ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.25
Committed: Fri Mar 21 12:32:41 1997 UTC (27 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.24: +1 -2 lines
Log Message:
small cleanup suggested by Philippe B.

File Contents

# User Rev Content
1 greg 1.23 /* Copyright (c) 1996 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Parse an MGF file, converting or discarding unsupported entities
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <ctype.h>
14     #include <string.h>
15     #include "parser.h"
16     #include "lookup.h"
17     #include "messages.h"
18    
19     /*
20     * Global definitions of variables declared in parser.h
21     */
22     /* entity names */
23    
24     char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25    
26     /* Handler routines for each entity */
27    
28     int (*mg_ehand[MG_NENTITIES])();
29    
30 greg 1.18 /* Handler routine for unknown entities */
31    
32     int (*mg_uhand)() = mg_defuhand;
33    
34     unsigned mg_nunknown; /* count of unknown entities */
35    
36 greg 1.1 /* error messages */
37    
38     char *mg_err[MG_NERRS] = MG_ERRLIST;
39    
40     MG_FCTXT *mg_file; /* current file context pointer */
41    
42     int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
43    
44     /*
45     * The idea with this parser is to compensate for any missing entries in
46     * mg_ehand with alternate handlers that express these entities in terms
47     * of others that the calling program can handle.
48     *
49     * In some cases, no alternate handler is possible because the entity
50     * has no approximate equivalent. These entities are simply discarded.
51     *
52     * Certain entities are dependent on others, and mg_init() will fail
53     * if the supported entities are not consistent.
54     *
55     * Some alternate entity handlers require that earlier entities be
56     * noted in some fashion, and we therefore keep another array of
57     * parallel support handlers to assist in this effort.
58     */
59    
60     /* temporary settings for testing */
61     #define e_ies e_any_toss
62     /* alternate handler routines */
63    
64     static int e_any_toss(), /* discard unneeded entity */
65 greg 1.2 e_ies(), /* IES luminaire file */
66 greg 1.13 e_cct(), /* color temperature */
67 greg 1.4 e_cmix(), /* color mixtures */
68 greg 1.23 e_cspec(); /* color spectra */
69    
70 greg 1.1 /* alternate handler support functions */
71    
72     static int (*e_supp[MG_NENTITIES])();
73    
74     static char FLTFMT[] = "%.12g";
75    
76     static int warpconends; /* hack for generating good normals */
77    
78    
79     void
80     mg_init() /* initialize alternate entity handlers */
81     {
82     unsigned long ineed = 0, uneed = 0;
83     register int i;
84     /* pick up slack */
85     if (mg_ehand[MG_E_IES] == NULL)
86     mg_ehand[MG_E_IES] = e_ies;
87     if (mg_ehand[MG_E_INCLUDE] == NULL)
88     mg_ehand[MG_E_INCLUDE] = e_include;
89     if (mg_ehand[MG_E_SPH] == NULL) {
90     mg_ehand[MG_E_SPH] = e_sph;
91 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
92 greg 1.1 } else
93 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
94 greg 1.1 if (mg_ehand[MG_E_CYL] == NULL) {
95     mg_ehand[MG_E_CYL] = e_cyl;
96 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
97 greg 1.1 } else
98 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
99 greg 1.1 if (mg_ehand[MG_E_CONE] == NULL) {
100     mg_ehand[MG_E_CONE] = e_cone;
101 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
102 greg 1.1 } else
103 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
104 greg 1.1 if (mg_ehand[MG_E_RING] == NULL) {
105     mg_ehand[MG_E_RING] = e_ring;
106 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
107 greg 1.1 } else
108 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
109 greg 1.4 if (mg_ehand[MG_E_PRISM] == NULL) {
110     mg_ehand[MG_E_PRISM] = e_prism;
111 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
112 greg 1.4 } else
113 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
114 greg 1.1 if (mg_ehand[MG_E_TORUS] == NULL) {
115     mg_ehand[MG_E_TORUS] = e_torus;
116 greg 1.17 ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
117 greg 1.1 } else
118 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
119 greg 1.24 if (mg_ehand[MG_E_FACE] == NULL)
120     mg_ehand[MG_E_FACE] = mg_ehand[MG_E_FACEH];
121     else if (mg_ehand[MG_E_FACEH] == NULL)
122     mg_ehand[MG_E_FACEH] = e_faceh;
123 greg 1.4 if (mg_ehand[MG_E_COLOR] != NULL) {
124 greg 1.6 if (mg_ehand[MG_E_CMIX] == NULL) {
125 greg 1.4 mg_ehand[MG_E_CMIX] = e_cmix;
126 greg 1.17 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
127 greg 1.6 }
128     if (mg_ehand[MG_E_CSPEC] == NULL) {
129 greg 1.4 mg_ehand[MG_E_CSPEC] = e_cspec;
130 greg 1.17 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
131 greg 1.6 }
132 greg 1.13 if (mg_ehand[MG_E_CCT] == NULL) {
133     mg_ehand[MG_E_CCT] = e_cct;
134 greg 1.17 ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
135 greg 1.13 }
136 greg 1.4 }
137 greg 1.1 /* check for consistency */
138     if (mg_ehand[MG_E_FACE] != NULL)
139 greg 1.17 uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
140 greg 1.6 if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
141     mg_ehand[MG_E_CMIX] != NULL)
142 greg 1.17 uneed |= 1L<<MG_E_COLOR;
143 greg 1.1 if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
144 greg 1.15 mg_ehand[MG_E_IR] != NULL ||
145 greg 1.1 mg_ehand[MG_E_ED] != NULL ||
146     mg_ehand[MG_E_RS] != NULL ||
147 greg 1.11 mg_ehand[MG_E_TS] != NULL ||
148     mg_ehand[MG_E_SIDES] != NULL)
149 greg 1.17 uneed |= 1L<<MG_E_MATERIAL;
150 greg 1.1 for (i = 0; i < MG_NENTITIES; i++)
151 greg 1.17 if (uneed & 1L<<i && mg_ehand[i] == NULL) {
152 greg 1.1 fprintf(stderr, "Missing support for \"%s\" entity\n",
153     mg_ename[i]);
154     exit(1);
155     }
156     /* add support as needed */
157 greg 1.17 if (ineed & 1L<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
158 greg 1.1 e_supp[MG_E_VERTEX] = c_hvertex;
159 greg 1.17 if (ineed & 1L<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
160 greg 1.1 e_supp[MG_E_POINT] = c_hvertex;
161 greg 1.17 if (ineed & 1L<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
162 greg 1.1 e_supp[MG_E_NORMAL] = c_hvertex;
163 greg 1.17 if (ineed & 1L<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
164 greg 1.6 e_supp[MG_E_COLOR] = c_hcolor;
165 greg 1.17 if (ineed & 1L<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
166 greg 1.6 e_supp[MG_E_CXY] = c_hcolor;
167 greg 1.17 if (ineed & 1L<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
168 greg 1.6 e_supp[MG_E_CSPEC] = c_hcolor;
169 greg 1.17 if (ineed & 1L<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
170 greg 1.6 e_supp[MG_E_CMIX] = c_hcolor;
171 greg 1.17 if (ineed & 1L<<MG_E_CCT && mg_ehand[MG_E_CCT] != c_hcolor)
172 greg 1.13 e_supp[MG_E_CCT] = c_hcolor;
173 greg 1.1 /* discard remaining entities */
174     for (i = 0; i < MG_NENTITIES; i++)
175     if (mg_ehand[i] == NULL)
176     mg_ehand[i] = e_any_toss;
177     }
178    
179    
180     int
181     mg_entity(name) /* get entity number from its name */
182     char *name;
183     {
184 greg 1.9 static LUTAB ent_tab = LU_SINIT(NULL,NULL); /* lookup table */
185 greg 1.1 register char *cp;
186    
187     if (!ent_tab.tsiz) { /* initialize hash table */
188     if (!lu_init(&ent_tab, MG_NENTITIES))
189     return(-1); /* what to do? */
190     for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
191     cp -= sizeof(mg_ename[0]))
192     lu_find(&ent_tab, cp)->key = cp;
193     }
194     cp = lu_find(&ent_tab, name)->key;
195     if (cp == NULL)
196     return(-1);
197     return((cp - mg_ename[0])/sizeof(mg_ename[0]));
198     }
199    
200    
201 greg 1.10 int
202     mg_handle(en, ac, av) /* pass entity to appropriate handler */
203 greg 1.1 register int en;
204     int ac;
205     char **av;
206     {
207     int rv;
208    
209 greg 1.18 if (en < 0 && (en = mg_entity(av[0])) < 0) { /* unknown entity */
210     if (mg_uhand != NULL)
211     return((*mg_uhand)(ac, av));
212 greg 1.1 return(MG_EUNK);
213 greg 1.18 }
214     if (e_supp[en] != NULL) { /* support handler */
215 greg 1.1 if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
216     return(rv);
217     }
218 greg 1.18 return((*mg_ehand[en])(ac, av)); /* assigned handler */
219 greg 1.1 }
220    
221    
222     int
223     mg_open(ctx, fn) /* open new input file */
224     register MG_FCTXT *ctx;
225     char *fn;
226     {
227 greg 1.10 static int nfids;
228 greg 1.1 register char *cp;
229    
230 greg 1.10 ctx->fid = ++nfids;
231 greg 1.1 ctx->lineno = 0;
232     if (fn == NULL) {
233 greg 1.8 strcpy(ctx->fname, "<stdin>");
234 greg 1.1 ctx->fp = stdin;
235     ctx->prev = mg_file;
236     mg_file = ctx;
237     return(MG_OK);
238     }
239     /* get name relative to this context */
240 greg 1.16 if (mg_file != NULL && (cp = strrchr(mg_file->fname, '/')) != NULL) {
241 greg 1.1 strcpy(ctx->fname, mg_file->fname);
242 greg 1.16 strcpy(ctx->fname+(cp-mg_file->fname+1), fn);
243     } else
244     strcpy(ctx->fname, fn);
245 greg 1.1 ctx->fp = fopen(ctx->fname, "r");
246 greg 1.8 if (ctx->fp == NULL)
247 greg 1.1 return(MG_ENOFILE);
248     ctx->prev = mg_file; /* establish new context */
249     mg_file = ctx;
250     return(MG_OK);
251     }
252    
253    
254     void
255     mg_close() /* close input file */
256     {
257     register MG_FCTXT *ctx = mg_file;
258    
259     mg_file = ctx->prev; /* restore enclosing context */
260 greg 1.23 if (ctx->fp != stdin) /* close file if it's a file */
261     fclose(ctx->fp);
262 greg 1.1 }
263    
264    
265 greg 1.10 void
266     mg_fgetpos(pos) /* get current position in input file */
267     register MG_FPOS *pos;
268     {
269     extern long ftell();
270    
271     pos->fid = mg_file->fid;
272     pos->lineno = mg_file->lineno;
273     pos->offset = ftell(mg_file->fp);
274     }
275    
276    
277 greg 1.1 int
278 greg 1.10 mg_fgoto(pos) /* reposition input file pointer */
279     register MG_FPOS *pos;
280 greg 1.1 {
281 greg 1.10 if (pos->fid != mg_file->fid)
282     return(MG_ESEEK);
283     if (pos->lineno == mg_file->lineno)
284 greg 1.1 return(MG_OK);
285     if (mg_file->fp == stdin)
286     return(MG_ESEEK); /* cannot seek on standard input */
287 greg 1.10 if (fseek(mg_file->fp, pos->offset, 0) == EOF)
288 greg 1.1 return(MG_ESEEK);
289 greg 1.10 mg_file->lineno = pos->lineno;
290 greg 1.1 return(MG_OK);
291     }
292    
293    
294     int
295     mg_read() /* read next line from file */
296     {
297     register int len = 0;
298    
299     do {
300     if (fgets(mg_file->inpline+len,
301     MG_MAXLINE-len, mg_file->fp) == NULL)
302     return(len);
303 greg 1.22 len += strlen(mg_file->inpline+len);
304     if (len >= MG_MAXLINE-1)
305     return(len);
306 greg 1.1 mg_file->lineno++;
307 greg 1.22 } while (len > 1 && mg_file->inpline[len-2] == '\\');
308 greg 1.1
309     return(len);
310     }
311    
312    
313     int
314     mg_parse() /* parse current input line */
315     {
316     char abuf[MG_MAXLINE];
317     char *argv[MG_MAXARGC];
318 greg 1.22 register char *cp, *cp2, **ap;
319     /* copy line, removing escape chars */
320     cp = abuf; cp2 = mg_file->inpline;
321     while ((*cp++ = *cp2++))
322     if (cp2[0] == '\n' && cp2[-1] == '\\')
323     cp--;
324     cp = abuf; ap = argv; /* break into words */
325 greg 1.1 for ( ; ; ) {
326     while (isspace(*cp))
327     *cp++ = '\0';
328     if (!*cp)
329     break;
330     if (ap - argv >= MG_MAXARGC-1)
331     return(MG_EARGC);
332     *ap++ = cp;
333     while (*++cp && !isspace(*cp))
334     ;
335     }
336     if (ap == argv)
337     return(MG_OK); /* no words in line */
338     *ap = NULL;
339     /* else handle it */
340 greg 1.10 return(mg_handle(-1, ap-argv, argv));
341 greg 1.1 }
342    
343    
344     int
345     mg_load(fn) /* load an MGF file */
346     char *fn;
347     {
348     MG_FCTXT cntxt;
349 greg 1.21 int rval;
350     register int nbr;
351 greg 1.1
352     if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
353 greg 1.2 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
354 greg 1.1 return(rval);
355     }
356 greg 1.21 while ((nbr = mg_read()) > 0) { /* parse each line */
357 greg 1.22 if (nbr >= MG_MAXLINE-1) {
358 greg 1.20 fprintf(stderr, "%s: %d: %s\n", cntxt.fname,
359     cntxt.lineno, mg_err[rval=MG_ELINE]);
360     break;
361     }
362 greg 1.1 if ((rval = mg_parse()) != MG_OK) {
363     fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
364     cntxt.lineno, mg_err[rval],
365     cntxt.inpline);
366     break;
367     }
368 greg 1.20 }
369 greg 1.1 mg_close();
370     return(rval);
371 greg 1.18 }
372    
373    
374     int
375     mg_defuhand(ac, av) /* default handler for unknown entities */
376     int ac;
377     char **av;
378     {
379     if (mg_nunknown++ == 0) /* report first incident */
380     fprintf(stderr, "%s: %d: %s: %s\n", mg_file->fname,
381     mg_file->lineno, mg_err[MG_EUNK], av[0]);
382     return(MG_OK);
383 greg 1.1 }
384    
385    
386     void
387     mg_clear() /* clear parser history */
388     {
389     c_clearall(); /* clear context tables */
390 greg 1.23 while (mg_file != NULL) /* reset our file context */
391     mg_close();
392 greg 1.1 }
393    
394    
395     /****************************************************************************
396     * The following routines handle unsupported entities
397     */
398    
399    
400     static int
401     e_any_toss(ac, av) /* discard an unwanted entity */
402     int ac;
403     char **av;
404     {
405     return(MG_OK);
406     }
407    
408    
409 greg 1.23 int
410 greg 1.1 e_include(ac, av) /* include file */
411     int ac;
412     char **av;
413     {
414 greg 1.10 char *xfarg[MG_MAXARGC];
415 greg 1.1 MG_FCTXT ictx;
416 greg 1.16 XF_SPEC *xf_orig = xf_context;
417 greg 1.20 register int rv;
418 greg 1.1
419     if (ac < 2)
420     return(MG_EARGC);
421     if ((rv = mg_open(&ictx, av[1])) != MG_OK)
422     return(rv);
423 greg 1.10 if (ac > 2) {
424     register int i;
425    
426     xfarg[0] = mg_ename[MG_E_XF];
427     for (i = 1; i < ac-1; i++)
428     xfarg[i] = av[i+1];
429     xfarg[ac-1] = NULL;
430 greg 1.21 if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK) {
431     mg_close();
432 greg 1.10 return(rv);
433 greg 1.21 }
434 greg 1.1 }
435 greg 1.16 do {
436 greg 1.20 while ((rv = mg_read()) > 0) {
437 greg 1.22 if (rv >= MG_MAXLINE-1) {
438 greg 1.20 fprintf(stderr, "%s: %d: %s\n", ictx.fname,
439     ictx.lineno, mg_err[MG_ELINE]);
440     mg_close();
441     return(MG_EINCL);
442     }
443 greg 1.10 if ((rv = mg_parse()) != MG_OK) {
444     fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
445     ictx.lineno, mg_err[rv],
446     ictx.inpline);
447     mg_close();
448     return(MG_EINCL);
449     }
450 greg 1.20 }
451 greg 1.10 if (ac > 2)
452 greg 1.21 if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK) {
453     mg_close();
454 greg 1.10 return(rv);
455 greg 1.21 }
456 greg 1.16 } while (xf_context != xf_orig);
457 greg 1.1 mg_close();
458     return(MG_OK);
459 greg 1.24 }
460    
461    
462     int
463     e_faceh(ac, av) /* replace face+holes with single contour */
464     int ac;
465     char **av;
466     {
467     char *newav[MG_MAXARGC];
468     int lastp = 0;
469     register int i, j;
470    
471     newav[0] = mg_ename[MG_E_FACE];
472     for (i = 1; i < ac; i++)
473     if (av[i][0] == '-') {
474     if (i < 4)
475     return(MG_EARGC);
476     if (i >= ac-1)
477     break;
478     if (!lastp)
479     lastp = i-1;
480     for (j = i+1; j < ac-1 && av[j+1][0] != '-'; j++)
481     ;
482     if (j - i < 3)
483     return(MG_EARGC);
484     newav[i] = av[j]; /* connect hole loop */
485     } else
486     newav[i] = av[i]; /* hole or perimeter vertex */
487     if (lastp)
488     newav[i++] = av[lastp]; /* finish seam to outside */
489     newav[i] = NULL;
490     return(mg_handle(MG_E_FACE, i, newav));
491 greg 1.1 }
492    
493    
494     static void
495     make_axes(u, v, w) /* compute u and v given w (normalized) */
496     FVECT u, v, w;
497     {
498     register int i;
499    
500     v[0] = v[1] = v[2] = 0.;
501     for (i = 0; i < 3; i++)
502     if (w[i] < .6 && w[i] > -.6)
503     break;
504     v[i] = 1.;
505     fcross(u, v, w);
506     normalize(u);
507     fcross(v, w, u);
508     }
509    
510    
511 greg 1.23 int
512 greg 1.1 e_sph(ac, av) /* expand a sphere into cones */
513     int ac;
514     char **av;
515     {
516     static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
517     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
518     static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
519     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
520     static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
521     register C_VERTEX *cv;
522     register int i;
523     int rval;
524     double rad;
525     double theta;
526    
527     if (ac != 3)
528     return(MG_EARGC);
529     if ((cv = c_getvert(av[1])) == NULL)
530     return(MG_EUNDEF);
531     if (!isflt(av[2]))
532     return(MG_ETYPE);
533     rad = atof(av[2]);
534     /* initialize */
535     warpconends = 1;
536 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
537 greg 1.1 return(rval);
538     sprintf(p2x, FLTFMT, cv->p[0]);
539     sprintf(p2y, FLTFMT, cv->p[1]);
540     sprintf(p2z, FLTFMT, cv->p[2]+rad);
541 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
542 greg 1.1 return(rval);
543     r2[0] = '0'; r2[1] = '\0';
544     for (i = 1; i <= 2*mg_nqcdivs; i++) {
545     theta = i*(PI/2)/mg_nqcdivs;
546 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
547 greg 1.1 return(rval);
548     sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
549 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
550 greg 1.1 return(rval);
551 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
552 greg 1.1 return(rval);
553     strcpy(r1, r2);
554     sprintf(r2, FLTFMT, rad*sin(theta));
555 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
556 greg 1.1 return(rval);
557     }
558     warpconends = 0;
559     return(MG_OK);
560     }
561    
562    
563 greg 1.23 int
564 greg 1.1 e_torus(ac, av) /* expand a torus into cones */
565     int ac;
566     char **av;
567     {
568     static char p2[3][24], r1[24], r2[24];
569     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
570     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
571     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
572     static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
573     register C_VERTEX *cv;
574     register int i, j;
575     int rval;
576     int sgn;
577     double minrad, maxrad, avgrad;
578     double theta;
579    
580     if (ac != 4)
581     return(MG_EARGC);
582     if ((cv = c_getvert(av[1])) == NULL)
583     return(MG_EUNDEF);
584 greg 1.3 if (is0vect(cv->n))
585 greg 1.1 return(MG_EILL);
586     if (!isflt(av[2]) || !isflt(av[3]))
587     return(MG_ETYPE);
588     minrad = atof(av[2]);
589 greg 1.3 round0(minrad);
590 greg 1.1 maxrad = atof(av[3]);
591     /* check orientation */
592     if (minrad > 0.)
593     sgn = 1;
594     else if (minrad < 0.)
595     sgn = -1;
596     else if (maxrad > 0.)
597     sgn = 1;
598     else if (maxrad < 0.)
599     sgn = -1;
600     else
601     return(MG_EILL);
602     if (sgn*(maxrad-minrad) <= 0.)
603     return(MG_EILL);
604     /* initialize */
605     warpconends = 1;
606     v2ent[3] = av[1];
607     for (j = 0; j < 3; j++)
608     sprintf(p2[j], FLTFMT, cv->p[j] +
609     .5*sgn*(maxrad-minrad)*cv->n[j]);
610 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
611 greg 1.1 return(rval);
612 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
613 greg 1.1 return(rval);
614     sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
615     /* run outer section */
616     for (i = 1; i <= 2*mg_nqcdivs; i++) {
617     theta = i*(PI/2)/mg_nqcdivs;
618 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
619 greg 1.1 return(rval);
620     for (j = 0; j < 3; j++)
621     sprintf(p2[j], FLTFMT, cv->p[j] +
622     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
623 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
624 greg 1.1 return(rval);
625 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
626 greg 1.1 return(rval);
627     strcpy(r1, r2);
628     sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
629 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
630 greg 1.1 return(rval);
631     }
632     /* run inner section */
633     sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
634     for ( ; i <= 4*mg_nqcdivs; i++) {
635     theta = i*(PI/2)/mg_nqcdivs;
636     for (j = 0; j < 3; j++)
637     sprintf(p2[j], FLTFMT, cv->p[j] +
638     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
639 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
640 greg 1.1 return(rval);
641 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
642 greg 1.1 return(rval);
643 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
644 greg 1.1 return(rval);
645     strcpy(r1, r2);
646     sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
647 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
648 greg 1.1 return(rval);
649     }
650     warpconends = 0;
651     return(MG_OK);
652     }
653    
654    
655 greg 1.23 int
656 greg 1.1 e_cyl(ac, av) /* replace a cylinder with equivalent cone */
657     int ac;
658     char **av;
659     {
660     static char *avnew[6] = {mg_ename[MG_E_CONE]};
661    
662     if (ac != 4)
663     return(MG_EARGC);
664     avnew[1] = av[1];
665     avnew[2] = av[2];
666     avnew[3] = av[3];
667     avnew[4] = av[2];
668 greg 1.10 return(mg_handle(MG_E_CONE, 5, avnew));
669 greg 1.1 }
670    
671    
672 greg 1.23 int
673 greg 1.1 e_ring(ac, av) /* turn a ring into polygons */
674     int ac;
675     char **av;
676     {
677     static char p3[3][24], p4[3][24];
678     static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
679     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
680     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
681     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
682     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
683     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
684     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
685     static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
686     register C_VERTEX *cv;
687     register int i, j;
688     FVECT u, v;
689     double minrad, maxrad;
690     int rv;
691     double theta, d;
692    
693     if (ac != 4)
694     return(MG_EARGC);
695     if ((cv = c_getvert(av[1])) == NULL)
696     return(MG_EUNDEF);
697 greg 1.3 if (is0vect(cv->n))
698 greg 1.1 return(MG_EILL);
699     if (!isflt(av[2]) || !isflt(av[3]))
700     return(MG_ETYPE);
701     minrad = atof(av[2]);
702 greg 1.3 round0(minrad);
703 greg 1.1 maxrad = atof(av[3]);
704     if (minrad < 0. || maxrad <= minrad)
705     return(MG_EILL);
706     /* initialize */
707     make_axes(u, v, cv->n);
708     for (j = 0; j < 3; j++)
709     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
710 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
711 greg 1.1 return(rv);
712 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
713 greg 1.1 return(rv);
714     if (minrad == 0.) { /* closed */
715     v1ent[3] = av[1];
716 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
717 greg 1.1 return(rv);
718 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
719 greg 1.1 return(rv);
720     for (i = 1; i <= 4*mg_nqcdivs; i++) {
721     theta = i*(PI/2)/mg_nqcdivs;
722 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
723 greg 1.1 return(rv);
724     for (j = 0; j < 3; j++)
725     sprintf(p3[j], FLTFMT, cv->p[j] +
726     maxrad*u[j]*cos(theta) +
727     maxrad*v[j]*sin(theta));
728 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
729 greg 1.1 return(rv);
730 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
731 greg 1.1 return(rv);
732 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
733 greg 1.1 return(rv);
734     }
735     } else { /* open */
736 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
737 greg 1.1 return(rv);
738     for (j = 0; j < 3; j++)
739     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
740 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
741 greg 1.1 return(rv);
742     v1ent[3] = "_rv4";
743     for (i = 1; i <= 4*mg_nqcdivs; i++) {
744     theta = i*(PI/2)/mg_nqcdivs;
745 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
746 greg 1.1 return(rv);
747 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
748 greg 1.1 return(rv);
749     for (j = 0; j < 3; j++) {
750     d = u[j]*cos(theta) + v[j]*sin(theta);
751     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
752     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
753     }
754 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
755 greg 1.1 return(rv);
756 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
757 greg 1.1 return(rv);
758 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
759 greg 1.1 return(rv);
760 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
761 greg 1.1 return(rv);
762 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
763 greg 1.1 return(rv);
764     }
765     }
766     return(MG_OK);
767     }
768    
769    
770 greg 1.23 int
771 greg 1.1 e_cone(ac, av) /* turn a cone into polygons */
772     int ac;
773     char **av;
774     {
775     static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
776     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
777     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
778     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
779     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
780     static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
781     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
782     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
783     static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
784     static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
785 greg 1.19 char *v1n;
786 greg 1.1 register C_VERTEX *cv1, *cv2;
787     register int i, j;
788     FVECT u, v, w;
789     double rad1, rad2;
790     int sgn;
791     double n1off, n2off;
792     double d;
793     int rv;
794     double theta;
795    
796     if (ac != 5)
797     return(MG_EARGC);
798     if ((cv1 = c_getvert(av[1])) == NULL ||
799     (cv2 = c_getvert(av[3])) == NULL)
800     return(MG_EUNDEF);
801 greg 1.19 v1n = av[1];
802 greg 1.1 if (!isflt(av[2]) || !isflt(av[4]))
803     return(MG_ETYPE);
804     rad1 = atof(av[2]);
805 greg 1.3 round0(rad1);
806 greg 1.1 rad2 = atof(av[4]);
807 greg 1.3 round0(rad2);
808 greg 1.1 if (rad1 == 0.) {
809     if (rad2 == 0.)
810     return(MG_EILL);
811     } else if (rad2 != 0.) {
812 greg 1.25 if ((rad1 < 0.) ^ (rad2 < 0.))
813 greg 1.1 return(MG_EILL);
814     } else { /* swap */
815     C_VERTEX *cv;
816    
817     cv = cv1;
818     cv1 = cv2;
819     cv2 = cv;
820 greg 1.19 v1n = av[3];
821 greg 1.1 d = rad1;
822     rad1 = rad2;
823     rad2 = d;
824     }
825     sgn = rad2 < 0. ? -1 : 1;
826     /* initialize */
827     for (j = 0; j < 3; j++)
828     w[j] = cv1->p[j] - cv2->p[j];
829     if ((d = normalize(w)) == 0.)
830     return(MG_EILL);
831     n1off = n2off = (rad2 - rad1)/d;
832 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
833     d = atan(n2off) - (PI/4)/mg_nqcdivs;
834     if (d <= -PI/2+FTINY)
835     n2off = -FHUGE;
836     else
837     n2off = tan(d);
838     }
839 greg 1.1 make_axes(u, v, w);
840     for (j = 0; j < 3; j++) {
841     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
842 greg 1.3 if (n2off <= -FHUGE)
843     sprintf(n3[j], FLTFMT, -w[j]);
844     else
845     sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
846 greg 1.1 }
847 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
848 greg 1.1 return(rv);
849 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
850 greg 1.1 return(rv);
851 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
852 greg 1.1 return(rv);
853     if (rad1 == 0.) { /* triangles */
854 greg 1.19 v1ent[3] = v1n;
855 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
856 greg 1.1 return(rv);
857     for (j = 0; j < 3; j++)
858     sprintf(n4[j], FLTFMT, w[j]);
859 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
860 greg 1.1 return(rv);
861     for (i = 1; i <= 4*mg_nqcdivs; i++) {
862     theta = sgn*i*(PI/2)/mg_nqcdivs;
863 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
864 greg 1.1 return(rv);
865     for (j = 0; j < 3; j++) {
866     d = u[j]*cos(theta) + v[j]*sin(theta);
867     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
868 greg 1.3 if (n2off > -FHUGE)
869     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
870 greg 1.1 }
871 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
872 greg 1.1 return(rv);
873 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
874 greg 1.1 return(rv);
875 greg 1.3 if (n2off > -FHUGE &&
876 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
877 greg 1.1 return(rv);
878 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
879 greg 1.1 return(rv);
880     }
881     } else { /* quads */
882     v1ent[3] = "_cv4";
883 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
884     d = atan(n1off) + (PI/4)/mg_nqcdivs;
885     if (d >= PI/2-FTINY)
886     n1off = FHUGE;
887     else
888     n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
889     }
890 greg 1.1 for (j = 0; j < 3; j++) {
891     sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
892 greg 1.3 if (n1off >= FHUGE)
893     sprintf(n4[j], FLTFMT, w[j]);
894     else
895     sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
896 greg 1.1 }
897 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
898 greg 1.1 return(rv);
899 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
900 greg 1.1 return(rv);
901 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
902 greg 1.1 return(rv);
903     for (i = 1; i <= 4*mg_nqcdivs; i++) {
904     theta = sgn*i*(PI/2)/mg_nqcdivs;
905 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
906 greg 1.1 return(rv);
907 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
908 greg 1.1 return(rv);
909     for (j = 0; j < 3; j++) {
910     d = u[j]*cos(theta) + v[j]*sin(theta);
911     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
912 greg 1.3 if (n2off > -FHUGE)
913     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
914 greg 1.1 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
915 greg 1.3 if (n1off < FHUGE)
916     sprintf(n4[j], FLTFMT, d + w[j]*n1off);
917 greg 1.1 }
918 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
919 greg 1.1 return(rv);
920 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
921 greg 1.1 return(rv);
922 greg 1.3 if (n2off > -FHUGE &&
923 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
924 greg 1.1 return(rv);
925 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
926 greg 1.1 return(rv);
927 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
928 greg 1.1 return(rv);
929 greg 1.3 if (n1off < FHUGE &&
930 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
931 greg 1.1 return(rv);
932 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
933 greg 1.1 return(rv);
934     }
935 greg 1.4 }
936     return(MG_OK);
937     }
938    
939    
940 greg 1.23 int
941 greg 1.4 e_prism(ac, av) /* turn a prism into polygons */
942     int ac;
943     char **av;
944     {
945     static char p[3][24];
946 greg 1.12 static char *vent[5] = {mg_ename[MG_E_VERTEX],NULL,"="};
947 greg 1.4 static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
948 greg 1.12 static char *znorm[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
949 greg 1.4 char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
950     double length;
951 greg 1.12 int hasnorm;
952 greg 1.4 FVECT v1, v2, v3, norm;
953     register C_VERTEX *cv;
954     C_VERTEX *cv0;
955     int rv;
956     register int i, j;
957 greg 1.12 /* check arguments */
958 greg 1.4 if (ac < 5)
959     return(MG_EARGC);
960 greg 1.5 if (!isflt(av[ac-1]))
961 greg 1.4 return(MG_ETYPE);
962 greg 1.5 length = atof(av[ac-1]);
963 greg 1.4 if (length <= FTINY && length >= -FTINY)
964     return(MG_EILL);
965 greg 1.12 /* compute face normal */
966 greg 1.7 if ((cv0 = c_getvert(av[1])) == NULL)
967 greg 1.4 return(MG_EUNDEF);
968 greg 1.12 hasnorm = 0;
969 greg 1.4 norm[0] = norm[1] = norm[2] = 0.;
970     v1[0] = v1[1] = v1[2] = 0.;
971     for (i = 2; i < ac-1; i++) {
972 greg 1.5 if ((cv = c_getvert(av[i])) == NULL)
973 greg 1.4 return(MG_EUNDEF);
974 greg 1.12 hasnorm += !is0vect(cv->n);
975 greg 1.4 v2[0] = cv->p[0] - cv0->p[0];
976     v2[1] = cv->p[1] - cv0->p[1];
977     v2[2] = cv->p[2] - cv0->p[2];
978     fcross(v3, v1, v2);
979     norm[0] += v3[0];
980     norm[1] += v3[1];
981     norm[2] += v3[2];
982     VCOPY(v1, v2);
983     }
984     if (normalize(norm) == 0.)
985     return(MG_EILL);
986 greg 1.12 /* create moved vertices */
987 greg 1.4 for (i = 1; i < ac-1; i++) {
988     sprintf(nvn[i-1], "_pv%d", i);
989     vent[1] = nvn[i-1];
990 greg 1.12 vent[3] = av[i];
991     if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
992 greg 1.4 return(rv);
993 greg 1.5 cv = c_getvert(av[i]); /* checked above */
994 greg 1.4 for (j = 0; j < 3; j++)
995     sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
996 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
997 greg 1.4 return(rv);
998     }
999 greg 1.12 /* make faces */
1000     newav[0] = mg_ename[MG_E_FACE];
1001 greg 1.4 /* do the side faces */
1002     newav[5] = NULL;
1003 greg 1.5 newav[3] = av[ac-2];
1004 greg 1.4 newav[4] = nvn[ac-3];
1005     for (i = 1; i < ac-1; i++) {
1006     newav[1] = nvn[i-1];
1007 greg 1.5 newav[2] = av[i];
1008 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
1009 greg 1.4 return(rv);
1010     newav[3] = newav[2];
1011     newav[4] = newav[1];
1012 greg 1.6 }
1013 greg 1.12 /* do top face */
1014     for (i = 1; i < ac-1; i++) {
1015     if (hasnorm) { /* zero normals */
1016     vent[1] = nvn[i-1];
1017     if ((rv = mg_handle(MG_E_VERTEX, 2, vent)) != MG_OK)
1018     return(rv);
1019     if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1020     return(rv);
1021     }
1022     newav[ac-1-i] = nvn[i-1]; /* reverse */
1023     }
1024     if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
1025     return(rv);
1026     /* do bottom face */
1027     if (hasnorm)
1028     for (i = 1; i < ac-1; i++) {
1029     vent[1] = nvn[i-1];
1030     vent[3] = av[i];
1031     if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
1032     return(rv);
1033     if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
1034     return(rv);
1035     newav[i] = nvn[i-1];
1036     }
1037     else
1038     for (i = 1; i < ac-1; i++)
1039     newav[i] = av[i];
1040     newav[i] = NULL;
1041     if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
1042     return(rv);
1043 greg 1.6 return(MG_OK);
1044     }
1045    
1046    
1047     static int
1048 greg 1.13 put_cxy() /* put out current xy chromaticities */
1049 greg 1.6 {
1050     static char xbuf[24], ybuf[24];
1051     static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};
1052    
1053 greg 1.13 sprintf(xbuf, "%.4f", c_ccolor->cx);
1054     sprintf(ybuf, "%.4f", c_ccolor->cy);
1055 greg 1.23 return(mg_handle(MG_E_CXY, 3, ccom));
1056 greg 1.13 }
1057    
1058    
1059     static int
1060     put_cspec() /* put out current color spectrum */
1061     {
1062     char wl[2][6], vbuf[C_CNSS][24];
1063     char *newav[C_CNSS+4];
1064     double sf;
1065     register int i;
1066    
1067     if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
1068     sprintf(wl[0], "%d", C_CMINWL);
1069     sprintf(wl[1], "%d", C_CMAXWL);
1070     newav[0] = mg_ename[MG_E_CSPEC];
1071     newav[1] = wl[0];
1072     newav[2] = wl[1];
1073     sf = (double)C_CNSS / c_ccolor->ssum;
1074     for (i = 0; i < C_CNSS; i++) {
1075 greg 1.14 sprintf(vbuf[i], "%.4f", sf*c_ccolor->ssamp[i]);
1076 greg 1.13 newav[i+3] = vbuf[i];
1077     }
1078     newav[C_CNSS+3] = NULL;
1079     if ((i = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
1080     return(i);
1081     }
1082     return(MG_OK);
1083     }
1084    
1085    
1086     static int
1087     e_cspec(ac, av) /* handle spectral color */
1088     int ac;
1089     char **av;
1090     {
1091     /* convert to xy chromaticity */
1092 greg 1.6 c_ccvt(c_ccolor, C_CSXY);
1093     /* if it's really their handler, use it */
1094 greg 1.13 if (mg_ehand[MG_E_CXY] != c_hcolor)
1095     return(put_cxy());
1096 greg 1.6 return(MG_OK);
1097     }
1098    
1099    
1100     static int
1101     e_cmix(ac, av) /* handle mixing of colors */
1102     int ac;
1103     char **av;
1104     {
1105     /*
1106     * Contorted logic works as follows:
1107     * 1. the colors are already mixed in c_hcolor() support function
1108     * 2. if we would handle a spectral result, make sure it's not
1109     * 3. if c_hcolor() would handle a spectral result, don't bother
1110     * 4. otherwise, make cspec entity and pass it to their handler
1111     * 5. if we have only xy results, handle it as c_spec() would
1112     */
1113     if (mg_ehand[MG_E_CSPEC] == e_cspec)
1114     c_ccvt(c_ccolor, C_CSXY);
1115 greg 1.13 else if (c_ccolor->flags & C_CDSPEC)
1116     return(put_cspec());
1117     if (mg_ehand[MG_E_CXY] != c_hcolor)
1118     return(put_cxy());
1119     return(MG_OK);
1120     }
1121    
1122    
1123     static int
1124     e_cct(ac, av) /* handle color temperature */
1125     int ac;
1126     char **av;
1127     {
1128     /*
1129     * Logic is similar to e_cmix here. Support handler has already
1130     * converted temperature to spectral color. Put it out as such
1131     * if they support it, otherwise convert to xy chromaticity and
1132     * put it out if they handle it.
1133     */
1134     if (mg_ehand[MG_E_CSPEC] != e_cspec)
1135     return(put_cspec());
1136     c_ccvt(c_ccolor, C_CSXY);
1137     if (mg_ehand[MG_E_CXY] != c_hcolor)
1138     return(put_cxy());
1139 greg 1.1 return(MG_OK);
1140     }