ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/parser.c
Revision: 1.10
Committed: Wed Jun 29 16:15:20 1994 UTC (29 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.9: +111 -143 lines
Log Message:
made the -a (array) option work within files as well

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1994 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Parse an MGF file, converting or discarding unsupported entities
9     */
10    
11     #include <stdio.h>
12     #include <math.h>
13     #include <ctype.h>
14     #include <string.h>
15     #include "parser.h"
16     #include "lookup.h"
17     #include "messages.h"
18    
19     /*
20     * Global definitions of variables declared in parser.h
21     */
22     /* entity names */
23    
24     char mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;
25    
26     /* Handler routines for each entity */
27    
28     int (*mg_ehand[MG_NENTITIES])();
29    
30     /* error messages */
31    
32     char *mg_err[MG_NERRS] = MG_ERRLIST;
33    
34     MG_FCTXT *mg_file; /* current file context pointer */
35    
36     int mg_nqcdivs = MG_NQCD; /* number of divisions per quarter circle */
37    
38     /*
39     * The idea with this parser is to compensate for any missing entries in
40     * mg_ehand with alternate handlers that express these entities in terms
41     * of others that the calling program can handle.
42     *
43     * In some cases, no alternate handler is possible because the entity
44     * has no approximate equivalent. These entities are simply discarded.
45     *
46     * Certain entities are dependent on others, and mg_init() will fail
47     * if the supported entities are not consistent.
48     *
49     * Some alternate entity handlers require that earlier entities be
50     * noted in some fashion, and we therefore keep another array of
51     * parallel support handlers to assist in this effort.
52     */
53    
54     /* temporary settings for testing */
55     #define e_ies e_any_toss
56     /* alternate handler routines */
57    
58     static int e_any_toss(), /* discard unneeded entity */
59 greg 1.2 e_ies(), /* IES luminaire file */
60 greg 1.1 e_include(), /* include file */
61     e_sph(), /* sphere */
62 greg 1.4 e_cmix(), /* color mixtures */
63 greg 1.6 e_cspec(), /* color spectra */
64 greg 1.1 e_cyl(), /* cylinder */
65     e_cone(), /* cone */
66 greg 1.4 e_prism(), /* prism */
67 greg 1.1 e_ring(), /* ring */
68     e_torus(); /* torus */
69    
70     /* alternate handler support functions */
71    
72     static int (*e_supp[MG_NENTITIES])();
73    
74     static char FLTFMT[] = "%.12g";
75    
76     static int warpconends; /* hack for generating good normals */
77    
78    
79     void
80     mg_init() /* initialize alternate entity handlers */
81     {
82     unsigned long ineed = 0, uneed = 0;
83     register int i;
84     /* pick up slack */
85     if (mg_ehand[MG_E_IES] == NULL)
86     mg_ehand[MG_E_IES] = e_ies;
87     if (mg_ehand[MG_E_INCLUDE] == NULL)
88     mg_ehand[MG_E_INCLUDE] = e_include;
89     if (mg_ehand[MG_E_SPH] == NULL) {
90     mg_ehand[MG_E_SPH] = e_sph;
91     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
92     } else
93     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
94     if (mg_ehand[MG_E_CYL] == NULL) {
95     mg_ehand[MG_E_CYL] = e_cyl;
96     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
97     } else
98     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
99     if (mg_ehand[MG_E_CONE] == NULL) {
100     mg_ehand[MG_E_CONE] = e_cone;
101     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
102     } else
103     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
104     if (mg_ehand[MG_E_RING] == NULL) {
105     mg_ehand[MG_E_RING] = e_ring;
106     ineed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX;
107     } else
108     uneed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX|1<<MG_E_XF;
109 greg 1.4 if (mg_ehand[MG_E_PRISM] == NULL) {
110     mg_ehand[MG_E_PRISM] = e_prism;
111     ineed |= 1<<MG_E_POINT|1<<MG_E_VERTEX;
112     } else
113     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
114 greg 1.1 if (mg_ehand[MG_E_TORUS] == NULL) {
115     mg_ehand[MG_E_TORUS] = e_torus;
116     ineed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX;
117     } else
118     uneed |= 1<<MG_E_POINT|1<<MG_E_NORMAL|1<<MG_E_VERTEX|1<<MG_E_XF;
119 greg 1.4 if (mg_ehand[MG_E_COLOR] != NULL) {
120 greg 1.6 if (mg_ehand[MG_E_CMIX] == NULL) {
121 greg 1.4 mg_ehand[MG_E_CMIX] = e_cmix;
122 greg 1.6 ineed |= 1<<MG_E_COLOR|1<<MG_E_CXY|1<<MG_E_CSPEC|1<<MG_E_CMIX;
123     }
124     if (mg_ehand[MG_E_CSPEC] == NULL) {
125 greg 1.4 mg_ehand[MG_E_CSPEC] = e_cspec;
126 greg 1.6 ineed |= 1<<MG_E_COLOR|1<<MG_E_CXY|1<<MG_E_CSPEC|1<<MG_E_CMIX;
127     }
128 greg 1.4 }
129 greg 1.1 /* check for consistency */
130     if (mg_ehand[MG_E_FACE] != NULL)
131     uneed |= 1<<MG_E_POINT|1<<MG_E_VERTEX|1<<MG_E_XF;
132 greg 1.6 if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
133     mg_ehand[MG_E_CMIX] != NULL)
134 greg 1.1 uneed |= 1<<MG_E_COLOR;
135     if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
136     mg_ehand[MG_E_ED] != NULL ||
137     mg_ehand[MG_E_RS] != NULL ||
138     mg_ehand[MG_E_TS] != NULL)
139     uneed |= 1<<MG_E_MATERIAL;
140     for (i = 0; i < MG_NENTITIES; i++)
141     if (uneed & 1<<i && mg_ehand[i] == NULL) {
142     fprintf(stderr, "Missing support for \"%s\" entity\n",
143     mg_ename[i]);
144     exit(1);
145     }
146     /* add support as needed */
147     if (ineed & 1<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
148     e_supp[MG_E_VERTEX] = c_hvertex;
149     if (ineed & 1<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
150     e_supp[MG_E_POINT] = c_hvertex;
151     if (ineed & 1<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
152     e_supp[MG_E_NORMAL] = c_hvertex;
153 greg 1.6 if (ineed & 1<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
154     e_supp[MG_E_COLOR] = c_hcolor;
155     if (ineed & 1<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
156     e_supp[MG_E_CXY] = c_hcolor;
157     if (ineed & 1<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
158     e_supp[MG_E_CSPEC] = c_hcolor;
159     if (ineed & 1<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
160     e_supp[MG_E_CMIX] = c_hcolor;
161 greg 1.1 /* discard remaining entities */
162     for (i = 0; i < MG_NENTITIES; i++)
163     if (mg_ehand[i] == NULL)
164     mg_ehand[i] = e_any_toss;
165     }
166    
167    
168    
169     int
170     mg_entity(name) /* get entity number from its name */
171     char *name;
172     {
173 greg 1.9 static LUTAB ent_tab = LU_SINIT(NULL,NULL); /* lookup table */
174 greg 1.1 register char *cp;
175    
176     if (!ent_tab.tsiz) { /* initialize hash table */
177     if (!lu_init(&ent_tab, MG_NENTITIES))
178     return(-1); /* what to do? */
179     for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
180     cp -= sizeof(mg_ename[0]))
181     lu_find(&ent_tab, cp)->key = cp;
182     }
183     cp = lu_find(&ent_tab, name)->key;
184     if (cp == NULL)
185     return(-1);
186     return((cp - mg_ename[0])/sizeof(mg_ename[0]));
187     }
188    
189    
190 greg 1.10 int
191     mg_handle(en, ac, av) /* pass entity to appropriate handler */
192 greg 1.1 register int en;
193     int ac;
194     char **av;
195     {
196     int rv;
197    
198     if (en < 0 && (en = mg_entity(av[0])) < 0)
199     return(MG_EUNK);
200     if (e_supp[en] != NULL) {
201     if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
202     return(rv);
203     }
204     return((*mg_ehand[en])(ac, av));
205     }
206    
207    
208     int
209     mg_open(ctx, fn) /* open new input file */
210     register MG_FCTXT *ctx;
211     char *fn;
212     {
213 greg 1.10 static int nfids;
214 greg 1.1 int olen;
215     register char *cp;
216    
217 greg 1.10 ctx->fid = ++nfids;
218 greg 1.1 ctx->lineno = 0;
219     if (fn == NULL) {
220 greg 1.8 strcpy(ctx->fname, "<stdin>");
221 greg 1.1 ctx->fp = stdin;
222     ctx->prev = mg_file;
223     mg_file = ctx;
224     return(MG_OK);
225     }
226     /* get name relative to this context */
227     if (mg_file != NULL &&
228     (cp = strrchr(mg_file->fname, '/')) != NULL)
229     olen = cp - mg_file->fname + 1;
230     else
231     olen = 0;
232     if (olen)
233     strcpy(ctx->fname, mg_file->fname);
234     strcpy(ctx->fname+olen, fn);
235     ctx->fp = fopen(ctx->fname, "r");
236 greg 1.8 if (ctx->fp == NULL)
237 greg 1.1 return(MG_ENOFILE);
238     ctx->prev = mg_file; /* establish new context */
239     mg_file = ctx;
240     return(MG_OK);
241     }
242    
243    
244     void
245     mg_close() /* close input file */
246     {
247     register MG_FCTXT *ctx = mg_file;
248    
249     mg_file = ctx->prev; /* restore enclosing context */
250     if (ctx->fp == stdin)
251     return; /* don't close standard input */
252     fclose(ctx->fp);
253     }
254    
255    
256 greg 1.10 void
257     mg_fgetpos(pos) /* get current position in input file */
258     register MG_FPOS *pos;
259     {
260     extern long ftell();
261    
262     pos->fid = mg_file->fid;
263     pos->lineno = mg_file->lineno;
264     pos->offset = ftell(mg_file->fp);
265     }
266    
267    
268 greg 1.1 int
269 greg 1.10 mg_fgoto(pos) /* reposition input file pointer */
270     register MG_FPOS *pos;
271 greg 1.1 {
272 greg 1.10 if (pos->fid != mg_file->fid)
273     return(MG_ESEEK);
274     if (pos->lineno == mg_file->lineno)
275 greg 1.1 return(MG_OK);
276     if (mg_file->fp == stdin)
277     return(MG_ESEEK); /* cannot seek on standard input */
278 greg 1.10 if (fseek(mg_file->fp, pos->offset, 0) == EOF)
279 greg 1.1 return(MG_ESEEK);
280 greg 1.10 mg_file->lineno = pos->lineno;
281 greg 1.1 return(MG_OK);
282     }
283    
284    
285     int
286     mg_read() /* read next line from file */
287     {
288     register int len = 0;
289    
290     do {
291     if (fgets(mg_file->inpline+len,
292     MG_MAXLINE-len, mg_file->fp) == NULL)
293     return(len);
294     mg_file->lineno++;
295     len += strlen(mg_file->inpline+len);
296     if (len > 1 && mg_file->inpline[len-2] == '\\')
297     mg_file->inpline[--len-1] = ' ';
298     } while (mg_file->inpline[len]);
299    
300     return(len);
301     }
302    
303    
304     int
305     mg_parse() /* parse current input line */
306     {
307     char abuf[MG_MAXLINE];
308     char *argv[MG_MAXARGC];
309     int en;
310     register char *cp, **ap;
311    
312     strcpy(cp=abuf, mg_file->inpline);
313     ap = argv; /* break into words */
314     for ( ; ; ) {
315     while (isspace(*cp))
316     *cp++ = '\0';
317     if (!*cp)
318     break;
319     if (ap - argv >= MG_MAXARGC-1)
320     return(MG_EARGC);
321     *ap++ = cp;
322     while (*++cp && !isspace(*cp))
323     ;
324     }
325     if (ap == argv)
326     return(MG_OK); /* no words in line */
327     *ap = NULL;
328     /* else handle it */
329 greg 1.10 return(mg_handle(-1, ap-argv, argv));
330 greg 1.1 }
331    
332    
333     int
334     mg_load(fn) /* load an MGF file */
335     char *fn;
336     {
337     MG_FCTXT cntxt;
338     int rval;
339    
340     if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
341 greg 1.2 fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
342 greg 1.1 return(rval);
343     }
344     while (mg_read()) /* parse each line */
345     if ((rval = mg_parse()) != MG_OK) {
346     fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
347     cntxt.lineno, mg_err[rval],
348     cntxt.inpline);
349     break;
350     }
351     mg_close();
352     return(rval);
353     }
354    
355    
356     void
357     mg_clear() /* clear parser history */
358     {
359     c_clearall(); /* clear context tables */
360     mg_file = NULL; /* reset our context */
361     }
362    
363    
364     /****************************************************************************
365     * The following routines handle unsupported entities
366     */
367    
368    
369     static int
370     e_any_toss(ac, av) /* discard an unwanted entity */
371     int ac;
372     char **av;
373     {
374     return(MG_OK);
375     }
376    
377    
378     static int
379     e_include(ac, av) /* include file */
380     int ac;
381     char **av;
382     {
383 greg 1.10 char *xfarg[MG_MAXARGC];
384 greg 1.1 MG_FCTXT ictx;
385     int rv;
386    
387     if (ac < 2)
388     return(MG_EARGC);
389     if ((rv = mg_open(&ictx, av[1])) != MG_OK)
390     return(rv);
391 greg 1.10 if (ac > 2) {
392     register int i;
393    
394     xfarg[0] = mg_ename[MG_E_XF];
395     for (i = 1; i < ac-1; i++)
396     xfarg[i] = av[i+1];
397     xfarg[ac-1] = NULL;
398     if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK)
399     return(rv);
400 greg 1.1 }
401 greg 1.10 while (!feof(mg_file->fp)) {
402     while (mg_read())
403     if ((rv = mg_parse()) != MG_OK) {
404     fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
405     ictx.lineno, mg_err[rv],
406     ictx.inpline);
407     mg_close();
408     return(MG_EINCL);
409     }
410     if (ac > 2)
411     if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK)
412     return(rv);
413     }
414 greg 1.1 mg_close();
415     return(MG_OK);
416     }
417    
418    
419     static void
420     make_axes(u, v, w) /* compute u and v given w (normalized) */
421     FVECT u, v, w;
422     {
423     register int i;
424    
425     v[0] = v[1] = v[2] = 0.;
426     for (i = 0; i < 3; i++)
427     if (w[i] < .6 && w[i] > -.6)
428     break;
429     v[i] = 1.;
430     fcross(u, v, w);
431     normalize(u);
432     fcross(v, w, u);
433     }
434    
435    
436     static int
437     e_sph(ac, av) /* expand a sphere into cones */
438     int ac;
439     char **av;
440     {
441     static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
442     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
443     static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
444     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
445     static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
446     register C_VERTEX *cv;
447     register int i;
448     int rval;
449     double rad;
450     double theta;
451    
452     if (ac != 3)
453     return(MG_EARGC);
454     if ((cv = c_getvert(av[1])) == NULL)
455     return(MG_EUNDEF);
456     if (!isflt(av[2]))
457     return(MG_ETYPE);
458     rad = atof(av[2]);
459     /* initialize */
460     warpconends = 1;
461 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
462 greg 1.1 return(rval);
463     sprintf(p2x, FLTFMT, cv->p[0]);
464     sprintf(p2y, FLTFMT, cv->p[1]);
465     sprintf(p2z, FLTFMT, cv->p[2]+rad);
466 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
467 greg 1.1 return(rval);
468     r2[0] = '0'; r2[1] = '\0';
469     for (i = 1; i <= 2*mg_nqcdivs; i++) {
470     theta = i*(PI/2)/mg_nqcdivs;
471 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
472 greg 1.1 return(rval);
473     sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
474 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
475 greg 1.1 return(rval);
476 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
477 greg 1.1 return(rval);
478     strcpy(r1, r2);
479     sprintf(r2, FLTFMT, rad*sin(theta));
480 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
481 greg 1.1 return(rval);
482     }
483     warpconends = 0;
484     return(MG_OK);
485     }
486    
487    
488     static int
489     e_torus(ac, av) /* expand a torus into cones */
490     int ac;
491     char **av;
492     {
493     static char p2[3][24], r1[24], r2[24];
494     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
495     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
496     static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
497     static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
498     register C_VERTEX *cv;
499     register int i, j;
500     int rval;
501     int sgn;
502     double minrad, maxrad, avgrad;
503     double theta;
504    
505     if (ac != 4)
506     return(MG_EARGC);
507     if ((cv = c_getvert(av[1])) == NULL)
508     return(MG_EUNDEF);
509 greg 1.3 if (is0vect(cv->n))
510 greg 1.1 return(MG_EILL);
511     if (!isflt(av[2]) || !isflt(av[3]))
512     return(MG_ETYPE);
513     minrad = atof(av[2]);
514 greg 1.3 round0(minrad);
515 greg 1.1 maxrad = atof(av[3]);
516     /* check orientation */
517     if (minrad > 0.)
518     sgn = 1;
519     else if (minrad < 0.)
520     sgn = -1;
521     else if (maxrad > 0.)
522     sgn = 1;
523     else if (maxrad < 0.)
524     sgn = -1;
525     else
526     return(MG_EILL);
527     if (sgn*(maxrad-minrad) <= 0.)
528     return(MG_EILL);
529     /* initialize */
530     warpconends = 1;
531     v2ent[3] = av[1];
532     for (j = 0; j < 3; j++)
533     sprintf(p2[j], FLTFMT, cv->p[j] +
534     .5*sgn*(maxrad-minrad)*cv->n[j]);
535 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
536 greg 1.1 return(rval);
537 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
538 greg 1.1 return(rval);
539     sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
540     /* run outer section */
541     for (i = 1; i <= 2*mg_nqcdivs; i++) {
542     theta = i*(PI/2)/mg_nqcdivs;
543 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
544 greg 1.1 return(rval);
545     for (j = 0; j < 3; j++)
546     sprintf(p2[j], FLTFMT, cv->p[j] +
547     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
548 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
549 greg 1.1 return(rval);
550 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
551 greg 1.1 return(rval);
552     strcpy(r1, r2);
553     sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
554 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
555 greg 1.1 return(rval);
556     }
557     /* run inner section */
558     sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
559     for ( ; i <= 4*mg_nqcdivs; i++) {
560     theta = i*(PI/2)/mg_nqcdivs;
561     for (j = 0; j < 3; j++)
562     sprintf(p2[j], FLTFMT, cv->p[j] +
563     .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
564 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
565 greg 1.1 return(rval);
566 greg 1.10 if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
567 greg 1.1 return(rval);
568 greg 1.10 if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
569 greg 1.1 return(rval);
570     strcpy(r1, r2);
571     sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
572 greg 1.10 if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
573 greg 1.1 return(rval);
574     }
575     warpconends = 0;
576     return(MG_OK);
577     }
578    
579    
580     static int
581     e_cyl(ac, av) /* replace a cylinder with equivalent cone */
582     int ac;
583     char **av;
584     {
585     static char *avnew[6] = {mg_ename[MG_E_CONE]};
586    
587     if (ac != 4)
588     return(MG_EARGC);
589     avnew[1] = av[1];
590     avnew[2] = av[2];
591     avnew[3] = av[3];
592     avnew[4] = av[2];
593 greg 1.10 return(mg_handle(MG_E_CONE, 5, avnew));
594 greg 1.1 }
595    
596    
597     static int
598     e_ring(ac, av) /* turn a ring into polygons */
599     int ac;
600     char **av;
601     {
602     static char p3[3][24], p4[3][24];
603     static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
604     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
605     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
606     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
607     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
608     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
609     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
610     static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
611     register C_VERTEX *cv;
612     register int i, j;
613     FVECT u, v;
614     double minrad, maxrad;
615     int rv;
616     double theta, d;
617    
618     if (ac != 4)
619     return(MG_EARGC);
620     if ((cv = c_getvert(av[1])) == NULL)
621     return(MG_EUNDEF);
622 greg 1.3 if (is0vect(cv->n))
623 greg 1.1 return(MG_EILL);
624     if (!isflt(av[2]) || !isflt(av[3]))
625     return(MG_ETYPE);
626     minrad = atof(av[2]);
627 greg 1.3 round0(minrad);
628 greg 1.1 maxrad = atof(av[3]);
629     if (minrad < 0. || maxrad <= minrad)
630     return(MG_EILL);
631     /* initialize */
632     make_axes(u, v, cv->n);
633     for (j = 0; j < 3; j++)
634     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
635 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
636 greg 1.1 return(rv);
637 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
638 greg 1.1 return(rv);
639     if (minrad == 0.) { /* closed */
640     v1ent[3] = av[1];
641 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
642 greg 1.1 return(rv);
643 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
644 greg 1.1 return(rv);
645     for (i = 1; i <= 4*mg_nqcdivs; i++) {
646     theta = i*(PI/2)/mg_nqcdivs;
647 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
648 greg 1.1 return(rv);
649     for (j = 0; j < 3; j++)
650     sprintf(p3[j], FLTFMT, cv->p[j] +
651     maxrad*u[j]*cos(theta) +
652     maxrad*v[j]*sin(theta));
653 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
654 greg 1.1 return(rv);
655 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
656 greg 1.1 return(rv);
657 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
658 greg 1.1 return(rv);
659     }
660     } else { /* open */
661 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
662 greg 1.1 return(rv);
663     for (j = 0; j < 3; j++)
664     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
665 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
666 greg 1.1 return(rv);
667     v1ent[3] = "_rv4";
668     for (i = 1; i <= 4*mg_nqcdivs; i++) {
669     theta = i*(PI/2)/mg_nqcdivs;
670 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
671 greg 1.1 return(rv);
672 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
673 greg 1.1 return(rv);
674     for (j = 0; j < 3; j++) {
675     d = u[j]*cos(theta) + v[j]*sin(theta);
676     sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
677     sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
678     }
679 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
680 greg 1.1 return(rv);
681 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
682 greg 1.1 return(rv);
683 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
684 greg 1.1 return(rv);
685 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
686 greg 1.1 return(rv);
687 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
688 greg 1.1 return(rv);
689     }
690     }
691     return(MG_OK);
692     }
693    
694    
695     static int
696     e_cone(ac, av) /* turn a cone into polygons */
697     int ac;
698     char **av;
699     {
700     static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
701     static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
702     static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
703     static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
704     static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
705     static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
706     static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
707     static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
708     static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
709     static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
710     register C_VERTEX *cv1, *cv2;
711     register int i, j;
712     FVECT u, v, w;
713     double rad1, rad2;
714     int sgn;
715     double n1off, n2off;
716     double d;
717     int rv;
718     double theta;
719    
720     if (ac != 5)
721     return(MG_EARGC);
722     if ((cv1 = c_getvert(av[1])) == NULL ||
723     (cv2 = c_getvert(av[3])) == NULL)
724     return(MG_EUNDEF);
725     if (!isflt(av[2]) || !isflt(av[4]))
726     return(MG_ETYPE);
727     rad1 = atof(av[2]);
728 greg 1.3 round0(rad1);
729 greg 1.1 rad2 = atof(av[4]);
730 greg 1.3 round0(rad2);
731 greg 1.1 if (rad1 == 0.) {
732     if (rad2 == 0.)
733     return(MG_EILL);
734     } else if (rad2 != 0.) {
735     if (rad1 < 0. ^ rad2 < 0.)
736     return(MG_EILL);
737     } else { /* swap */
738     C_VERTEX *cv;
739    
740     cv = cv1;
741     cv1 = cv2;
742     cv2 = cv;
743     d = rad1;
744     rad1 = rad2;
745     rad2 = d;
746     }
747     sgn = rad2 < 0. ? -1 : 1;
748     /* initialize */
749     for (j = 0; j < 3; j++)
750     w[j] = cv1->p[j] - cv2->p[j];
751     if ((d = normalize(w)) == 0.)
752     return(MG_EILL);
753     n1off = n2off = (rad2 - rad1)/d;
754 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
755     d = atan(n2off) - (PI/4)/mg_nqcdivs;
756     if (d <= -PI/2+FTINY)
757     n2off = -FHUGE;
758     else
759     n2off = tan(d);
760     }
761 greg 1.1 make_axes(u, v, w);
762     for (j = 0; j < 3; j++) {
763     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
764 greg 1.3 if (n2off <= -FHUGE)
765     sprintf(n3[j], FLTFMT, -w[j]);
766     else
767     sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
768 greg 1.1 }
769 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
770 greg 1.1 return(rv);
771 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
772 greg 1.1 return(rv);
773 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
774 greg 1.1 return(rv);
775     if (rad1 == 0.) { /* triangles */
776     v1ent[3] = av[1];
777 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
778 greg 1.1 return(rv);
779     for (j = 0; j < 3; j++)
780     sprintf(n4[j], FLTFMT, w[j]);
781 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
782 greg 1.1 return(rv);
783     for (i = 1; i <= 4*mg_nqcdivs; i++) {
784     theta = sgn*i*(PI/2)/mg_nqcdivs;
785 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
786 greg 1.1 return(rv);
787     for (j = 0; j < 3; j++) {
788     d = u[j]*cos(theta) + v[j]*sin(theta);
789     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
790 greg 1.3 if (n2off > -FHUGE)
791     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
792 greg 1.1 }
793 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
794 greg 1.1 return(rv);
795 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
796 greg 1.1 return(rv);
797 greg 1.3 if (n2off > -FHUGE &&
798 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
799 greg 1.1 return(rv);
800 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
801 greg 1.1 return(rv);
802     }
803     } else { /* quads */
804     v1ent[3] = "_cv4";
805 greg 1.3 if (warpconends) { /* hack for e_sph and e_torus */
806     d = atan(n1off) + (PI/4)/mg_nqcdivs;
807     if (d >= PI/2-FTINY)
808     n1off = FHUGE;
809     else
810     n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
811     }
812 greg 1.1 for (j = 0; j < 3; j++) {
813     sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
814 greg 1.3 if (n1off >= FHUGE)
815     sprintf(n4[j], FLTFMT, w[j]);
816     else
817     sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
818 greg 1.1 }
819 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
820 greg 1.1 return(rv);
821 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
822 greg 1.1 return(rv);
823 greg 1.10 if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
824 greg 1.1 return(rv);
825     for (i = 1; i <= 4*mg_nqcdivs; i++) {
826     theta = sgn*i*(PI/2)/mg_nqcdivs;
827 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
828 greg 1.1 return(rv);
829 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
830 greg 1.1 return(rv);
831     for (j = 0; j < 3; j++) {
832     d = u[j]*cos(theta) + v[j]*sin(theta);
833     sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
834 greg 1.3 if (n2off > -FHUGE)
835     sprintf(n3[j], FLTFMT, d + w[j]*n2off);
836 greg 1.1 sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
837 greg 1.3 if (n1off < FHUGE)
838     sprintf(n4[j], FLTFMT, d + w[j]*n1off);
839 greg 1.1 }
840 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
841 greg 1.1 return(rv);
842 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
843 greg 1.1 return(rv);
844 greg 1.3 if (n2off > -FHUGE &&
845 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
846 greg 1.1 return(rv);
847 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
848 greg 1.1 return(rv);
849 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
850 greg 1.1 return(rv);
851 greg 1.3 if (n1off < FHUGE &&
852 greg 1.10 (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
853 greg 1.1 return(rv);
854 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
855 greg 1.1 return(rv);
856     }
857 greg 1.4 }
858     return(MG_OK);
859     }
860    
861    
862     static int
863     e_prism(ac, av) /* turn a prism into polygons */
864     int ac;
865     char **av;
866     {
867     static char p[3][24];
868     static char *vent[4] = {mg_ename[MG_E_VERTEX],NULL,"="};
869     static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
870     char *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
871     double length;
872     FVECT v1, v2, v3, norm;
873     register C_VERTEX *cv;
874     C_VERTEX *cv0;
875     int rv;
876     register int i, j;
877    
878     if (ac < 5)
879     return(MG_EARGC);
880 greg 1.5 if (!isflt(av[ac-1]))
881 greg 1.4 return(MG_ETYPE);
882 greg 1.5 length = atof(av[ac-1]);
883 greg 1.4 if (length <= FTINY && length >= -FTINY)
884     return(MG_EILL);
885     /* do bottom face */
886     newav[0] = mg_ename[MG_E_FACE];
887     for (i = 1; i < ac-1; i++)
888 greg 1.5 newav[i] = av[i];
889 greg 1.4 newav[i] = NULL;
890 greg 1.10 if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
891 greg 1.4 return(rv);
892     /* compute face normal */
893 greg 1.7 if ((cv0 = c_getvert(av[1])) == NULL)
894 greg 1.4 return(MG_EUNDEF);
895     norm[0] = norm[1] = norm[2] = 0.;
896     v1[0] = v1[1] = v1[2] = 0.;
897     for (i = 2; i < ac-1; i++) {
898 greg 1.5 if ((cv = c_getvert(av[i])) == NULL)
899 greg 1.4 return(MG_EUNDEF);
900     v2[0] = cv->p[0] - cv0->p[0];
901     v2[1] = cv->p[1] - cv0->p[1];
902     v2[2] = cv->p[2] - cv0->p[2];
903     fcross(v3, v1, v2);
904     norm[0] += v3[0];
905     norm[1] += v3[1];
906     norm[2] += v3[2];
907     VCOPY(v1, v2);
908     }
909     if (normalize(norm) == 0.)
910     return(MG_EILL);
911     /* create moved vertices */
912     for (i = 1; i < ac-1; i++) {
913     sprintf(nvn[i-1], "_pv%d", i);
914     vent[1] = nvn[i-1];
915 greg 1.10 if ((rv = mg_handle(MG_E_VERTEX, 3, vent)) != MG_OK)
916 greg 1.4 return(rv);
917 greg 1.5 cv = c_getvert(av[i]); /* checked above */
918 greg 1.4 for (j = 0; j < 3; j++)
919     sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
920 greg 1.10 if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
921 greg 1.4 return(rv);
922     newav[ac-1-i] = nvn[i-1]; /* reverse */
923     }
924     /* do top face */
925 greg 1.10 if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
926 greg 1.4 return(rv);
927     /* do the side faces */
928     newav[5] = NULL;
929 greg 1.5 newav[3] = av[ac-2];
930 greg 1.4 newav[4] = nvn[ac-3];
931     for (i = 1; i < ac-1; i++) {
932     newav[1] = nvn[i-1];
933 greg 1.5 newav[2] = av[i];
934 greg 1.10 if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
935 greg 1.4 return(rv);
936     newav[3] = newav[2];
937     newav[4] = newav[1];
938 greg 1.6 }
939     return(MG_OK);
940     }
941    
942    
943     static int
944     e_cspec(ac, av) /* handle spectral color */
945     int ac;
946     char **av;
947     {
948     static char xbuf[24], ybuf[24];
949     static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};
950     int rv;
951    
952     c_ccvt(c_ccolor, C_CSXY);
953     /* if it's really their handler, use it */
954     if (mg_ehand[MG_E_CXY] != c_hcolor) {
955     sprintf(xbuf, "%.4f", c_ccolor->cx);
956     sprintf(ybuf, "%.4f", c_ccolor->cy);
957 greg 1.10 if ((rv = mg_handle(MG_E_CXY, 3, ccom)) != MG_OK)
958 greg 1.6 return(rv);
959     }
960     return(MG_OK);
961     }
962    
963    
964     static int
965     e_cmix(ac, av) /* handle mixing of colors */
966     int ac;
967     char **av;
968     {
969     char wl[2][6], vbuf[C_CNSS][24];
970     char *newav[C_CNSS+4];
971     int rv;
972     register int i;
973     /*
974     * Contorted logic works as follows:
975     * 1. the colors are already mixed in c_hcolor() support function
976     * 2. if we would handle a spectral result, make sure it's not
977     * 3. if c_hcolor() would handle a spectral result, don't bother
978     * 4. otherwise, make cspec entity and pass it to their handler
979     * 5. if we have only xy results, handle it as c_spec() would
980     */
981     if (mg_ehand[MG_E_CSPEC] == e_cspec)
982     c_ccvt(c_ccolor, C_CSXY);
983     else if (c_ccolor->flags & C_CDSPEC) {
984     if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
985     sprintf(wl[0], "%d", C_CMINWL);
986     sprintf(wl[1], "%d", C_CMAXWL);
987     newav[0] = mg_ename[MG_E_CSPEC];
988     newav[1] = wl[0];
989     newav[2] = wl[1];
990     for (i = 0; i < C_CNSS; i++) {
991     sprintf(vbuf[i], "%.6f",
992     (double)c_ccolor->ssamp[i] /
993     c_ccolor->ssum);
994     newav[i+3] = vbuf[i];
995     }
996     newav[C_CNSS+3] = NULL;
997 greg 1.10 if ((rv = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
998 greg 1.6 return(rv);
999     }
1000     return(MG_OK);
1001     }
1002     if (mg_ehand[MG_E_CXY] != c_hcolor) {
1003     sprintf(vbuf[0], "%.4f", c_ccolor->cx);
1004     sprintf(vbuf[1], "%.4f", c_ccolor->cy);
1005     newav[0] = mg_ename[MG_E_CXY];
1006     newav[1] = vbuf[0];
1007     newav[2] = vbuf[1];
1008     newav[3] = NULL;
1009 greg 1.10 if ((rv = mg_handle(MG_E_CXY, 3, newav)) != MG_OK)
1010 greg 1.6 return(rv);
1011 greg 1.1 }
1012     return(MG_OK);
1013     }