(av[2]) || !isflt(av[3]))
539     return(MG_ETYPE);
540     minrad = atof(av[2]);
541 greg 1.3 round0(minrad);
542 greg 1.1 maxrad = atof(av[3]);
543     /* check orientation */
544     if (minrad > 0.)
545     sgn = 1;
546     else if (minrad < 0.)
547     sgn = -1;
548     else if (maxrad > 0.)
549     sgn = 1;
550     else if (maxrad < 0.)
551     sgn = -1;
552     else
553     return(MG_EILL);
554     if (sgn*(maxrad-minrad) <= 0.)
555     return(MG_EILL);
556     /* initialize */
557     warpconends = 1;
558     v2ent[3] = av[1];
559     for (j = 0; j < 3; j++)
560     sprintf(p2[j], FLTFMT, cv->p[j] +
561     .5*sgn*(maxrad-minrad)*cv->n[j]);
562     if ((rval = handle_it(MG_E_VERTEX, 4, v2ent)) != MG_OK)
563     return(rval);
564     if ((rval = handle_it(MG_E_POINT, 4, p2ent)) != MG_OK)
565     return(rval);
566     sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
567     /* run outer section */
568     for (i = 1; i <= 2*mg_nqcdivs; i++) {
569     theta = i*(PI/2)/mg_nqcdivs;
570     if ((rval = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
571     return(rval);
572     for (j = 0; j < 3; j++)
573     sprintf(p2[j], FLTFMT, cv->p[j] +
574     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
575     if ((rval = handle_it(MG_E_VERTEX, 2, v2ent)) != MG_OK)
576     return(rval);
577     if ((rval = handle_it(MG_E_POINT, 4, p2ent)) != MG_OK)
578     return(rval);
579     strcpy(r1, r2);
580     sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
581     if ((rval = handle_it(MG_E_CONE, 5, conent)) != MG_OK)
582     return(rval);
583     }
584     /* run inner section */
585     sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
586     for ( ; i <= 4*mg_nqcdivs; i++) {
587     theta = i*(PI/2)/mg_nqcdivs;
588     for (j = 0; j < 3; j++)
589     sprintf(p2[j], FLTFMT, cv->p[j] +
590     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
591     if ((rval = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
592     return(rval);
593     if ((rval = handle_it(MG_E_VERTEX, 2, v2ent)) != MG_OK)
594     return(rval);
595     if ((rval = handle_it(MG_E_POINT, 4, p2ent)) != MG_OK)
596     return(rval);
597     strcpy(r1, r2);
598     sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
599     if ((rval = handle_it(MG_E_CONE, 5, conent)) != MG_OK)
600     return(rval);
601     }
602     warpconends = 0;
603     return(MG_OK);
604     }
605    
606    
607     static int
608     e_cyl(ac, av) /* replace a cylinder with equivalent cone */
609     int ac;
610     char **av;
611     {
612     static char *avnew[6] = {mg_ename[MG_E_CONE]};
613    
614     if (ac != 4)
615     return(MG_EARGC);
616     avnew[1] = av[1];
617     avnew[2] = av[2];
618     avnew[3] = av[3];
619     avnew[4] = av[2];
620     return(handle_it(MG_E_CONE, 5, avnew));
621     }
622    
623    
624     static int
625     e_ring(ac, av) /* turn a ring into polygons */
626     int ac;
627     char **av;
628     {
629     static char p3[3][24], p4[3][24];
630     static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
631     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
632     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
633     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
634     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
635     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
636     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
637     static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
638     register C_VERTEX *cv;
639     register int i, j;
640     FVECT u, v;
641     double minrad, maxrad;
642     int rv;
643     double theta, d;
644    
645     if (ac != 4)
646     return(MG_EARGC);
647     if ((cv = c_getvert(av[1])) == NULL)
648     return(MG_EUNDEF);
649 greg 1.3 if (is0vect(cv->n))
650 greg 1.1 return(MG_EILL);
651     if (!isflt(av[2]) || !isflt(av[3]))
652     return(MG_ETYPE);
653     minrad = atof(av[2]);
654 greg 1.3 round0(minrad);
655 greg 1.1 maxrad = atof(av[3]);
656     if (minrad < 0. || maxrad <= minrad)
657     return(MG_EILL);
658     /* initialize */
659     make_axes(u, v, cv->n);
660     for (j = 0; j < 3; j++)
661     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
662     if ((rv = handle_it(MG_E_VERTEX, 3, v3ent)) != MG_OK)
663     return(rv);
664     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
665     return(rv);
666     if (minrad == 0.) { /* closed */
667     v1ent[3] = av[1];
668     if ((rv = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
669     return(rv);
670     if ((rv = handle_it(MG_E_NORMAL, 4, nzent)) != MG_OK)
671     return(rv);
672     for (i = 1; i <= 4*mg_nqcdivs; i++) {
673     theta = i*(PI/2)/mg_nqcdivs;
674     if ((rv = handle_it(MG_E_VERTEX, 4, v2ent)) != MG_OK)
675     return(rv);
676     for (j = 0; j < 3; j++)
677     sprintf(p3[j], FLTFMT, cv->p[j] +
678     maxrad*u[j]*cos(theta) +
679     maxrad*v[j]*sin(theta));
680 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v3ent)) != MG_OK)
681 greg 1.1 return(rv);
682     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
683     return(rv);
684     if ((rv = handle_it(MG_E_FACE, 4, fent)) != MG_OK)
685     return(rv);
686     }
687     } else { /* open */
688     if ((rv = handle_it(MG_E_VERTEX, 3, v4ent)) != MG_OK)
689     return(rv);
690     for (j = 0; j < 3; j++)
691     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
692     if ((rv = handle_it(MG_E_POINT, 4, p4ent)) != MG_OK)
693     return(rv);
694     v1ent[3] = "_rv4";
695     for (i = 1; i <= 4*mg_nqcdivs; i++) {
696     theta = i*(PI/2)/mg_nqcdivs;
697     if ((rv = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
698     return(rv);
699     if ((rv = handle_it(MG_E_VERTEX, 4, v2ent)) != MG_OK)
700     return(rv);
701     for (j = 0; j < 3; j++) {
702     d = u[j]*cos(theta) + v[j]*sin(theta);
703     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
704     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
705     }
706 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v3ent)) != MG_OK)
707 greg 1.1 return(rv);
708     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
709     return(rv);
710 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v4ent)) != MG_OK)
711 greg 1.1 return(rv);
712     if ((rv = handle_it(MG_E_POINT, 4, p4ent)) != MG_OK)
713     return(rv);
714     if ((rv = handle_it(MG_E_FACE, 5, fent)) != MG_OK)
715     return(rv);
716     }
717     }
718     return(MG_OK);
719     }
720    
721    
722     static int
723     e_cone(ac, av) /* turn a cone into polygons */
724     int ac;
725     char **av;
726     {
727     static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
728     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
729     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
730     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
731     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
732     static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
733     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
734     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
735     static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
736     static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
737     register C_VERTEX *cv1, *cv2;
738     register int i, j;
739     FVECT u, v, w;
740     double rad1, rad2;
741     int sgn;
742     double n1off, n2off;
743     double d;
744     int rv;
745     double theta;
746    
747     if (ac != 5)
748     return(MG_EARGC);
749     if ((cv1 = c_getvert(av[1])) == NULL ||
750     (cv2 = c_getvert(av[3])) == NULL)
751     return(MG_EUNDEF);
752     if (!isflt(av[2]) || !isflt(av[4]))
753     return(MG_ETYPE);
754     rad1 = atof(av[2]);
755 greg 1.3 round0(rad1);
756 greg 1.1 rad2 = atof(av[4]);
757 greg 1.3 round0(rad2);
758 greg 1.1 if (rad1 == 0.) {
759     if (rad2 == 0.)
760     return(MG_EILL);
761     } else if (rad2 != 0.) {
762     if (rad1 < 0. ^ rad2 < 0.)
763     return(MG_EILL);
764     } else { /* swap */
765     C_VERTEX *cv;
766    
767     cv = cv1;
768     cv1 = cv2;
769     cv2 = cv;
770     d = rad1;
771     rad1 = rad2;
772     rad2 = d;
773     }
774     sgn = rad2 < 0. ? -1 : 1;
775     /* initialize */
776     for (j = 0; j < 3; j++)
777     w[j] = cv1->p[j] - cv2->p[j];
778     if ((d = normalize(w)) == 0.)
779     return(MG_EILL);
780     n1off = n2off = (rad2 - rad1)/d;
781 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
782     d = atan(n2off) - (PI/4)/mg_nqcdivs;
783     if (d <= -PI/2+FTINY)
784     n2off = -FHUGE;
785     else
786     n2off = tan(d);
787     }
788 greg 1.1 make_axes(u, v, w);
789     for (j = 0; j < 3; j++) {
790     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
791 greg 1.3 if (n2off <= -FHUGE)
792     sprintf(n3[j], FLTFMT, -w[j]);
793     else
794     sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
795 greg 1.1 }
796     if ((rv = handle_it(MG_E_VERTEX, 3, v3ent)) != MG_OK)
797     return(rv);
798     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
799     return(rv);
800     if ((rv = handle_it(MG_E_NORMAL, 4, n3ent)) != MG_OK)
801     return(rv);
802     if (rad1 == 0.) { /* triangles */
803     v1ent[3] = av[1];
804     if ((rv = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
805     return(rv);
806     for (j = 0; j < 3; j++)
807     sprintf(n4[j], FLTFMT, w[j]);
808     if ((rv = handle_it(MG_E_NORMAL, 4, n4ent)) != MG_OK)
809     return(rv);
810     for (i = 1; i <= 4*mg_nqcdivs; i++) {
811     theta = sgn*i*(PI/2)/mg_nqcdivs;
812     if ((rv = handle_it(MG_E_VERTEX, 4, v2ent)) != MG_OK)
813     return(rv);
814     for (j = 0; j < 3; j++) {
815     d = u[j]*cos(theta) + v[j]*sin(theta);
816     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
817 greg 1.3 if (n2off > -FHUGE)
818     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
819 greg 1.1 }
820 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v3ent)) != MG_OK)
821 greg 1.1 return(rv);
822     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
823     return(rv);
824 greg 1.3 if (n2off > -FHUGE &&
825     (rv = handle_it(MG_E_NORMAL, 4, n3ent)) != MG_OK)
826 greg 1.1 return(rv);
827     if ((rv = handle_it(MG_E_FACE, 4, fent)) != MG_OK)
828     return(rv);
829     }
830     } else { /* quads */
831     v1ent[3] = "_cv4";
832 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
833     d = atan(n1off) + (PI/4)/mg_nqcdivs;
834     if (d >= PI/2-FTINY)
835     n1off = FHUGE;
836     else
837     n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
838     }
839 greg 1.1 for (j = 0; j < 3; j++) {
840     sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
841 greg 1.3 if (n1off >= FHUGE)
842     sprintf(n4[j], FLTFMT, w[j]);
843     else
844     sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
845 greg 1.1 }
846     if ((rv = handle_it(MG_E_VERTEX, 3, v4ent)) != MG_OK)
847     return(rv);
848     if ((rv = handle_it(MG_E_POINT, 4, p4ent)) != MG_OK)
849     return(rv);
850     if ((rv = handle_it(MG_E_NORMAL, 4, n4ent)) != MG_OK)
851     return(rv);
852     for (i = 1; i <= 4*mg_nqcdivs; i++) {
853     theta = sgn*i*(PI/2)/mg_nqcdivs;
854     if ((rv = handle_it(MG_E_VERTEX, 4, v1ent)) != MG_OK)
855     return(rv);
856     if ((rv = handle_it(MG_E_VERTEX, 4, v2ent)) != MG_OK)
857     return(rv);
858     for (j = 0; j < 3; j++) {
859     d = u[j]*cos(theta) + v[j]*sin(theta);
860     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
861 greg 1.3 if (n2off > -FHUGE)
862     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
863 greg 1.1 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
864 greg 1.3 if (n1off < FHUGE)
865     sprintf(n4[j], FLTFMT, d + w[j]*n1off);
866 greg 1.1 }
867 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v3ent)) != MG_OK)
868 greg 1.1 return(rv);
869     if ((rv = handle_it(MG_E_POINT, 4, p3ent)) != MG_OK)
870     return(rv);
871 greg 1.3 if (n2off > -FHUGE &&
872     (rv = handle_it(MG_E_NORMAL, 4, n3ent)) != MG_OK)
873 greg 1.1 return(rv);
874 greg 1.3 if ((rv = handle_it(MG_E_VERTEX, 2, v4ent)) != MG_OK)
875 greg 1.1 return(rv);
876     if ((rv = handle_it(MG_E_POINT, 4, p4ent)) != MG_OK)
877     return(rv);
878 greg 1.3 if (n1off < FHUGE &&
879     (rv = handle_it(MG_E_NORMAL, 4, n4ent)) != MG_OK)
880 greg 1.1 return(rv);
881     if ((rv = handle_it(MG_E_FACE, 5, fent)) != MG_OK)
882     return(rv);
883     }
884 greg 1.4 }
885     return(MG_OK);
886     }
887    
888    
889     static int
890     e_prism(ac, av) /* turn a prism into polygons */
891     int ac;
892     char **av;
893     {
894     static char p[3][24];
895     static char *vent[4] = {mg_ename[MG_E_VERTEX],NULL,"="};
896     static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
897     char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
898     double length;
899     FVECT v1, v2, v3, norm;
900     register C_VERTEX *cv;
901     C_VERTEX *cv0;
902     int rv;
903     register int i, j;
904    
905     if (ac < 5)
906     return(MG_EARGC);
907 greg 1.5 if (!isflt(av[ac-1]))
908 greg 1.4 return(MG_ETYPE);
909 greg 1.5 length = atof(av[ac-1]);
910 greg 1.4 if (length <= FTINY && length >= -FTINY)
911     return(MG_EILL);
912     /* do bottom face */
913     newav[0] = mg_ename[MG_E_FACE];
914     for (i = 1; i < ac-1; i++)
915 greg 1.5 newav[i] = av[i];
916 greg 1.4 newav[i] = NULL;
917     if ((rv = handle_it(MG_E_FACE, i, newav)) != MG_OK)
918     return(rv);
919     /* compute face normal */
920     if ((cv0 = c_getvert(av[2])) == NULL)
921     return(MG_EUNDEF);
922     norm[0] = norm[1] = norm[2] = 0.;
923     v1[0] = v1[1] = v1[2] = 0.;
924     for (i = 2; i < ac-1; i++) {
925 greg 1.5 if ((cv = c_getvert(av[i])) == NULL)
926 greg 1.4 return(MG_EUNDEF);
927     v2[0] = cv->p[0] - cv0->p[0];
928     v2[1] = cv->p[1] - cv0->p[1];
929     v2[2] = cv->p[2] - cv0->p[2];
930     fcross(v3, v1, v2);
931     norm[0] += v3[0];
932     norm[1] += v3[1];
933     norm[2] += v3[2];
934     VCOPY(v1, v2);
935     }
936     if (normalize(norm) == 0.)
937     return(MG_EILL);
938     /* create moved vertices */
939     for (i = 1; i < ac-1; i++) {
940     sprintf(nvn[i-1], "_pv%d", i);
941     vent[1] = nvn[i-1];
942     if ((rv = handle_it(MG_E_VERTEX, 3, vent)) != MG_OK)
943     return(rv);
944 greg 1.5 cv = c_getvert(av[i]); /* checked above */
945 greg 1.4 for (j = 0; j < 3; j++)
946     sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
947     if ((rv = handle_it(MG_E_POINT, 4, pent)) != MG_OK)
948     return(rv);
949     newav[ac-1-i] = nvn[i-1]; /* reverse */
950     }
951     /* do top face */
952     if ((rv = handle_it(MG_E_FACE, ac-1, newav)) != MG_OK)
953     return(rv);
954     /* do the side faces */
955     newav[5] = NULL;
956 greg 1.5 newav[3] = av[ac-2];
957 greg 1.4 newav[4] = nvn[ac-3];
958     for (i = 1; i < ac-1; i++) {
959     newav[1] = nvn[i-1];
960 greg 1.5 newav[2] = av[i];
961 greg 1.4 if ((rv = handle_it(MG_E_FACE, 5, newav)) != MG_OK)
962     return(rv);
963     newav[3] = newav[2];
964     newav[4] = newav[1];
965 greg 1.1 }
966     return(MG_OK);
967     }