ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/mgfdoc.tr
Revision: 1.9
Committed: Wed Nov 22 12:23:27 1995 UTC (28 years, 5 months ago) by greg
Content type: application/x-troff
Branch: MAIN
Changes since 1.8: +5 -1 lines
Log Message:
made mgfilt expand included files for version conformancy

File Contents

# Content
1 .\" SCCSid "$SunId$ LBL"
2 .nr PS 11
3 .ps 11
4 .nr VS 12
5 .vs 12
6 .nr PD .5v
7 .ds LF MGF
8 .ds RF Version 1.0
9 .DA May 1995
10 .TL
11 The Materials and Geometry Format
12 .AU
13 Greg Ward
14 .br
15 Lawrence Berkeley Laboratory
16 .NH
17 Introduction
18 .LP
19 The Materials and Geometry Format (referred to henceforth as MGF)
20 is a description language for 3-dimensional environments expressly
21 suited to visible light simulation and rendering.
22 The materials are physically-based and rely on standard and
23 well-accepted definitions of color, reflectance and transmittance
24 for good accuracy and reproducibility.
25 The geometry is based on boundary representation using simple
26 geometric primitives such as polygons, spheres and cones.
27 The file format itself is terse but human-readable ASCII text.
28 .NH 2
29 What makes MGF special?
30 .LP
31 There are three principal reasons to use MGF as an input language for
32 lighting simulation and physically-based rendering:
33 .RS
34 .IP 1.
35 It's the only existing format that describes materials physically.
36 .IP 2.
37 It is endorsed by the Illuminating Engineering Society of North
38 America (IESNA) as part of their LM-63-1995 standard for luminaire data.
39 .IP 3.
40 It's easy and fun to support since it comes with a standard parser
41 and sample scenes and objects at the web site,
42 "http://radsite.lbl.gov/mgf/HOME.html".
43 .RE
44 .LP
45 The standard parser provides both immediate and a long-term
46 benefits, since it presents a programming interface that is more
47 stable even than the language itself.
48 Unlike AutoCAD DXF and other de facto standards, a change to the
49 language will not break existing programs.
50 This is because the parser gives the calling software only those
51 entities it can handle.
52 If the translator understands only polygons, it will be given only
53 polygons.
54 If a new geometric primitive is included in a later version of the
55 standard, the new parser that comes with it will still be able to
56 express this entity as polygons.
57 Thus, the urgency of modifying code to support a changing standard
58 is removed, and long-term stability is assured.
59 .LP
60 This notion of
61 .I extensibility
62 is a cornerstone of the format, and it goes well beyond the
63 extensibility of other languages because is guarantees that new
64 versions of the standard will not break existing programs, and the
65 new information will be used as much as possible.
66 Other languages either require that all translators stay up to date
67 with the latest standard, or allow forward compatibility by simply
68 .I ignoring
69 new entities.
70 In MGF, if NURBS are added at some point and the translator or
71 loader does not handle them directly, the new version of the parser
72 will automatically convert them to smoothed polygons without
73 changing a single line of the calling program.
74 It is merely necessary to link to the new library, and all the new
75 entities are supported\(dg.
76 .FS
77 \(dgIf an old version of the parser encounters new entities it does
78 not recognize, the default action is to ignore them, printing a warning
79 message.
80 This may be overridden to support custom entities, but such
81 practice is discouraged because it weakens the standard.
82 .FE
83 .NH 2
84 What does MGF look like?
85 .LP
86 MGF has a simple entity-per-line structure, with a similar
87 appearance to Wavefront's .OBJ format.
88 Each entity is specified by a short keyword, and
89 arguments are separated by white space (tabs and/or spaces).
90 A newline may be escaped with a backslash ('\\'), in which case it
91 counts as a space.
92 Lines and continued lines may have up to 4096 characters, including
93 newlines, tabs and spaces.
94 A comment is an ignored entity whose keyword is the pound sign ('#').
95 .LP
96 Here is an MGF file that describes a simple two-drawer file cabinet:
97 .DS
98 # Conversion from inches to meters
99 xf -s .0254
100 # Surface material
101 m burgundy_formica =
102 c
103 cxy .362 .283
104 rd .0402
105 c
106 rs .0284 .05
107 sides 1
108 # Cabinet vertices
109 v fc.xy =
110 p .05 0 0
111 v fc.xY =
112 p .05 18 0
113 v fc.XY =
114 p 35.95 18 0
115 v fc.Xy =
116 p 35.95 0 0
117 # Cabinet
118 prism fc.xy fc.xY fc.XY fc.Xy 24
119 # Drawer vertices
120 v fcd.Xz =
121 p 34 0 0
122 v fcd.XZ =
123 p 34 0 10
124 v fcd.xZ =
125 p 0 0 10
126 v fcd.xz =
127 p 0 0 0
128 # Two drawers
129 o drawer
130 xf -t 1 18.1 2 -a 2 -t 0 0 11
131 prism fcd.xz fcd.Xz fcd.XZ fcd.xZ .9
132 xf
133 o
134 # End of units conversion
135 xf
136 .DE
137 .NH 2
138 MGF's place in the world of standards
139 .LP
140 MGF was developed initially to support detailed geometric
141 description of light fixtures for the IESNA luminaire data standard,
142 publication LM-63\(dg.
143 .FS
144 \(dgTo obtain the latest version of this standard, write to:
145 Illuminating Engineering Society of North America,
146 345 East 47th St.,
147 New York, NY 10017.
148 .FE
149 Existing standards for geometric description were either too
150 cumbersome (e.g.
151 .I Radiance)
152 or did not include physical materials (e.g. IGES).
153 It was noted early on that a standard able to fully describe
154 luminaires would necessarily be
155 capable of describing other objects as well; indeed whole
156 environments could be defined this way.
157 Since the descriptions would be physical, they could serve as input
158 to both lighting simulation and rendering software.
159 A standard language for describing the appearance of physical
160 objects has been lacking for some time, and current efforts in this
161 direction (i.e. STEP) seem several years away from fruition.
162 (There are other languages for describing realistic scenes
163 that deserve mention here, such as VRML and the Manchester Scene
164 Description Language, but none give specific attention to physical
165 material properties and are thus unsuitable for lighting
166 simulation.)\0
167 .LP
168 In short, we saw this as an opportunity to offer the lighting and
169 rendering community a simple and easy-to-support standard for
170 describing environments in a physically valid way.
171 Our hope is that this will promote sharing color, material and object
172 libraries as well as complete scene descriptions.
173 Sharing libraries is of obvious benefit to users and software
174 developers alike.
175 Sharing scenes should also permit
176 comparisons between rendering systems and
177 intervalidation of lighting calculations.
178 As anyone who works in this field knows, modeling is the most
179 difficult step in creating any simulation or rendering, and there is
180 no excuse for this data being held prisoner by a proprietary data
181 format.
182 .NH
183 MGF Basics
184 .LP
185 The default coordinate system in MGF is right-handed with
186 distances given in meters, though this can be effectively changed
187 by specifying a global transformation.
188 The transformation context is affected by the
189 .UL xf
190 entity, and the whole of MGF can be understood in terms of entities
191 and contexts.
192 .NH 2
193 Entities and Contexts
194 .LP
195 An
196 .I entity
197 in MGF is any non-blank line, which must be one of a finite set of
198 command keywords followed by zero or more arguments.
199 (As mentioned previously, an entity may continue over multiple lines
200 by escaping the newline with a backslash.)\0
201 Table 1 gives a list of entities and their expected arguments.
202 Section 3 gives more detailed information on each entity.
203 .KF
204 .TS
205 expand, box;
206 l l l.
207 Keyword Arguments Interpretation
208 = = =
209 # [anything ...] a comment
210 o [name] begin/end object context
211 xf [xform] begin/end transformation context
212 i pathname [xform] include file (with transformation)
213 ies pathname [-m f][xform] include IES luminaire (with transformation)
214 _ _ _
215 c [id [= [template]]] get/set color context
216 cxy x y set CIE (x,y) chromaticity for current color
217 cspec l_min l_max v1 v2 ... set relative spectrum for current color
218 cct temperature set spectrum based on black body temperature
219 cmix w1 c1 w2 c2 ... mix named colors to make current color
220 _ _ _
221 m [id [= [template]]] get/set material context
222 sides {1|2} set number of sides for current material
223 rd rho_d set diffuse reflectance for current material
224 td tau_d set diffuse transmittance for current material
225 ed epsilon_d set diffuse emittance for current material
226 rs rho_s alpha_r set specular reflectance for current material
227 ts tau_s alpha_t set specular transmittance for current material
228 ir n_real n_imag set index of refraction for current material
229 _ _ _
230 v [id [= [template]]] get/set vertex context
231 p x y z set point position for current vertex
232 n dx dy dz set surface normal for current vertex
233 _ _ _
234 f v1 v2 v3 ... polygon using current material, spec. vertices
235 sph vc radius sphere
236 cyl v1 radius v2 truncated right cylinder (open-ended)
237 cone v1 rad1 v2 rad2 truncated right cone (open-ended)
238 prism v1 v2 v3 ... length truncated right prism (closed solid)
239 ring vc rmin rmax circular ring with inner and outer radii
240 torus vc rmin rmax circular torus with inner and outer radii
241 .TE
242 .QP
243 .B "Table 1".
244 MGF entities and their arguments.
245 Arguments in brackets are optional.
246 Arguments in curly braces mean one of the given choices must
247 appear.
248 Ellipsis (...) mean that any number of arguments may be given.
249 .sp
250 .KE
251 .LP
252 A
253 .I context
254 describes the current state of the interpreter, and affects or is
255 affected by certain entities as they are read in.
256 MGF contexts can be divided into two types,
257 .I "hierarchical contexts"
258 and
259 .I "named contexts".
260 .LP
261 Hierarchical contexts are manipulated by a single entity and
262 have an associated "stack" onto which new
263 contexts are "pushed" using the entity.
264 The last context may be "popped" by giving the entity again with no
265 arguments.
266 The two hierarchical contexts in MGF are the current transformation,
267 manipulated with the
268 .UL xf
269 entity, and the current object, manipulated with the
270 .UL o
271 entity.
272 .KF
273 .TS
274 expand, allbox;
275 l c l l l.
276 Context Cntl. Entity Default Value Field Entities Affects
277 = = = = =
278 Object o - - -
279 Transform xf - - T{
280 f, sph, cyl, cone,
281 ring, torus, prism
282 T}
283 Material m 2-sided black T{
284 sides, rd, td,
285 ed, rs, ts
286 T} T{
287 f, sph, cyl, cone,
288 ring, torus, prism
289 T}
290 Color c neutral grey T{
291 cxy, cspec, cct, cmix
292 T} T{
293 rd, td, ed, rs, ts
294 T}
295 Vertex v T{
296 (0,0,0),
297 no normal
298 T} p, n T{
299 f, sph, cyl, cone,
300 ring, torus, prism
301 T}
302 .TE
303 .QP
304 .B "Table 2".
305 MGF contexts and their related entities and default values.
306 .sp
307 .KE
308 .LP
309 Named contexts in contrast hold sets of values that are swapped
310 in and out one at a time.
311 There are three named contexts in MGF, the current material, the
312 current color and the current vertex.
313 Each one may be associated with an identifier (any non-white
314 sequence of printing ASCII characters beginning with a letter),
315 and one of each is in effect at any given time.
316 Initially, these contexts are unnamed, and invoking an unnamed
317 context always returns to the original (default) values.
318 (See Table 2 for a list of contexts, their related
319 entities and defaults.)\0
320 .LP
321 It is easiest to think of a context as a "scratch space" where
322 values are written by some entities and read by others.
323 Naming a context allows us to reestablish the same scratch space
324 later, usually for reference but it can be altered as well.
325 Let us say we wanted to create a smooth blue plastic material with a
326 diffuse reflectance of 20% and a specular reflectance of 4%:
327 .DS
328 # Establish a new material context called "blue_plastic"
329 m blue_plastic =
330 # Reestablish a previous color context called "blue"
331 c blue
332 # Set the diffuse reflectance, which uses the above color
333 rd .20
334 # Get the unnamed color context (always starts out grey)
335 c
336 # Set the specular reflectance, which is uncolored
337 rs .04 0
338 # We're done, the current material context is now "blue_plastic"
339 .DE
340 Note that the above assumes that we have previously defined a color
341 context named "blue".
342 If we forgot to do that, the above description would generate an
343 "undefined" error.
344 The color context affects the material context indirectly because it
345 is read by the specular and diffuse reflectance entities, which are
346 in turn written to the current material.
347 It is not necessary to indent the entities that affect the material
348 definition, but it improves readability.
349 Note also that there is no explicit end to the material definition.
350 As long as a context remains in effect, its contents may be altered
351 by its field entities.
352 This will not affect previous uses of the context, however.
353 For example, a surface entity following the above definition will
354 have the specified color and reflectance, and later changes to the
355 material "blue_plastic" will have no effect on it.
356 .LP
357 Each of the three named contexts has an associated entity that
358 controls it.
359 The material context is controlled by the
360 .UL m
361 entity, the color context is controlled by the
362 .UL c
363 entity, and the vertex context is controlled by the
364 .UL v
365 entity.
366 There are exactly four forms for each entity.
367 The first form is the keyword by itself, which establishes
368 an unnamed context with predetermined default values.
369 This is a useful way to set values without worrying about saving
370 them for recall later.
371 The second form is to give the keyword with a previously defined
372 name.
373 This reestablishes a prior context for reuse.
374 The third form is to give the keyword with a name followed by an
375 equals sign.
376 (There must be a space between the name and the equals sign, since
377 it is a separate argument.)\0
378 This establishes a new context and assigns it the same default
379 values as the unnamed context.
380 The fourth and final form gives the keyword followed by a name then
381 an equals then the name of a previous context definition.
382 This establishes a new context for the first name, assigning the
383 values from the second named context rather than the usual defaults.
384 This is a convenient way create an alias or
385 to modify a context under a new name (i.e. "save as").
386 .NH 2
387 Hierarchical Contexts and Transformations
388 .LP
389 As mentioned in the last subsection, there are two hierarchical
390 contexts in MGF, the current object and the current transformation.
391 We will start by discussing the current object, since it is
392 the simpler of the two.
393 .NH 3
394 Objects
395 .LP
396 There is no particular need in lighting simulation or rendering to
397 name objects, but it may help the user
398 to know what object a particular surface is associated with.
399 The
400 .UL o
401 entity provides a convenient mechanism for associating names with
402 surfaces.
403 The basic use of this entity is as follows:
404 .DS
405 o object_name
406 [object entities...]
407 o subobject_name
408 [subobject entities...]
409 o
410 [more object entities and subobjects...]
411 o
412 .DE
413 The
414 .UL o
415 keyword by itself marks the end of an object context.
416 Any number of hierarchical context levels are supported, and there are no
417 rules governing the choice of object names except that they begin
418 with a letter and be made up of printing, non-white ASCII characters.
419 Indentation is not necessary of course, but it does improve
420 readability.
421 .NH 3
422 Transformations
423 .LP
424 MGF supports only rigid-body (i.e. non-distorting) transformations
425 with uniform scaling.
426 Unlike the other contexts, transformations have no associated
427 name, only arguments.
428 Thus, there is no way to reestablish a previous transformation other
429 than to give the same arguments over again.
430 Since the arguments are concise and self-explanatory, this was thought
431 sufficient.
432 The following transformation flags and
433 parameters are defined:
434 .TS
435 center;
436 l l.
437 -t dx dy dz translate objects along the given vector
438 -rx degrees rotate objects about the X-axis
439 -ry degrees rotate objects about the Y-axis
440 -rz degrees rotate objects about the Z-axis
441 -s scalefactor scale objects by the given factor
442 -mx mirror objects about the Y-Z plane
443 -my mirror objects about the X-Z plane
444 -mz mirror objects about the X-Y plane
445 -i N repeat the following arguments N times
446 -a N make an array of N geometric instances
447 .TE
448 Transform arguments have a cumulative effect.
449 That is, a rotation
450 about X of 20 degrees followed by a rotation about X of -50 degrees
451 results in a total rotation of -30 degrees.
452 However, if the two
453 rotations are separated by some translation vector, the cumulative
454 effect is quite different.
455 It is best to think of each argument as
456 acting on the included geometric objects, and each subsequent transformation
457 argument affects the objects relative to their new position/orientation.
458 .LP
459 For example, rotating an object about its center is most easily done
460 by translating
461 the object back to the origin, applying the desired rotation, and translating
462 it again back to its original position, like so:
463 .DS
464 # rotate an included object 20 degrees clockwise looking down
465 # an axis parallel to Y and passing through the point (15,0,-35)
466 xf -t -15 0 35 -ry -20 -t 15 0 -35
467 i object.mgf
468 xf
469 .DE
470 Note that the include entity,
471 .UL i,
472 permits a transformation to be given with it, so the above could
473 have been written more compactly as:
474 .DS
475 i object.mgf -t -15 0 35 -ry -20 -t 15 0 -35
476 .DE
477 .LP
478 Rotations are given in degrees counter-clockwise about a principal axis.
479 That is, with the thumb of the right hand pointing in the direction
480 of the axis, rotation follows the curl of the fingers.
481 .LP
482 The transform entity itself is cumulative, but in the reverse
483 order to its arguments.
484 That is, later transformations (i.e. enclosed transformations)
485 are prepended to existing (i.e. enclosing) ones.
486 A transform command
487 with no arguments is used to return to the previous condition.
488 It is
489 necessary that transforms and their end statements ("xf" by itself) be
490 balanced in a file, so that later or enclosing files are not affected.
491 .LP
492 Transformations apply only to geometric types, e.g. polygons, spheres, etc.
493 Vertices and the components that go into geometry are not directly affected.
494 This is to avoid confusion and the inadvertent multiple application of a
495 given transformation.
496 For example:
497 .DS
498 xf -t 5 0 0
499 v v1 =
500 p 0 10 0
501 n 0 0 1
502 xf -rx 180
503 # Transform now in effect is "-rx 180 -t 5 0 0"
504 ring v1 0 2
505 xf
506 xf
507 .DE
508 The final ring center is (5,-10,0) -- note that the vertex itself is
509 not affected by the transformation, only the geometry that calls on
510 it.
511 The normal orientation is (0,0,-1) due to the rotation about X,
512 which also reversed the sign of the central Y coordinate.
513 .NH 3
514 Arrays
515 .LP
516 The -a N transform specification causes the following transform
517 arguments to be repeated along with the contents of the included
518 objects N times.
519 The first instance of the geometry will be in its
520 initial location; the second instance will be repositioned according
521 to the named transformation; the third instance will be repositioned by
522 applying this transformation twice, and so on up to N-1 applications.
523 .LP
524 Multi-dimensional arrays may be specified with a single include
525 entity by giving multiple array commands separated by their
526 corresponding transforms.
527 A final transformation may be given
528 by preceding it with a -i 1 specification.
529 In other words, the
530 scope of an array command continues until the next -i or -a option.
531 .LP
532 The following MGF description places 60 spheres at a one unit spacing
533 in a 3x4x5 array, then moves the whole thing to an origin of
534 (15,30,45):
535 .DS
536 v v0 =
537 p 0 0 0
538 xf -a 3 -t 1 0 0 -a 4 -t 0 1 0 -a 5 -t 0 0 1 -i 1 -t 15 30 45
539 sph v0 0.1
540 xf
541 .DE
542 Note the "-i 1" in the specification, which marks the end of the
543 third array arguments before the final translation.
544 .NH 2
545 Detailed MGF Example
546 .LP
547 The following example of a simple room with a single door
548 and six file cabinets shows MGF in action, with copious comments to
549 help explain what's going on.
550 .LP
551 .DS
552 # "ceiling_tile" is a diffuse white surface with 75% reflectance:
553 # Create new named material context and clear it
554 m ceiling_tile =
555 # Specify one-sided material so we can see through from above
556 sides 1
557 # Set neutral color
558 c
559 # Set diffuse reflectance
560 rd .75
561 # "stainless_steel" is a mostly specular surface with 70% reflectance:
562 m stainless_steel =
563 sides 1
564 c
565 # Set specular reflectance to 50%, .08 roughness
566 rs .5 .08
567 # Other 20% reflectance is diffuse
568 rd .2
569
570 # The following materials were measured with a spectrophotometer:
571 m beige_paint =
572 sides 1
573 # Set diffuse spectral reflectance
574 c
575 # Spectrum measured in 10 nm increments from 400 to 700 nm
576 cspec 400 700 35.29 44.87 47.25 47.03 46.87 47.00 47.09 \\\\
577 47.15 46.80 46.17 46.26 48.74 51.08 51.31 51.10 \\\\
578 51.11 50.52 50.36 51.72 53.61 53.95 52.08 49.49 \\\\
579 48.30 48.75 49.99 51.35 52.75 54.44 56.34 58.00
580 rd 0.5078
581 # Neutral (grey) specular component
582 c
583 rs 0.0099 0.08000
584 m mottled_carpet =
585 sides 1
586 c
587 cspec 400 700 11.23 11.28 11.39 11.49 11.61 11.73 11.88 \\\\
588 12.02 12.12 12.19 12.30 12.37 12.37 12.36 12.34 \\\\
589 12.28 12.22 12.29 12.45 12.59 12.70 12.77 12.82 \\\\
590 12.88 12.98 13.24 13.67 14.31 15.55 17.46 19.75
591 rd 0.1245
592 m reddish_cloth =
593 # 2-sided so we can observe it from behind
594 sides 2
595 c
596 cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
597 32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
598 30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
599 33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
600 rd 0.3210
601 m burgundy_formica =
602 sides 1
603 c
604 cspec 400 700 3.86 3.74 3.63 3.51 3.34 3.21 3.14 \\\\
605 3.09 3.08 3.14 3.13 2.91 2.72 2.74 2.72 \\\\
606 2.60 2.68 3.40 4.76 6.05 6.65 6.75 6.68 \\\\
607 6.63 6.56 6.51 6.46 6.41 6.36 6.34 6.34
608 rd 0.0402
609 c
610 rs 0.0284 0.05000
611 m speckled_grey_formica =
612 sides 1
613 c
614 cspec 400 700 30.95 44.77 51.15 52.60 53.00 53.37 53.68 \\\\
615 54.07 54.33 54.57 54.85 55.20 55.42 55.51 55.54 \\\\
616 55.46 55.33 55.30 55.52 55.81 55.91 55.92 56.00 \\\\
617 56.22 56.45 56.66 56.72 56.58 56.44 56.39 56.39
618 rd 0.5550
619 c
620 rs 0.0149 0.15000
621
622 # 40' x 22' x 9' office space with no windows and one door
623
624 # All measurements are in inches, so enclose with a metric conversion:
625 xf -s .0254
626
627 # The room corner vertices:
628 v rc.xyz =
629 p 0 0 0
630 v rc.Xyz =
631 p 480 0 0
632 v rc.xYz =
633 p 0 264 0
634 v rc.xyZ =
635 p 0 0 108
636 v rc.XYz =
637 p 480 264 0
638 v rc.xYZ =
639 p 0 264 108
640 v rc.XyZ =
641 p 480 0 108
642 v rc.XYZ =
643 p 480 264 108
644
645 # The floor:
646 # Push object name
647 o floor
648 # Get previously defined carpet material
649 m mottled_carpet
650 # Polygonal face using defined vertices
651 f rc.xyz rc.Xyz rc.XYz rc.xYz
652 # Pop object name
653 o
654
655 # The ceiling:
656 o ceiling
657 m ceiling_tile
658 f rc.xyZ rc.xYZ rc.XYZ rc.XyZ
659 o
660
661 # The door outline vertices:
662 v do.xz =
663 p 216 0 0
664 v do.Xz =
665 p 264 0 0
666 v do.xZ =
667 p 216 0 84
668 v do.XZ =
669 p 264 0 84
670
671 # The walls:
672 o wall
673 m beige_paint
674 o x
675 f rc.xyz rc.xYz rc.xYZ rc.xyZ
676 o
677 o X
678 f rc.Xyz rc.XyZ rc.XYZ rc.XYz
679 o
680 o y
681 f rc.xyz rc.xyZ rc.XyZ rc.Xyz do.Xz do.XZ do.xZ do.xz
682 o
683 o Y
684 f rc.xYz rc.XYz rc.XYZ rc.xYZ
685 o
686 o
687
688 # The door and jam vertices:
689 v djo.xz =
690 p 216 .5 0
691 v djo.xZ =
692 p 216 .5 84
693 v djo.XZ =
694 p 264 .5 84
695 v djo.Xz =
696 p 264 .5 0
697 v dji.Xz =
698 p 262 .5 0
699 v dji.XZ =
700 p 262 .5 82
701 v dji.xZ =
702 p 218 .5 82
703 v dji.xz =
704 p 218 .5 0
705 v door.xz =
706 p 218 0 0
707 v door.xZ =
708 p 218 0 82
709 v door.XZ =
710 p 262 0 82
711 v door.Xz =
712 p 262 0 0
713
714 # The door, jam and knob
715 o door
716 m burgundy_formica
717 f door.xz door.xZ door.XZ door.Xz
718 o jam
719 m beige_paint
720 f djo.xz djo.xZ djo.XZ djo.Xz dji.Xz dji.XZ dji.xZ dji.xz
721 f djo.xz do.xz do.xZ djo.xZ
722 f djo.xZ do.xZ do.XZ djo.XZ
723 f djo.Xz djo.XZ do.XZ do.Xz
724 f dji.xz dji.xZ door.xZ door.xz
725 f dji.xZ dji.XZ door.XZ door.xZ
726 f dji.Xz door.Xz door.XZ dji.XZ
727 o
728 o knob
729 m stainless_steel
730 # Define vertices needed for curved geometry
731 v kb1 =
732 p 257 0 36
733 v kb2 =
734 p 257 .25 36
735 n 0 1 0
736 v kb3 =
737 p 257 2 36
738 # 1" diameter cylindrical base from kb1 to kb2
739 cyl kb1 1 kb2
740 # Ring at base of knob stem
741 ring kb2 .4 1
742 # Knob stem
743 cyl kb2 .4 kb3
744 # Spherical knob
745 sph kb3 .85
746 o
747 o
748
749 # Six file cabinets (36" wide each)
750 # ("filecab.inc" was given as an earlier example in Section 1.2)
751 o filecab.x
752 # include a file as an array of three 36" apart
753 i filecab.inc -t -36 0 0 -rz -90 -t 1 54 0 -a 3 -t 0 36 0
754 o
755 o filecab.X
756 # the other three cabinets
757 i filecab.inc -rz 90 -t 479 54 0 -a 3 -t 0 36 0
758 o
759
760 # End of transform from inches to meters:
761 xf
762
763 # The 10 recessed fluorescent ceiling fixtures
764 ies hlrs2gna.ies -t 1.2192 2.1336 2.74 -a 5 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
765 .DE
766 .bp
767 .NH
768 MGF Entity Reference
769 .LP
770 There are currently 28 entities in the MGF specification.
771 For ease of reference we have broken these into five categories:
772 .IP 1.
773 General
774 .TS
775 lw(.75i) lw(1.75i) lw(3i).
776 # [anything ...] a comment
777 o [name] begin/end object context
778 xf [xform] begin/end transformation context
779 i pathname [xform] include file (with transformation)
780 ies pathname [-m f][xform] include IES luminaire (with transformation)
781 .TE
782 .IP 2.
783 Color
784 .TS
785 lw(.75i) lw(1.75i) lw(3i).
786 c [id [= [template]]] get/set color context
787 cxy x y set CIE (x,y) chromaticity for current color
788 cspec l_min l_max v1 v2 ... set relative spectrum for current color
789 cct temperature set spectrum based on black body temperature
790 cmix w1 c1 w2 c2 ... mix named colors to make current color
791 .TE
792 .IP 3.
793 Material
794 .TS
795 lw(.75i) lw(1.75i) lw(3i).
796 m [id [= [template]]] get/set material context
797 sides {1|2} set number of sides for current material
798 rd rho_d set diffuse reflectance for current material
799 td tau_d set diffuse transmittance for current material
800 ed epsilon_d set diffuse emittance for current material
801 rs rho_s alpha_r set specular reflectance for current material
802 ts tau_s alpha_t set specular transmittance for current material
803 ir n_real n_imag set index of refraction for current material
804 .TE
805 .IP 4.
806 Vertex
807 .TS
808 lw(.75i) lw(1.75i) lw(3i).
809 v [id [= [template]]] get/set vertex context
810 p x y z set point position for current vertex
811 n dx dy dz set surface normal for current vertex
812 .TE
813 .IP 5.
814 Geometry
815 .TS
816 lw(.75i) lw(1.75i) lw(3i).
817 f v1 v2 v3 ... polygon using current material, spec. vertices
818 sph vc radius sphere
819 cyl v1 radius v2 truncated right cylinder (open-ended)
820 cone v1 rad1 v2 rad2 truncated right cone (open-ended)
821 prism v1 v2 v3 ... length truncated right prism (closed solid)
822 ring vc rmin rmax circular ring with inner and outer radii
823 torus vc rmin rmax circular torus with inner and outer radii
824 .TE
825 .ds LH General Entities
826 .ds RH #
827 .bp
828 .SH
829 NAME
830 .LP
831 # - a comment
832 .SH
833 SYNOPSIS
834 .LP
835 .B #
836 [
837 .I anything
838 ]
839 .SH
840 DESCRIPTION
841 .LP
842 A comment is a bit of text explanation.
843 Since it is an entity like any other (except that it has no effect),
844 there must be at least one space between the keyword (which is a
845 pound sign) and the "arguments," and the end of line may be escaped
846 as usual with the backslash character ('\\').
847 .LP
848 A comment may actually be used to hold auxiliary information such as
849 view parameters, which may be interpreted by some destination program.
850 Care should be taken under such circumstances that the user does not
851 inadvertently mung or mimic this information in other comments, and
852 it is therefore advisable to use an additional set of identifying
853 characters to distinguish such data.
854 .SH
855 EXAMPLE
856 .DS
857 # The following include file is in inches, so convert to meters
858 i cubgeom.inc -s .0254
859 # Stuff we don't want to see at the moment:
860 # i person.mgf -t 3 2 0
861 # ies hlrs3gna.ies -rz 90 -t 1.524 1.8288 2.74 \\\\
862 -a 6 -t 1.8288 0 0 -a 2 -t 0 3.048 0
863 .DE
864 .ds RH O
865 .bp
866 .SH
867 NAME
868 .LP
869 o - begin or end object context
870 .SH
871 SYNOPSIS
872 .LP
873 .B o
874 [
875 .I name
876 ]
877 .SH
878 DESCRIPTION
879 .LP
880 If
881 .I name
882 is given, we push a new object context onto the stack, which is to
883 say that we begin a new subobject by this name\(dg.
884 .FS
885 \(dgA name is any sequence of printing, non-white ASCII characters
886 beginning with a letter.
887 .FE
888 If the
889 .UL o
890 keyword is given by itself, then we pop the last object context off
891 the stack, which means that we leave the current subobject.
892 .LP
893 All geometry between the start of an object context and its matching
894 end statement is associated with the given name.
895 This may be used in modeling software to help identify objects and
896 subobjects, or it may be ignored altogether.
897 .LP
898 Object begin and end statements should be balanced in a file, and
899 care should be taken not to overlap transform
900 .UL (xf)
901 contexts with object contexts, especially when arrays are involved.
902 This is because the standard parser will assign object contexts to
903 instanced geometry, which can get confused with other object
904 contexts if a clear enclosure is not maintained.
905 .SH
906 EXAMPLE
907 .DS
908 o body
909 o torso
910 i torso.mgf
911 o
912 o arm
913 o left
914 i leftarm.mgf
915 o
916 o right
917 i leftarm.mgf -mx
918 o
919 o
920 o
921 .DE
922 .SH
923 SEE ALSO
924 .LP
925 .UL xf
926 .ds RH XF
927 .bp
928 .SH
929 NAME
930 .LP
931 xf - begin or end transformation context
932 .SH
933 SYNOPSIS
934 .LP
935 .B xf
936 [
937 .I transform
938 ]
939 .SH
940 DESCRIPTION
941 .LP
942 If a set of
943 .I transform
944 arguments are given, we push a new transformation context onto the
945 stack.
946 If the
947 .UL xf
948 keyword is given by itself, then we pop the last transformation
949 context off the stack.
950 The total transformation in effect at any given time is
951 computed by prepending each set subcontext arguments onto those of
952 its enclosing context.
953 This and other details about transformation specifications
954 are explained in some detail in section 2.2.2.
955 .LP
956 The following transformation flags and
957 parameters are defined:
958 .TS
959 center;
960 l l.
961 -t dx dy dz translate objects along the given vector
962 -rx degrees rotate objects about the X-axis
963 -ry degrees rotate objects about the Y-axis
964 -rz degrees rotate objects about the Z-axis
965 -s scalefactor scale objects by the given factor
966 -mx mirror objects about the Y-Z plane
967 -my mirror objects about the X-Z plane
968 -mz mirror objects about the X-Y plane
969 -i N repeat the following arguments N times
970 -a N make an array of N geometric instances
971 .TE
972 .SH
973 EXAMPLE
974 .DS
975 # Create 3x5 array of evenly-spaced spheres (grid size = 3)
976 v vc =
977 p 0 0 0
978 xf -t 1 1 10 -a 3 -t 3 0 0 -a 5 -t 0 3 0
979 sph vc .5
980 xf
981 .DE
982 .SH
983 SEE ALSO
984 .LP
985 .UL i,
986 .UL ies,
987 .UL o
988 .ds RH I
989 .bp
990 .SH
991 NAME
992 .LP
993 i - include MGF data file
994 .SH
995 SYNOPSIS
996 .LP
997 .B i
998 .I pathname
999 [
1000 .I transform
1001 ]
1002 .SH
1003 DESCRIPTION
1004 .LP
1005 Include the information contained in the file
1006 .I pathname.
1007 If a
1008 .I transform
1009 specification is given, then it will be applied as though the
1010 include statement were enclosed by beginning and ending
1011 .UL xf
1012 entities with this transformation.
1013 .LP
1014 The
1015 .I pathname
1016 will be interpreted relative to the enclosing MGF file.
1017 That is, if the file containing the include statement is in some
1018 parent or subdirectory, then the given pathname is appended to this
1019 directory.
1020 It is illegal to specify a
1021 .I pathname
1022 relative to the root directory, and the MGF standard requires that
1023 all filenames adhere to the ISO-9660 8.3 name format for maximum
1024 portability between systems.
1025 The directory separator is defined to be slash ('/'), and drive
1026 specifications (such as "c:") are not allowed.
1027 All pathnames should be given in lower case, and will be converted to
1028 upper case on systems that require it.
1029 (That way, there are no accidental name collisions.)\0
1030 .LP
1031 The suggested suffix for MGF-adherent files is ".mgf".
1032 Files that are not in metric units but are in MGF may be given any
1033 suffix, but we suggest using ".inc" as a convention.
1034 .SH
1035 EXAMPLE
1036 .DS
1037 # Define vertices for 62x30" partition
1038 i pv62x30.inc
1039 # Insert 2 62x30" partitions
1040 o cpart1
1041 i partn.inc -t 75 130.5 0
1042 o
1043 o cpart3
1044 i partn.inc -t 186 130.5 0
1045 o
1046 # Define vertices for 62x36" partition
1047 i pv62x36.inc
1048 # Insert 62x36" partition
1049 o cpart2
1050 i partn.inc -t 105 130.5 0
1051 o
1052 .DE
1053 .SH
1054 SEE ALSO
1055 .LP
1056 .UL ies,
1057 .UL o,
1058 .UL xf
1059 .ds RH IES
1060 .bp
1061 .SH
1062 NAME
1063 .LP
1064 ies - include IESNA luminaire file
1065 .SH
1066 SYNOPSIS
1067 .LP
1068 .B ies
1069 .I pathname
1070 [
1071 .B \-m
1072 .I multiplier
1073 ]
1074 [
1075 .I transform
1076 ]
1077 .SH
1078 DESCRIPTION
1079 .LP
1080 Load the IES standard luminaire information contained in the file
1081 .I pathname.
1082 If a
1083 .I multiplier
1084 is given, all candela values will be multiplied by this factor.
1085 (This option must appear first if present.)\0
1086 If a
1087 .I transform
1088 specification is given, then it will be applied as though the
1089 statement were enclosed by beginning and ending
1090 .UL xf
1091 entities with this transformation.
1092 .LP
1093 The
1094 .I pathname
1095 will be interpreted relative to the enclosing MGF file, and all
1096 restrictions discussed under the
1097 .UL i
1098 entity also apply to the IES file name.
1099 The suggested suffix is ".ies", but this has not been followed
1100 consistently by lighting manufacturers.
1101 .SH
1102 EXAMPLE
1103 .DS
1104 # Insert 10 2x4' fluorescent troffers in two groups
1105 ies cf9pr240.ies -t 3.6576 2.1336 2.74 -a 3 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
1106 ies cf9pr240.ies -rz 90 -t 1.2192 1.8288 2.74 \\\\
1107 -a 2 -t 9.7536 0 0 -a 2 -t 0 3.048 0
1108 .DE
1109 .SH
1110 SEE ALSO
1111 .LP
1112 .UL i,
1113 .UL o,
1114 .UL xf
1115 .ds LH Color Entities
1116 .ds RH C
1117 .bp
1118 .SH
1119 NAME
1120 .LP
1121 c - get or set the current color context
1122 .SH
1123 SYNOPSIS
1124 .LP
1125 .B c
1126 [
1127 .I id
1128 [
1129 .B =
1130 [
1131 .I template
1132 ]
1133 ]
1134 ]
1135 .SH
1136 DESCRIPTION
1137 .LP
1138 If the
1139 .UL c
1140 keyword is given by itself, then it establishes the unnamed color
1141 context, which is neutral (i.e. equal-energy) grey.
1142 This context may be modified, but the changes will not be saved.
1143 .LP
1144 If the keyword is followed by an identifier
1145 .I id,
1146 then it reestablishes a previous context.
1147 If the specified context was never defined, an error will result.
1148 .LP
1149 If the entity is given with an identifier
1150 followed by an equals sign ('='), then a new context is established,
1151 and cleared to the default neutral grey.
1152 (Note that the equals sign must be separated from other
1153 arguments by white space to be properly recognized.)\0
1154 If the equals sign is followed by a second identifier
1155 .I template,
1156 then this previously defined color will be used as a source of
1157 default values rather than grey.
1158 This is most useful for establishing a color alias.
1159 .SH
1160 EXAMPLE
1161 .DS
1162 # Define the color "red32"
1163 c red32 =
1164 cxy .42 .15
1165 # Make "cabinet_color" an alias for "red32"
1166 c cabinet_color = red32
1167
1168 # Later in another part of the description...
1169
1170 # Get our cabinet color
1171 c cabinet_color
1172 # Get the geometry
1173 i cabgeom.mgf
1174 .DE
1175 .SH
1176 SEE ALSO
1177 .LP
1178 .UL cct,
1179 .UL cmix,
1180 .UL cspec,
1181 .UL cxy,
1182 .UL m
1183 .ds RH CXY
1184 .bp
1185 .SH
1186 NAME
1187 .LP
1188 cxy - set the CIE (x,y) chromaticity for the current color
1189 .SH
1190 SYNOPSIS
1191 .LP
1192 .B cxy
1193 .I "x y"
1194 .SH
1195 DESCRIPTION
1196 .LP
1197 This entity sets the current color using (x,y) chromaticity
1198 coordinates for the 1931 CIE standard 2 degree observer.
1199 Legal values for
1200 .I x
1201 and
1202 .I y
1203 are greater than zero and sum to less than one, and more
1204 specifically they must fit within the curve of the visible spectrum.
1205 The
1206 .I x
1207 coordinate roughly corresponds to the red part of the spectrum and
1208 the
1209 .I y
1210 coordinate corresponds to the green.
1211 The CIE z coordinate is implicit, since it is equal to (1-x-y).
1212 .LP
1213 All colors in MGF are absolute, thus colorimeter measurements should
1214 be conducted the same for surfaces as for light sources.
1215 Applying a standard illuminant calculation is redundant and
1216 introduces inaccuracies, and should therefore be avoided if
1217 possible.
1218 .LP
1219 Conversion between CIE colors and those more commonly used in
1220 computer graphics are described in the application notes section
1221 6.1.1.
1222 .SH
1223 EXAMPLE
1224 .DS
1225 # Set unnamed color context
1226 c
1227 # Set CIE chromaticity to a bluish hue
1228 cxy .15 .2
1229 # Apply color to diffuse reflectance of 15%
1230 rd .15
1231 .DE
1232 .SH
1233 SEE ALSO
1234 .LP
1235 .UL c,
1236 .UL cct,
1237 .UL cmix,
1238 .UL cspec
1239 .ds RH CSPEC
1240 .bp
1241 .SH
1242 NAME
1243 .LP
1244 cspec - set the relative spectrum for the current color
1245 .SH
1246 SYNOPSIS
1247 .LP
1248 .B cspec
1249 .I "l_min l_max o1 o2 ... oN"
1250 .SH
1251 DESCRIPTION
1252 .LP
1253 Assign a relative spectrum measured between
1254 .I l_min
1255 and
1256 .I l_max
1257 nanometers at evenly spaced intervals.
1258 The first value,
1259 .I o1
1260 corresponds to the measurement at
1261 .I l_min,
1262 and the last value,
1263 .I oN
1264 corresponds to the measurement at
1265 .I l_max.
1266 Values in between are separated by
1267 .I "(l_max-l_min)/(N-1)"
1268 nanometers.
1269 All values should be non-negative unless defining a component for
1270 complementary color mixing, and the spectrum outside of the
1271 specified range is assumed to be zero.
1272 (The visible range is 380 to 780 nm.)\0
1273 The actual units and scale of the measurements do not matter,
1274 since the total will be
1275 normalized according to whatever the color is modifying
1276 (e.g. photometric reflectance or emittance).
1277 .SH
1278 EXAMPLE
1279 .DS
1280 # Color measured at 10 nm increments from 400 to 700
1281 m reddish_cloth =
1282 c
1283 cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
1284 32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
1285 30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
1286 33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
1287 rd 0.3210
1288 .DE
1289 .SH
1290 SEE ALSO
1291 .LP
1292 .UL c,
1293 .UL cct,
1294 .UL cmix,
1295 .UL cxy
1296 .ds RH CCT
1297 .bp
1298 .SH
1299 NAME
1300 .LP
1301 cct - set the current color to a black body spectrum
1302 .SH
1303 SYNOPSIS
1304 .LP
1305 .B cct
1306 .I temperature
1307 .SH
1308 DESCRIPTION
1309 .LP
1310 The
1311 .UL cct
1312 entity sets the current color to the spectrum of an ideal
1313 black body radiating at
1314 .I temperature
1315 degrees Kelvin.
1316 This is often the most convenient way to set the color of an
1317 incandescent light source, but it is not recommended for
1318 fluorescent lamps or other materials that do not fit a
1319 black body spectrum.
1320 .SH
1321 EXAMPLE
1322 .DS
1323 # Define an incandescent source material at 3000 degrees K
1324 m incand3000k =
1325 c
1326 cct 3000
1327 ed 1500
1328 .DE
1329 .SH
1330 SEE ALSO
1331 .LP
1332 .UL c,
1333 .UL cmix,
1334 .UL cspec,
1335 .UL cxy
1336 .ds RH CMIX
1337 .bp
1338 .SH
1339 NAME
1340 .LP
1341 cmix - mix two or more named colors to make the current color
1342 .SH
1343 SYNOPSIS
1344 .LP
1345 .B cmix
1346 .I "w1 c1 w2 c2 ..."
1347 .SH
1348 DESCRIPTION
1349 .LP
1350 The
1351 .UL cmix
1352 entity sums together two or more named colors using specified
1353 weighting coefficients, which correspond to the relative
1354 photometric brightness of each.
1355 As in all color specifications, the result is normalized so the
1356 absolute scale of the weights does not matter, only their relative
1357 values.
1358 .LP
1359 If any of the colors is a spectral quantity (i.e. from a
1360 .UL cspec
1361 or
1362 .UL cct
1363 entity), then all the colors are first converted to spectral
1364 quantities.
1365 This is done with an approximation for CIE (x,y) chromaticities,
1366 which may be problematic depending on their values.
1367 In general, it is safest to add together colors that are either
1368 all spectral quantities or all CIE quantities.
1369 .SH
1370 EXAMPLE
1371 .DS
1372 # Define RGB primaries for a standard color monitor
1373 c R =
1374 cxy 0.640 0.330
1375 c G =
1376 cxy 0.290 0.600
1377 c B =
1378 cxy 0.150 0.060
1379 # Mix them together in appropriate amounts for white
1380 c white =
1381 cmix 0.265 R 0.670 G 0.065 B
1382 .DE
1383 .SH
1384 SEE ALSO
1385 .LP
1386 .UL c,
1387 .UL cct,
1388 .UL cspec,
1389 .UL cxy
1390 .ds LH Material Entities
1391 .ds RH M
1392 .bp
1393 .SH
1394 NAME
1395 .LP
1396 m - get or set the current material context
1397 .SH
1398 SYNOPSIS
1399 .LP
1400 .B m
1401 [
1402 .I id
1403 [
1404 .B =
1405 [
1406 .I template
1407 ]
1408 ]
1409 ]
1410 .SH
1411 DESCRIPTION
1412 .LP
1413 If the
1414 .UL m
1415 keyword is given by itself, then it establishes
1416 the unnamed material context, which is a perfect two-sided black absorber.
1417 This context may be modified, but the changes will not be saved.
1418 .LP
1419 If the keyword is followed by an identifier
1420 .I id,
1421 then it reestablishes a previous context.
1422 If the specified context was never defined, an error will result.
1423 .LP
1424 If the entity is given with an identifier
1425 followed by an equals sign ('='), then a new context is established,
1426 and cleared to the default material.
1427 (Note that the equals sign must be separated from other
1428 arguments by white space to be properly recognized.)\0
1429 If the equals sign is followed by a second identifier
1430 .I template,
1431 then this previously defined material will be used as a source of
1432 default values instead.
1433 This may be used to establish a material alias, or to modify an
1434 existing material and give it a new name.
1435 .LP
1436 The sum of the diffuse and specular reflectances and transmittances
1437 must not be greater than one (with no negative values, obviously).
1438 These values are assumed to be measured at normal incidence.
1439 If an index of refraction is given, this may modify the balance between
1440 diffuse and specular reflectance at other incident angles.
1441 If the
1442 material is one-sided (see
1443 .UL sides
1444 entity), then it may be a dielectric interface.
1445 In this case, the specular transmittance given is that which would be
1446 measured at normal incidence for a pane of the material 5 mm thick.
1447 This is important for figuring the actual transmittance for non-planar
1448 geometries assuming a uniformly absorbing medium.
1449 (Diffuse transmittance will not be affected by thickness.)\0
1450 If the index of
1451 refraction has an imaginary part, then the surface is a metal and this
1452 implies other properties as well.
1453 The default index of refraction is that of a vacuum, i.e. (1,0).
1454 .SH
1455 EXAMPLE
1456 .DS
1457 # Define a blue enamel paint
1458 m blue_enamel =
1459 c
1460 cxy 0.2771 0.2975
1461 rd 0.5011
1462 c
1463 rs 0.0100 0.0350
1464 # Assign blue_enamel to be the color of the south wall
1465 m swall_mat = blue_enamel
1466 # ...
1467 # South wall face
1468 m swall_mat
1469 f sv1 sv2 sv3 sv4
1470 .DE
1471 .SH
1472 SEE ALSO
1473 .LP
1474 .UL ed,
1475 .UL ir,
1476 .UL rd,
1477 .UL rs,
1478 .UL sides,
1479 .UL td,
1480 .UL ts
1481 .ds RH SIDES
1482 .bp
1483 .SH
1484 NAME
1485 .LP
1486 sides - set the number of sides for the current material
1487 .SH
1488 SYNOPSIS
1489 .LP
1490 .B sides
1491 {
1492 .B 1
1493 |
1494 .B 2
1495 }
1496 .SH
1497 DESCRIPTION
1498 .LP
1499 The
1500 .UL sides
1501 entity is used to set the number of sides for the current material.
1502 If a surface is two-sided, then it will appear
1503 identical when viewed from either the front or the back.
1504 If a surface is one-sided,
1505 then it appears invisible when viewed from the back side.
1506 This means
1507 that a transmitting object will affect the light coming in through the
1508 front surface and ignore the characteristics of the back surface,
1509 unless the index of refraction is set.
1510 If the index of refraction is set, then the object will act as a
1511 solid piece of dielectric material.
1512 In either case, the transmission properties of the exiting surface
1513 should be the same as the incident surface for the model to be
1514 physically valid.
1515 .LP
1516 The default number of sides is two.
1517 .SH
1518 EXAMPLE
1519 .DS
1520 # Describe a blue crystal ball
1521 m blue_crystal =
1522 ir 1.650000 0
1523 # Solid dielectrics must use one-sided materials
1524 sides 1
1525 c
1526 rs 0.0602 0
1527 c
1528 cxy 0.3127 0.2881
1529 ts 0.6425 0
1530 v sc =
1531 p 10 15 1.5
1532 sph sc .02
1533 .DE
1534 .SH
1535 SEE ALSO
1536 .LP
1537 .UL ed,
1538 .UL ir,
1539 .UL m,
1540 .UL rd,
1541 .UL rs,
1542 .UL td,
1543 .UL ts
1544 .ds RH RD
1545 .bp
1546 .SH
1547 NAME
1548 .LP
1549 rd - set the diffuse reflectance for the current material
1550 .SH
1551 SYNOPSIS
1552 .LP
1553 .B rd
1554 .I rho_d
1555 .SH
1556 DESCRIPTION
1557 .LP
1558 Set the diffuse reflectance for the current material to
1559 .I rho_d
1560 using the current color to determine the spectral characteristics.
1561 This is the fraction of visible light that is reflected from a
1562 surface equally in all directions according to Lambert's law, and is
1563 often called the "Lambertian component."
1564 Photometric reflectance is measured according to v(lambda)
1565 response function of the 1931 CIE standard 2
1566 degree observer, and assumes an equal-energy white light source.
1567 The value must be between zero and one, and may be further
1568 restricted by the luminosity of the selected color.
1569 (I.e. it is impossible to have a violet material with a photometric
1570 reflectance close to one since the eye is less sensitive in this part
1571 of the spectrum.)\0
1572 .LP
1573 The default diffuse reflectance is zero.
1574 .SH
1575 EXAMPLE
1576 .DS
1577 # An off-white paint with 70% reflectance
1578 m flat_white70 =
1579 c
1580 cxy .3632 .3420
1581 rd .70
1582 .DE
1583 .SH
1584 SEE ALSO
1585 .LP
1586 .UL c,
1587 .UL ed,
1588 .UL ir,
1589 .UL m,
1590 .UL rs,
1591 .UL sides,
1592 .UL td,
1593 .UL ts
1594 .ds RH TD
1595 .bp
1596 .SH
1597 NAME
1598 .LP
1599 td - set the diffuse transmittance for the current material
1600 .SH
1601 SYNOPSIS
1602 .LP
1603 .B td
1604 .I tau_d
1605 .SH
1606 DESCRIPTION
1607 .LP
1608 Set the diffuse transmittance for the current material to
1609 .I tau_d
1610 using the current color to determine the spectral characteristics.
1611 This is the fraction of visible light that is transmitted through a
1612 surface equally in all (transmitted) directions.
1613 Like reflectance, transmittance is measured according to the
1614 standard v(lambda) curve, and assumes an equal-energy white light source.
1615 It is probably not possible to create a material with a diffuse
1616 transmittance above 50%, since well-diffused light will be reflected
1617 as well.
1618 .LP
1619 The default diffuse transmittance is zero.
1620 .SH
1621 EXAMPLE
1622 .DS
1623 # Model a perfect spherical diffuser, i.e. light hitting \
1624 either side will be scattered equally in all directions
1625 m wonderland_diffuser =
1626 c
1627 td .5
1628 rd .5
1629 .DE
1630 .SH
1631 SEE ALSO
1632 .LP
1633 .UL c,
1634 .UL ed,
1635 .UL ir,
1636 .UL m,
1637 .UL rd,
1638 .UL rs,
1639 .UL sides,
1640 .UL ts
1641 .ds RH ED
1642 .bp
1643 .SH
1644 NAME
1645 .LP
1646 ed - set the diffuse emittance for the current material
1647 .SH
1648 SYNOPSIS
1649 .LP
1650 .B ed
1651 .I epsilon_d
1652 .SH
1653 DESCRIPTION
1654 .LP
1655 Set the diffuse emittance for the current material to
1656 .I epsilon_d
1657 lumens per square meter using the current color to determine the
1658 spectral characteristics.
1659 Note that this is emittance rather than exitance, and therefore
1660 does not include reflected or transmitted light, which is a function
1661 of the other material settings and the illuminated environment.
1662 .LP
1663 The total lumen output of a convex emitting object
1664 is the radiating area of that object multiplied by its emittance.
1665 Therefore, one can compute the appropriate
1666 .I epsilon_d
1667 value for an emitter by dividing the total lumen output by the
1668 radiating area (in square meters).
1669 .LP
1670 The default emittance is zero.
1671 .SH
1672 EXAMPLE
1673 .DS
1674 # A 100-watt incandescent bulb (1600 lumens) modeled as a sphere
1675 m
1676 c
1677 cct 3000
1678 ed 87712
1679 v cent =
1680 p 0 0 0
1681 sph cent .0381
1682 .DE
1683 .SH
1684 SEE ALSO
1685 .LP
1686 .UL c,
1687 .UL ir,
1688 .UL m,
1689 .UL rd,
1690 .UL rs,
1691 .UL sides,
1692 .UL td,
1693 .UL ts
1694 .ds RH RS
1695 .bp
1696 .SH
1697 NAME
1698 .LP
1699 rs - set the specular reflectance for the current material
1700 .SH
1701 SYNOPSIS
1702 .LP
1703 .B rs
1704 .I "rho_s alpha_r"
1705 .SH
1706 DESCRIPTION
1707 .LP
1708 Set the specular reflectance for the current material to
1709 .I rho_s
1710 using the current color to determine the spectral characteristics.
1711 The surface roughness parameter is set to
1712 .I alpha_r,
1713 which is the RMS height of surface variations over the
1714 autocorrelation distance (equivalent to RMS facet slope).
1715 A roughness value of zero means a perfectly smooth surface, and
1716 values greater than 0.2 are unusual.
1717 (See application notes section 6.1.2 for a comparison between the
1718 roughness parameter and Phong specular power.)\0
1719 .LP
1720 The default specular reflectance is zero.
1721 .SH
1722 EXAMPLE
1723 .DS
1724 # Define a slightly rough brass metallic surface
1725 m rough_brass =
1726 c
1727 cxy .3820 .4035
1728 # 30% specular, 9% diffuse
1729 rs .30 .08
1730 rd .09
1731 .DE
1732 .SH
1733 SEE ALSO
1734 .LP
1735 .UL c,
1736 .UL ed,
1737 .UL ir,
1738 .UL m,
1739 .UL rd,
1740 .UL sides,
1741 .UL td,
1742 .UL ts
1743 .ds RH TS
1744 .bp
1745 .SH
1746 NAME
1747 .LP
1748 ts - set the specular transmittance for the current material
1749 .SH
1750 SYNOPSIS
1751 .LP
1752 .B ts
1753 .I "tau_s alpha_t"
1754 .SH
1755 DESCRIPTION
1756 .LP
1757 Set the specular transmittance for the current material to
1758 .I tau_s
1759 using the current color to determine the spectral characteristics.
1760 The effective surface roughness is set to
1761 .I alpha_t.
1762 Rays will be transmitted with the same distribution as they would
1763 have been reflected with if this roughness value were given to the
1764 .UL rs
1765 entity.
1766 .LP
1767 The default specular transmittance is zero.
1768 .SH
1769 EXAMPLE
1770 .DS
1771 # Define a green glass material (58% transmittance)
1772 m glass =
1773 sides 2
1774 ir 1.52 0
1775 c
1776 rs 0.0725 0
1777 c
1778 cxy .23 .38
1779 ts 0.5815 0
1780 # Define an uncolored translucent plastic (40% transmittance)
1781 m translucent =
1782 sides 2
1783 ir 1.4 0
1784 c
1785 rs .045 0
1786 ts .40 .05
1787 .DE
1788 .SH
1789 SEE ALSO
1790 .LP
1791 .UL c,
1792 .UL ed,
1793 .UL ir,
1794 .UL m,
1795 .UL rd,
1796 .UL rs,
1797 .UL sides,
1798 .UL td
1799 .ds RH IR
1800 .bp
1801 .SH
1802 NAME
1803 .LP
1804 ir - set the complex index of refraction for the current material
1805 .SH
1806 SYNOPSIS
1807 .LP
1808 .B ir
1809 .I "n_real n_imag"
1810 .SH
1811 DESCRIPTION
1812 .LP
1813 Set the index of refraction for the current material to
1814 .I (n_real,n_imag).
1815 If the material is a dielectric (as opposed to metallic), then
1816 .I n_imag
1817 should be zero.
1818 For solid dielectric objects, the material should be made one-sided.
1819 If it is being used for thin objects, then a two-sided
1820 material is appropriate.
1821 (See the
1822 .UL sides
1823 entity.)\0
1824 .LP
1825 The default index of refraction is that of a vacuum, (1,0).
1826 .SH
1827 EXAMPLE
1828 .DS
1829 # Define polished aluminum material
1830 m polished_aluminum =
1831 # Complex index of refraction (from physics table)
1832 ir .770058 6.08351
1833 c
1834 rs .75 0
1835 .DE
1836 .SH
1837 SEE ALSO
1838 .LP
1839 .UL c,
1840 .UL ed,
1841 .UL m,
1842 .UL rd,
1843 .UL rs,
1844 .UL sides,
1845 .UL td,
1846 .UL ts
1847 .ds LH Vertex Entities
1848 .ds RH V
1849 .bp
1850 .SH
1851 NAME
1852 .LP
1853 v - get or set the current vertex context
1854 .SH
1855 SYNOPSIS
1856 .LP
1857 .B v
1858 [
1859 .I id
1860 [
1861 .B =
1862 [
1863 .I template
1864 ]
1865 ]
1866 ]
1867 .SH
1868 DESCRIPTION
1869 .LP
1870 If the
1871 .UL v
1872 keyword is given by itself, then it establishes
1873 the unnamed vertex context, which is the origin with no normal.
1874 This context may be modified, but the changes will not be saved.
1875 (The unnamed vertex is never used except as a source of default
1876 values since all geometric entities call their vertices by name.)\0
1877 .LP
1878 If the keyword is followed by an identifier
1879 .I id,
1880 then it reestablishes a previous context.
1881 If the specified context was never defined, an error will result.
1882 .LP
1883 If the entity is given with an identifier
1884 followed by an equals sign ('='), then a new context is established,
1885 and cleared to the default vertex (the origin).
1886 (Note that the equals sign must be separated from other
1887 arguments by white space to be properly recognized.)\0
1888 If the equals sign is followed by a second identifier
1889 .I template,
1890 then this previously defined vertex will be used as a source of
1891 default values instead.
1892 This may be used to establish a vertex alias, or to modify an
1893 existing vertex and give it a new name.
1894 .LP
1895 A non-zero vertex normal must be given for
1896 certain entities, specifically
1897 .UL ring
1898 and
1899 .UL torus
1900 require a normal direction.
1901 An
1902 .UL f
1903 entity will interpolate vertex normals if given, and
1904 use the polygon plane normal otherwise.
1905 See the
1906 .UL prism
1907 entry for an explanation of how it interprets and uses vertex
1908 normals.
1909 The other entities ignore vertex normals if present.
1910 .LP
1911 The actual position and normal direction for a vertex is determined
1912 at the time of use by a geometric entity.
1913 Specifically, the transformation in effect at the time the vertex is
1914 defined is irrelevant.
1915 The only transformation that matters is the one that is applied to
1916 the geometry itself.
1917 This prevents double-transformation of vertices and allows one set
1918 of vertices to be used for multiple purposes, e.g. the front and
1919 back sides of a drawer.
1920 .SH
1921 EXAMPLE
1922 .DS
1923 # Make a capped cylinder
1924 v end1 =
1925 p 0 0 0
1926 n 0 0 -1
1927 v end2 =
1928 p 0 0 1
1929 cyl end1 1.2 end2
1930 # Forgot normal for end2
1931 v end2
1932 n 0 0 1
1933 ring end1 0 1.2
1934 ring end2 0 1.2
1935 .DE
1936 .SH
1937 SEE ALSO
1938 .LP
1939 .UL cone,
1940 .UL cyl,
1941 .UL f,
1942 .UL n,
1943 .UL p,
1944 .UL prism,
1945 .UL ring,
1946 .UL sph,
1947 .UL torus
1948 .ds RH P
1949 .bp
1950 .SH
1951 NAME
1952 .LP
1953 p - set the point location for the current vertex
1954 .SH
1955 SYNOPSIS
1956 .LP
1957 .B p
1958 .I "px py pz"
1959 .SH
1960 DESCRIPTION
1961 .LP
1962 Set the 3-dimensional position for the current vertex to
1963 .I (px,py,pz).
1964 The actual position of the vertex will be determined by the
1965 transformation in effect at the time the vertex is applied to a
1966 geometric surface entity.
1967 The transform current when the position is set is irrelevant.
1968 .LP
1969 The default vertex position is the origin, (0,0,0).
1970 .SH
1971 EXAMPLE
1972 .DS
1973 # Make a small circle of 6 spheres
1974 v scent =
1975 p 1 0 0
1976 xf -a 6 -rz 60
1977 sph scent .05
1978 xf
1979 .DE
1980 .SH
1981 SEE ALSO
1982 .LP
1983 .UL cone,
1984 .UL cyl,
1985 .UL f,
1986 .UL n,
1987 .UL prism,
1988 .UL ring,
1989 .UL sph,
1990 .UL torus,
1991 .UL v
1992 .ds RH N
1993 .bp
1994 .SH
1995 NAME
1996 .LP
1997 n - set the surface normal direction for the current vertex
1998 .SH
1999 SYNOPSIS
2000 .LP
2001 .B n
2002 .I "dx dy dz"
2003 .SH
2004 DESCRIPTION
2005 .LP
2006 Set the 3-dimensional surface normal for the current vertex to the
2007 normalized vector along
2008 .I (dx,dy,dz).
2009 If this vector is zero, then the surface normal is effectively
2010 unset.
2011 The actual surface normal orientation of the vertex will be determined
2012 by the transformation in effect at the time the vertex is applied to a
2013 geometric surface entity.
2014 The current transform when the normal is set is irrelevant.
2015 .LP
2016 The default vertex normal is the zero vector (i.e. no normal).
2017 .SH
2018 EXAMPLE
2019 .DS
2020 # Make a chain of 10 interlocking doughnuts
2021 v tcent =
2022 p 0 0 0
2023 n 0 1 0
2024 xf -a 10 -rx 90 -t .2 0 0
2025 torus tcent .1 .2
2026 xf
2027 .DE
2028 .SH
2029 SEE ALSO
2030 .LP
2031 .UL f,
2032 .UL p,
2033 .UL prism,
2034 .UL ring,
2035 .UL torus,
2036 .UL v
2037 .ds LH Geometric Entities
2038 .ds RH F
2039 .bp
2040 .SH
2041 NAME
2042 .LP
2043 f - create an N-sided polygonal face
2044 .SH
2045 SYNOPSIS
2046 .LP
2047 .B f
2048 .I "v1 v2 ... vN"
2049 .SH
2050 DESCRIPTION
2051 .LP
2052 Create a polygonal face made of the current material
2053 by connecting the named vertices in order, and connecting the last
2054 vertex to the first.
2055 There must be at least three vertices, and if any vertex is undefined,
2056 an error will result.
2057 .LP
2058 The surface orientation is determined by the right-hand rule; when
2059 the curl of the fingers follows the given order of the vertices, the
2060 surface normal points in the thumb direction.
2061 Face vertices should be coplanar, though this is difficult to guarantee
2062 in a 3-dimensional specification.
2063 .LP
2064 If any vertices have associated surface normals, they will be used
2065 instead of the average plane normal, though it is safest to specify
2066 either all normals or no normals, and to stick with triangles
2067 when normals are used.
2068 Also, specified normals should point in the general direction of the
2069 surface for best results.
2070 .LP
2071 There is no explicit representation of holes in MGF. A hole must be
2072 represented implicitly by connecting vertices to form "seams." For
2073 example, a wall with a window in it might look as shown in Figure 1.
2074 In many systems, the wall itself would be represented with the first
2075 list of vertices, (v1,v2,v3,v4) and the hole associated with that
2076 wall as a second set of vertices (v5,v6,v7,v8). In MGF, we must
2077 give the whole thing as a single polygon, connecting the vertices so
2078 as to create a "seam," as shown in Figure 2.
2079 This could be written in MGF as "f v1 v2 v3 v4 v5 v6 v7 v8 v5 v4".
2080 .LP
2081 It is very important that the order of the hole be opposite to the
2082 order of the outer perimeter, otherwise the polygon will be
2083 "twisted" on top of itself. Note also that the seam was traversed
2084 in both directions, once going from v4 to v5, and again returning
2085 from v5 to v4. This is a necessary condition for a proper seam.
2086 .LP
2087 The choice of vertices to make into a seam is somewhat arbitrary, but
2088 some rendering systems may not give sane results if you cross over a
2089 hole with part of your seam. If we had chosen to create the seam
2090 between v2 and v5 in the above example instead of v4 and v5, the seam
2091 would cross our hole and may not render correctly\(dg.
2092 .FS
2093 \(dgFor systems that
2094 are sensitive to this, it is probably safest for their MGF
2095 loader/translator to re-expresses seams in terms of holes again, which can
2096 be done easily so long as vertices are shared in the fashion shown.
2097 .FE
2098 .bp
2099 Replace this page with the first page from "figures.ps".
2100 .bp
2101 .SH
2102 EXAMPLE
2103 .DS
2104 # Make a pyramid
2105 v apex =
2106 p 1 1 1
2107 v base0 =
2108 p 0 0 0
2109 v base1 =
2110 p 0 2 0
2111 v base2 =
2112 p 2 2 0
2113 v base3 =
2114 p 2 0 0
2115 # Bottom
2116 f base0 base1 base2 base3
2117 # Sides
2118 f base0 apex base1
2119 f base1 apex base2
2120 f base2 apex base3
2121 f base3 apex base0
2122 .DE
2123 .SH
2124 SEE ALSO
2125 .LP
2126 .UL cone,
2127 .UL cyl,
2128 .UL m,
2129 .UL prism,
2130 .UL ring,
2131 .UL sph,
2132 .UL torus,
2133 .UL v
2134 .ds RH SPH
2135 .bp
2136 .SH
2137 NAME
2138 .LP
2139 sph - create a sphere
2140 .SH
2141 SYNOPSIS
2142 .LP
2143 .B sph
2144 .I "vc rad"
2145 .SH
2146 DESCRIPTION
2147 .LP
2148 Create a sphere made of the current material with its center at the
2149 named vertex
2150 .I vc
2151 and a radius of
2152 .I rad.
2153 If the vertex is undefined an error will result.
2154 .LP
2155 The surface normal is usually directed outward, but will be directed
2156 inward if the given radius is negative.
2157 (This typically matters only for one-sided materials.)\0
2158 A zero radius is illegal.
2159 .SH
2160 EXAMPLE
2161 .DS
2162 # Create a thick glass sphere with a hollow inside
2163 m glass =
2164 sides 1
2165 ir 1.52 0
2166 c
2167 rs .06 0
2168 ts .88 0
2169 v cent =
2170 p 0 0 1.1
2171 # The outer shell
2172 sph cent .1
2173 # The inner bubble
2174 sph cent -.08
2175 .DE
2176 .SH
2177 SEE ALSO
2178 .LP
2179 .UL cone,
2180 .UL cyl,
2181 .UL f,
2182 .UL m,
2183 .UL prism,
2184 .UL ring,
2185 .UL torus,
2186 .UL v
2187 .ds RH CYL
2188 .bp
2189 .SH
2190 NAME
2191 .LP
2192 cyl - create an open-ended, truncated right cylinder
2193 .SH
2194 SYNOPSIS
2195 .LP
2196 .B cyl
2197 .I "v1 rad v2"
2198 .SH
2199 DESCRIPTION
2200 .LP
2201 Create a truncated right cylinder of radius
2202 .I rad
2203 using the current material, starting at the named vertex
2204 .I v1
2205 and continuing to
2206 .I v2.
2207 The ends will be open, but may be capped using the
2208 .UL ring
2209 entity if desired.
2210 .LP
2211 The surface normal will usually be directed outward, but may be
2212 directed inward by giving a negative value for
2213 .I rad.
2214 A zero radius is illegal, and
2215 .I v1
2216 cannot equal
2217 .I v2.
2218 .SH
2219 EXAMPLE
2220 .DS
2221 # A stylus with one rounded and one pointed end
2222 o stylus
2223 v vtip0 =
2224 p 0 0 0
2225 v vtip1 =
2226 p 0 0 .005
2227 v vend =
2228 p 0 0 .05
2229 cyl vtip1 .0015 vend
2230 sph vend .0015
2231 cone vtip0 0 vtip1 .0015
2232 o
2233 .DE
2234 .SH
2235 SEE ALSO
2236 .LP
2237 .UL cone,
2238 .UL f,
2239 .UL m,
2240 .UL prism,
2241 .UL ring,
2242 .UL sph,
2243 .UL torus,
2244 .UL v
2245 .ds RH CONE
2246 .bp
2247 .SH
2248 NAME
2249 .LP
2250 cone - create an open-ended, truncated right cone
2251 .SH
2252 SYNOPSIS
2253 .LP
2254 .B cone
2255 .I "v1 rad1 v2 rad2"
2256 .SH
2257 DESCRIPTION
2258 .LP
2259 Create a truncated right cone using the current material.
2260 The starting radius is
2261 .I rad1
2262 at
2263 .I v1
2264 and the ending radius is
2265 is
2266 .I rad2
2267 at
2268 .I v2.
2269 The ends will be open, but may be capped using the
2270 .UL ring
2271 entity if desired.
2272 .LP
2273 The surface normal will usually be directed outward, but may be
2274 directed inward by giving negative values for both radii.
2275 (It is illegal for the signs of the two radii to disagree.)\0
2276 One but not both radii may be zero, indicating that the cone comes
2277 to a point.
2278 .LP
2279 Although it is not strictly forbidden to have equal cone radii, the
2280 .UL cyl
2281 entity should be used in such cases.
2282 Likewise, the
2283 .UL ring
2284 entity must be used if
2285 .I v1
2286 and
2287 .I v2
2288 are equal.
2289 .SH
2290 EXAMPLE
2291 .DS
2292 # A parasol
2293 o parasol
2294 v v1 =
2295 p 0 0 0
2296 v v2 =
2297 p 0 0 .75
2298 v v3 =
2299 p 0 0 .7
2300 m handle_mat
2301 cyl v1 .002 v2
2302 m parasol_paper
2303 cyl v2 0 v3 .33
2304 o
2305 .DE
2306 .SH
2307 SEE ALSO
2308 .LP
2309 .UL cyl,
2310 .UL f,
2311 .UL m,
2312 .UL prism,
2313 .UL ring,
2314 .UL sph,
2315 .UL torus,
2316 .UL v
2317 .ds RH PRISM
2318 .bp
2319 .SH
2320 NAME
2321 .LP
2322 prism - create a closed right prism
2323 .SH
2324 SYNOPSIS
2325 .LP
2326 .B prism
2327 .I "v1 v2 ... vN length"
2328 .SH
2329 DESCRIPTION
2330 .LP
2331 Create a closed right prism using the current material.
2332 One end face will be enclosed by the named vertices, and the
2333 opposite end face will be a mirror image at a distance
2334 .I length
2335 from the original.
2336 The edges will be extruded into N quadrilaterals connecting
2337 the two end faces.
2338 .LP
2339 The order of vertices determines the original face orientation
2340 according to the right-hand rule as explained for the
2341 .UL f
2342 entity.
2343 Normally, the prism is extruded in the direction opposite to the
2344 original surface normal, resulting in faces that all point outward.
2345 If the specified
2346 .I length
2347 is negative, the prism will be extruded above the original face
2348 and all surface normals will point inward.
2349 .LP
2350 If the vertices have associated normals, they are applied to the
2351 side faces only, and should generally point in the appropriate
2352 direction (i.e. in or out depending on whether
2353 .I length
2354 is negative or positive).
2355 .SH
2356 EXAMPLE
2357 .DS
2358 # Make a unit cube starting at the origin and \\\\
2359 extending to the positive octant
2360 v cv0 =
2361 p 0 0 0
2362 v cv1 =
2363 p 0 1 0
2364 v cv2 =
2365 p 1 1 0
2366 v cv3 =
2367 p 1 0 0
2368 # Right hand rule has original face looking in -Z direction
2369 prism cv0 cv1 cv2 cv3 1
2370 .DE
2371 .SH
2372 SEE ALSO
2373 .LP
2374 .UL cyl,
2375 .UL cone,
2376 .UL f,
2377 .UL m,
2378 .UL ring,
2379 .UL sph,
2380 .UL torus,
2381 .UL v
2382 .ds RH RING
2383 .bp
2384 .SH
2385 NAME
2386 .LP
2387 ring - create a circular ring with inner and outer radii
2388 .SH
2389 SYNOPSIS
2390 .LP
2391 .B ring
2392 .I "vc rmin rmax"
2393 .SH
2394 DESCRIPTION
2395 .LP
2396 Create a circular face of the current material centered on the named
2397 vertex
2398 .I vc
2399 with an inner radius of
2400 .I rmin
2401 and an outer radius of
2402 .I rmax.
2403 The surface orientation is determined by the normal vector
2404 associated with
2405 .I vc.
2406 If this vertex is undefined or has no normal, an error will result.
2407 The minimum radius may be equal to but not less than zero, and the
2408 maximum radius must be strictly greater than the minimum.
2409 .SH
2410 EXAMPLE
2411 .DS
2412 # The proverbial brass ring
2413 o brass_ring
2414 m brass
2415 v end1 =
2416 p 0 -.005 0
2417 n 0 -1 0
2418 v end2 =
2419 p 0 .005 0
2420 n 0 1 0
2421 ring end1 .02 .03
2422 cyl end1 .03 end2
2423 ring end2 .02 .03
2424 cyl end2 -.02 end1
2425 o
2426 .DE
2427 .SH
2428 SEE ALSO
2429 .LP
2430 .UL cyl,
2431 .UL cone,
2432 .UL f,
2433 .UL m,
2434 .UL prism,
2435 .UL sph,
2436 .UL torus,
2437 .UL v
2438 .ds RH TORUS
2439 .bp
2440 .SH
2441 NAME
2442 .LP
2443 torus - create a regular torus
2444 .SH
2445 SYNOPSIS
2446 .LP
2447 .B torus
2448 .I "vc rmin rmax"
2449 .SH
2450 DESCRIPTION
2451 .LP
2452 Create a torus of the current material centered on the named vertex
2453 .I vc
2454 with an inner radius of
2455 .I rmin
2456 and an outer radius of
2457 .I rmax.
2458 The plane of the torus will be perpendicular to the normal vector
2459 associated with
2460 .I vc.
2461 If this vertex is undefined or has no normal, an error will result.
2462 .LP
2463 If a torus with an inward facing surface normal is desired,
2464 .I rmin
2465 and
2466 .I rmax
2467 may be negative.
2468 The minimum radius may be zero, but may not be negative when
2469 .I rmax
2470 is positive or vice versa.
2471 The magnitude or
2472 .I rmax
2473 must always be strictly greater than that of
2474 .I rmin.
2475 .SH
2476 EXAMPLE
2477 .DS
2478 # The proverbial brass ring -- easy grip version
2479 o brass_ring
2480 m brass
2481 v center =
2482 p 0 0 0
2483 n 0 1 0
2484 torus center .02 .03
2485 o
2486 .DE
2487 .SH
2488 SEE ALSO
2489 .LP
2490 .UL cyl,
2491 .UL cone,
2492 .UL f,
2493 .UL m,
2494 .UL prism,
2495 .UL ring,
2496 .UL sph,
2497 .UL v
2498 .ds RH
2499 .ds LH
2500 .bp
2501 .NH
2502 MGF Translators
2503 .LP
2504 Initially, there are four translators for MGF data, but only
2505 one of these is distributed with the MGF parser itself,
2506 .I mgfilt.
2507 Two of the other translators,
2508 .I mgf2rad
2509 and
2510 .I rad2mgf
2511 convert between MGF and the Radiance scene description language,
2512 and are distributed for free with the rest of the Radiance
2513 package\(dg.
2514 .FS
2515 \(dgRadiance is available by anonymous ftp from hobbes.lbl.gov and
2516 nestor.epfl.ch, or by WWW from
2517 "http://radsite.lbl.gov/radiance/HOME.html"
2518 .FE
2519 A third translator,
2520 .I mgf2meta,
2521 converts to a 2-dimensional line plot, and is also
2522 distributed with Radiance.
2523 .LP
2524 Mgfilt is a simple but useful utility that takes MGF on its input
2525 and produces MGF on its output.
2526 It uses the parser to convert entities that are not wanted or
2527 understood, and produces only the requested ones.
2528 This is useful for seeing what exactly a program must understand
2529 when it supports a given set of entities, and may serve as a
2530 substitute for linking to the parser library for programmers who
2531 wish to interpret the ASCII input directly but without all the
2532 unwanted entities.
2533 In future releases of MGF, this utility will also be handy for
2534 taking new entities and producing older versions of MGF for
2535 translators that have not yet been updated properly.
2536 .ds LH Translators
2537 .ds RH MGFILT
2538 .bp
2539 .SH
2540 NAME
2541 .LP
2542 mgfilt - get usable MGF entities from input
2543 .SH
2544 SYNOPSIS
2545 .LP
2546 .B mgfilt
2547 .B version
2548 [
2549 .B input ..
2550 ]
2551 .br
2552 or
2553 .br
2554 .B mgfilt
2555 .B "e1,e2,.."
2556 [
2557 .B input ..
2558 ]
2559 .SH
2560 DESCRIPTION
2561 .LP
2562 .I Mgfilt
2563 takes one or more MGF input files and converts all the entities to
2564 the types listed.
2565 In the first form, a single integer is given for the
2566 .I version
2567 of MGF that is to be produced.
2568 Since MGF is in its first major release, this is not yet a useful
2569 form, but it will be when the second major release comes out.
2570 This has the necessary side-effect of expanding all included files.
2571 (See the
2572 .UL i
2573 entity.)\0
2574 .LP
2575 In the second form,
2576 .I mgfilt
2577 produces only the entities listed in the first argument, which must
2578 be comma-separated.
2579 The listed entity order is not important, but all entities given
2580 must be defined in the current version of MGF.
2581 Unknown entities will be summarily discarded on the input, and a
2582 warning message will be printed to the standard error.
2583 .SH
2584 EXAMPLES
2585 .LP
2586 To take an MGF version 3 file and send it to a version 2
2587 translator:
2588 .IP
2589 mgfilt 2 input.mgf | mgf2rad > input.rad
2590 .LP
2591 To take an MGF file and produce only flat polygonal faces
2592 with no materials:
2593 .IP
2594 mgfilt f,v,p,xf input.mgf > flatpoly.mgf
2595 .SH
2596 SEE ALSO
2597 .LP
2598 i, mgf2rad, rad2mgf
2599 .ds RH MGF2RAD
2600 .bp
2601 .SH
2602 NAME
2603 .LP
2604 mgf2rad - convert Materials and Geometry Format file to RADIANCE description
2605 .SH
2606 SYNOPSIS
2607 .LP
2608 .B mgf2rad
2609 [
2610 .B "\-m matfile"
2611 ][
2612 .B "\-e mult"
2613 ][
2614 .B "\-g dist"
2615 ]
2616 [
2617 .B input ..
2618 ]
2619 .SH
2620 DESCRIPTION
2621 .LP
2622 .I Mgf2rad
2623 converts one or more Materials and Geometry Format (MGF)
2624 files to a RADIANCE scene description.
2625 By definition, all output dimensions are in meters.
2626 The material names and properties
2627 for the surfaces will be those assigned in MGF.
2628 Any materials not defined in MGF will result in an error during
2629 translation.
2630 Light sources are described inline as IES luminaire files, and
2631 .I mgf2rad
2632 calls the program
2633 .I ies2rad(1)
2634 to translate these files.
2635 If an IES file in turn contains an MGF description of the local
2636 fixture geometry, this may result in a recursive call to
2637 .I mgf2rad,
2638 which is normal and should be transparent.
2639 The only side-effect of this additional translation is the
2640 appearance of other RADIANCE scene and data files produced
2641 automatically by
2642 .I ies2rad.
2643 .LP
2644 The
2645 .I \-m
2646 option may be used to put all the translated materials into a separate
2647 RADIANCE file.
2648 This is not always advisable, as any given material name may be
2649 reused at different points in the MGF description, and writing them
2650 to a separate file loses the contextual association between
2651 materials and surfaces.
2652 As long as unique material names are used throughout the MGF
2653 description and material properties are not redefined, there
2654 will be no problem.
2655 Note that this is the only way to get all the translated materials
2656 into a single file, since no output is produced for unreferenced
2657 materials; i.e. translating just the MGF materials does not work.
2658 .LP
2659 The
2660 .I \-e
2661 option may be used to multiply all the emission values by the
2662 given
2663 .I mult
2664 factor.
2665 The
2666 .I \-g
2667 option may be used to establish a glow distance (in meters)
2668 for all emitting surfaces.
2669 These two options are employed principally by
2670 .I ies2rad,
2671 and are not generally useful to most users.
2672 .SH
2673 EXAMPLES
2674 .LP
2675 To translate two MGF files into one RADIANCE materials file and
2676 one geometry file:
2677 .IP
2678 mgf2rad -m materials.rad building1.mgf building2.mgf > building1+2.rad
2679 .LP
2680 To create an octree directly from two MGF files and one RADIANCE
2681 file:
2682 .IP
2683 oconv '\\!mgf2rad materials.mgf scene.mgf' source.rad > scene.oct
2684 .SH
2685 FILES
2686 .LP
2687 tmesh.cal Used to smooth polygonal geometry
2688 .br
2689 *.rad RADIANCE source descriptions created by ies2rad
2690 .br
2691 *.dat RADIANCE source data created by ies2rad
2692 .br
2693 source.cal Used for IES source coordinates
2694 .SH
2695 AUTHOR
2696 .LP
2697 Greg Ward
2698 .SH
2699 SEE ALSO
2700 .LP
2701 ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)
2702 .ds RH RAD2MGF
2703 .bp
2704 .SH
2705 NAME
2706 .LP
2707 rad2mgf - convert RADIANCE scene description to Materials and Geometry Format
2708 .SH
2709 SYNOPSIS
2710 .LP
2711 .B rad2mgf
2712 [
2713 .B \-dU
2714 ]
2715 [
2716 .B input ..
2717 ]
2718 .SH
2719 DESCRIPTION
2720 .LP
2721 .I Rad2mgf
2722 converts one or more RADIANCE scene files
2723 to the Materials and Geometry Format (MGF).
2724 Input units are specified with the
2725 .I \-mU
2726 option, where
2727 .I U
2728 is one of 'm' (meters), 'c' (centimeters), 'f' (feet) or 'i'
2729 (inches).
2730 The assumed unit is meters, which is the required output unit for
2731 MGF (thus the need to know).
2732 If the input dimensions are in none of these units, then the user
2733 should apply
2734 .I xform(1)
2735 with the
2736 .I \-s
2737 option to bring the units into line prior to translation.
2738 .LP
2739 The MGF material names and properties
2740 for the surfaces will be those assigned in RADIANCE.
2741 If a referenced material has not been defined, then its name will
2742 be invoked in the MGF output without definition, and the description
2743 will be incomplete.
2744 .SH
2745 LIMITATIONS
2746 .LP
2747 Although MGF supports all of the geometric types and the most
2748 common material types used in RADIANCE, there is currently no
2749 support for advanced BRDF materials, patterns, textures or mixtures.
2750 Also, the special types "source" and "antimatter" are not supported,
2751 and all light source materials are converted to simple diffuse emitters
2752 (except "illum" materials, which are converted to their alternates).
2753 These primitives are reproduced as comments in the output and
2754 must be replaced manually if necessary.
2755 .LP
2756 The RADIANCE "instance" type is treated specially.
2757 .I Rad2mgf
2758 converts each instance to an MGF include statement, using the corresponding
2759 transformation and a file name derived from the octree name.
2760 (The original octree suffix is replaced by ".mgf".)\0
2761 For this to work, the user must separately create the referenced
2762 MGF files from the original RADIANCE descriptions.
2763 The description file names can usually be determined using the
2764 .I getinfo(1)
2765 command run on the octrees in question.
2766 .SH
2767 EXAMPLES
2768 .LP
2769 To convert three RADIANCE files (in feet) to one MGF file:
2770 .IP
2771 mgf2rad -df file1.rad file2.rad file3.rad > scene.mgf
2772 .LP
2773 To translate a RADIANCE materials file to MGF:
2774 .IP
2775 mgf2rad materials.rad > materials.mgf
2776 .SH
2777 AUTHOR
2778 .LP
2779 Greg Ward
2780 .SH
2781 SEE ALSO
2782 .LP
2783 getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)
2784 .ds RH MGF2META
2785 .bp
2786 .SH
2787 NAME
2788 .LP
2789 mgf2meta - convert Materials and Geometry Format file to Metafile graphics
2790 .SH
2791 SYNOPSIS
2792 .LP
2793 .B mgf2meta
2794 [
2795 .B "-t threshold"
2796 ]
2797 .B "{x|y|z} xmin xmax ymin ymax zmin zmax"
2798 [
2799 .B input ..
2800 ]
2801 .SH
2802 DESCRIPTION
2803 .LP
2804 .I Mgf2meta
2805 converts one or more Materials and Geometry Format (MGF)
2806 files to a 2-D orthographic projection along the selected axis in the
2807 .I metafile(1)
2808 graphics format.
2809 All geometry is clipped to the specified bounding box, and the
2810 resulting orientation is as follows:
2811 .sp .5
2812 .nf
2813 Projection Orientation
2814 ======= ========
2815 x Y-axis right, Z-axis up
2816 y Z-axis right, X-axis up
2817 z X-axis right, Z-axis up
2818 .fi
2819 .LP
2820 If multiple input files are given, the first file prints in black,
2821 the second prints in red, the third in green and the fourth in blue.
2822 If more than four input files are given, they cycle through the
2823 colors again in three other line types: dashed, dotted and
2824 dot-dashed.
2825 .LP
2826 The
2827 .I \-t
2828 option may be used to randomly throw out line segments that are
2829 shorter than the given
2830 .I threshold
2831 (given as a fraction of the plot width).
2832 Segments are included with a
2833 probability equal to the square of the line length over the square
2834 of the threshold.
2835 This can greatly reduce the number of lines in the drawing (and
2836 therefore improve the drawing speed) with only a modest loss in
2837 quality.
2838 A typical value for this parameter is 0.005.
2839 .LP
2840 All MGF material information is ignored on the input.
2841 .SH
2842 EXAMPLES
2843 .LP
2844 To project two MGF files along the Z-axis and display them under
2845 X11:
2846 .IP
2847 mgf2meta z 0 10 0 15 0 9 building1.mgf building2.mgf | x11meta
2848 .LP
2849 To convert a RADIANCE scene to a line drawing in RADIANCE picture
2850 format:
2851 .IP
2852 rad2mgf scene.rad | mgf2meta x `getbbox -h scene.rad` | meta2tga |
2853 ra_t8 -r > scene.pic
2854 .SH
2855 AUTHOR
2856 .LP
2857 Greg Ward
2858 .SH
2859 SEE ALSO
2860 .LP
2861 getbbox(1), meta2tga(1), metafile(5), mgf2rad(1), pflip(1),
2862 protate(1), psmeta(1), ra_t8(1), rad2mgf(1), t4014(1), x11meta(1)
2863 .ds RH
2864 .ds LH
2865 .bp
2866 .NH
2867 MGF Parser Library
2868 .LP
2869 The principal motivation for creating a standard parser library for
2870 MGF is to make it easy for software developers to offer some base
2871 level of compliance.
2872 The key to making MGF easy to support in fact is the parser, which
2873 has the ability to express higher order entities in terms of
2874 lower order ones.
2875 For example, tori are part of the MGF specification, but if a given
2876 program or translator does not support them, the parser will convert
2877 them to cones.
2878 If cones are not supported either, it will convert them further into
2879 smoothed polygons.
2880 If smoothing (vertex normal information) is not supported, it will
2881 be ignored and the program will just get flat polygons.
2882 This is done in such a way that future versions of the standard may
2883 include new entities that old software does not even have to know
2884 about, and they will be converted appropriately.
2885 Forward compatibility is thus built right into the parser loading
2886 mechanism itself -- the programmer simply links to the new code and
2887 the new standard is supported without any further changes.
2888 .SH
2889 Language
2890 .LP
2891 The provided MGF parser is written in ANSI-C.
2892 This language was chosen for reasons of portability and efficiency.
2893 Almost all systems support some form of ANSI-compatible C, and many
2894 languages can cross-link to C libraries without modification.
2895 Backward compatibility to Kernighan and Ritchie C is achieved by
2896 compiling with the -DNOPROTO flag.
2897 .LP
2898 All of the data structures and prototypes needed for the library
2899 are in the header file "parser.h".
2900 This file is the best resource for the parser and is updated with
2901 each MGF release.
2902 .SH
2903 Mechanism
2904 .LP
2905 The parser works by a simple callback mechanism to routines that
2906 actually interpret the individual entities.
2907 Some of these routines will belong to the calling program, and some
2908 will be entity support routines included in the library itself.
2909 There is a global array of function pointers, called
2910 .I mg_ehand.
2911 It is defined thus:
2912 .DS
2913 extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv);
2914 .DE
2915 Before parsing begins, this dispatch table is initialized to point to the
2916 routines that will handle each supported entity.
2917 Every entity handler has the same basic prototype, which is the
2918 same as the
2919 .I main
2920 function, i.e:
2921 .DS
2922 extern int \f2handler\f1(int argc, char **argv);
2923 .DE
2924 The first argument is the number of words in the MGF entity
2925 (counting the entity itself) and the second argument is an array of
2926 nul-terminated strings with the entity and its arguments.
2927 The function should return zero or one of the error
2928 codes defined in "parser.h".
2929 A non-zero return value causes the parser to abort, returning the
2930 error up through its call stack to the entry function, usually
2931 .I mg_load.
2932 .LP
2933 A special function pointer for undefined entities is
2934 defined as follows:
2935 .DS
2936 extern int (*mg_uhand)(int argc, char **argv);
2937 .DE
2938 By default, this points to the library function
2939 .I mg_defuhand,
2940 which prints an error message on the first unknown entity and keeps a
2941 count from then on, which is stored in the global unsigned integer
2942 .I mg_nunknown.
2943 If the
2944 .I mg_uhand
2945 pointer is assigned a value of NULL instead, parsing will abort at the
2946 first unrecognized entity.
2947 The reason this is not the default action is that ignoring unknown entities
2948 offers a certain base level of forward compatibility.
2949 Ignoring things one does not understand is not the best approach, but it
2950 is usually better than quitting with an error message if the input is
2951 in fact valid, but is a later version of the standard.
2952 The real solution is to update the interpreter by linking to a new version
2953 of the parser, or use a new version of the
2954 .I mgfilt
2955 command to convert the new MGF input to an older standard.
2956 .LP
2957 The
2958 .I mg_uhand
2959 pointer may also be used to customize the language for a particular
2960 application by adding entities, though this is discouraged because it
2961 tends to weaken the standard.
2962 .LP
2963 The skeletal framework for an MGF loader or translator is to assign
2964 function pointers to the
2965 .I mg_ehand
2966 array, call the parser initialization function
2967 .I mg_init,
2968 then call the file loader function
2969 .I mg_load
2970 once for each input file.
2971 This will in turn make calls back to the functions assigned to
2972 .I mg_ehand.
2973 To give a simple example, let us look at a
2974 translator that understands only flat polygonal faces, putting out
2975 vertex locations immediately after each "face" keyword:
2976 .DS
2977 #include <stdio.h>
2978 #include "parser.h"
2979
2980 int
2981 myfaceh(ac, av) /* face handling routine */
2982 int ac;
2983 char **av;
2984 {
2985 C_VERTEX *vp; /* vertex structure pointer */
2986 FVECT vert; /* vertex point location */
2987 int i;
2988
2989 if (ac < 4) /* check # arguments */
2990 return(MG_EARGC);
2991 printf("face\\\\n"); /* begin face output */
2992 for (i = 1; i < ac; i++) {
2993 if ((vp = c_getvert(av[i])) == NULL) /* vertex from name */
2994 return(MG_EUNDEF);
2995 xf_xfmpoint(vert, vp->p); /* apply transform */
2996 printf("%15.9f %15.9f %15.9f\\\\n",
2997 vert[0], vert[1], vert[2]); /* output vertex */
2998 }
2999 printf(";\\\\n"); /* end of face output */
3000 return(MG_OK); /* normal exit */
3001 }
3002
3003 main(argc, argv) /* translate MGF file(s) */
3004 int argc;
3005 char **argv;
3006 {
3007 int i;
3008 /* initialize dispatch table */
3009 mg_ehand[MG_E_FACE] = myfaceh; /* ours */
3010 mg_ehand[MG_E_VERTEX] = c_hvertex; /* parser lib */
3011 mg_ehand[MG_E_POINT] = c_hvertex; /* parser lib */
3012 mg_ehand[MG_E_XF] = xf_handler; /* parser lib */
3013 mg_init(); /* initialize parser */
3014 for (i = 1; i < argc; i++) /* load each file argument */
3015 if (mg_load(argv[i]) != MG_OK) /* and check for error */
3016 exit(1);
3017 exit(0); /* all done! */
3018 }
3019 .DE
3020 Hopefully, this example demonstrates just how easy it is to
3021 write an MGF translator.
3022 Of course, translators get more complicated the more entity
3023 types they support, but the point is that one does not
3024 .I have
3025 to support every entity -- the parser handles what the translator
3026 does not.
3027 Also, the library includes many general entity handlers,
3028 further reducing the burden on the programmer.
3029 This same principle means that it is not necessary to modify an
3030 existing program to accommodate a new version of MGF -- one need only
3031 link to the new parser library to comply with the new standard.
3032 .SH
3033 Division of Labor
3034 .LP
3035 As seen in the previous example, there are two parser routines that
3036 are normally called directly in an MGF translator or loader program.
3037 The first is
3038 .I mg_init,
3039 which takes no arguments but relies on the program having
3040 initialized those parts of the global
3041 .I mg_ehand
3042 array it cares about.
3043 The second routine is
3044 .I mg_load,
3045 which is called once on each input file.
3046 (A third routine,
3047 .I mg_clear,
3048 may be called to free the parser data structures after each file or
3049 after all files, if the program plans to continue rather than
3050 exit.)\0
3051 .LP
3052 The rest of the routines in a translator or loader program are
3053 called indirectly through the
3054 .I mg_ehand
3055 dispatch table, and they are the ones that do the real work of
3056 supporting the MGF entities.
3057 In addition to converting or discarding entities that the calling
3058 program does not know or care about, the parser library includes a
3059 set of context handlers that greatly simplify the translation
3060 process.
3061 There are three handlers for each of the three named contexts and
3062 their constituents, and two handlers for the two hierarchical
3063 context entities.
3064 To use these handlers, one simply sets the appropriate positions in the
3065 .I mg_ehand
3066 dispatch table to point to these functions.
3067 Additional functions and global data structures provide convenient
3068 access to the relevant contexts, and all of these are detailed in
3069 the following manual pages.
3070 .ds LH Basic Parser Routines
3071 .ds RH MG_INIT
3072 .bp
3073 .SH
3074 NAME
3075 .LP
3076 mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers
3077 .SH
3078 SYNOPSIS
3079 .LP
3080 #include "parser.h"
3081 .LP
3082 .B void
3083 mg_init(
3084 .B void
3085 )
3086 .LP
3087 .B int
3088 mg_defuhand(
3089 .B int
3090 argc,
3091 .B char
3092 **argv )
3093 .LP
3094 .B "extern int"
3095 (*mg_ehand[MG_NENTITIES])(
3096 .B int
3097 argc,
3098 .B char
3099 **argv )
3100 .LP
3101 .B "extern int"
3102 (*mg_uhand)(
3103 .B int
3104 argc,
3105 .B char
3106 **argv )
3107 .LP
3108 .B "extern unsigned"
3109 mg_nunknown
3110 .SH
3111 DESCRIPTION
3112 .LP
3113 The parser dispatch table,
3114 .I mg_ehand
3115 is initially set to all NULL pointers, and it
3116 is the duty of the calling program to assign entity handler functions to
3117 each of the supported entity positions in the array.
3118 The entities are given in the include file "parser.h" as the
3119 following:
3120 .DS
3121 #define MG_E_COMMENT 0 /* # */
3122 #define MG_E_COLOR 1 /* c */
3123 #define MG_E_CCT 2 /* cct */
3124 #define MG_E_CONE 3 /* cone */
3125 #define MG_E_CMIX 4 /* cmix */
3126 #define MG_E_CSPEC 5 /* cspec */
3127 #define MG_E_CXY 6 /* cxy */
3128 #define MG_E_CYL 7 /* cyl */
3129 #define MG_E_ED 8 /* ed */
3130 #define MG_E_FACE 9 /* f */
3131 #define MG_E_INCLUDE 10 /* i */
3132 #define MG_E_IES 11 /* ies */
3133 #define MG_E_IR 12 /* ir */
3134 #define MG_E_MATERIAL 13 /* m */
3135 #define MG_E_NORMAL 14 /* n */
3136 #define MG_E_OBJECT 15 /* o */
3137 #define MG_E_POINT 16 /* p */
3138 #define MG_E_PRISM 17 /* prism */
3139 #define MG_E_RD 18 /* rd */
3140 #define MG_E_RING 19 /* ring */
3141 #define MG_E_RS 20 /* rs */
3142 #define MG_E_SIDES 21 /* sides */
3143 #define MG_E_SPH 22 /* sph */
3144 #define MG_E_TD 23 /* td */
3145 #define MG_E_TORUS 24 /* torus */
3146 #define MG_E_TS 25 /* ts */
3147 #define MG_E_VERTEX 26 /* v */
3148 #define MG_E_XF 27 /* xf */
3149
3150 #define MG_NENTITIES 28 /* total # entities */
3151 .DE
3152 .LP
3153 Once the
3154 .I mg_ehand
3155 array has been set by the program, the
3156 .I mg_init
3157 routine must be called to complete the initialization process.
3158 This should be done once and only once per invocation, before any other
3159 parser routines are called.
3160 .LP
3161 The
3162 .I mg_uhand
3163 variable points to the current handler for unknown entities
3164 encountered on the input.
3165 Its default value points to the
3166 .I mg_defuhand
3167 function, which simply increments the global variable
3168 .I mg_nunknown,
3169 printing a warning message on the standard error on the first
3170 offense.
3171 (This message may be avoided by incrementing
3172 .I mg_nunknown
3173 before processing begins.)\0
3174 If
3175 .I mg_uhand
3176 is assigned a value of NULL, then an unknown entity will return an
3177 .I MG_EUNK
3178 error, which will cause the parser to abort.
3179 (See the
3180 .I mg_load
3181 page for a list of errors.)\0
3182 If the
3183 .I mg_uhand
3184 pointer is assigned to another function, that function will receive
3185 any unknown entities and their arguments, and the parsing will
3186 abort if the new function returns a non-zero error value.
3187 This offers a convenient way to customize the language by adding
3188 non-standard entities.
3189 .SH
3190 DIAGNOSTICS
3191 .LP
3192 If an inconsistent set of entities has been set for support, the
3193 .I mg_init
3194 routine will print an informative message to standard error and abort
3195 the calling program with a call to
3196 .I exit.
3197 This is normally unacceptable behavior for a library routine, but since
3198 such an error indicates a fault with the calling program itself,
3199 recovery is impossible.
3200 .SH
3201 SEE ALSO
3202 .LP
3203 mg_load, mg_handle
3204 .ds RH MG_LOAD
3205 .bp
3206 .SH
3207 NAME
3208 .LP
3209 mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures
3210 .SH
3211 SYNOPSIS
3212 .LP
3213 #include "parser.h"
3214 .LP
3215 .B int
3216 mg_load(
3217 .B char
3218 *filename )
3219 .LP
3220 .B void
3221 mg_clear(
3222 .B void
3223 )
3224 .LP
3225 .B extern
3226 MG_FCTXT *mg_file
3227 .LP
3228 .B "extern char"
3229 *mg_err[MG_NERRS]
3230 .SH
3231 DESCRIPTION
3232 .LP
3233 The
3234 .I mg_load
3235 function loads the named file, or standard input if
3236 .I filename
3237 is the NULL pointer.
3238 Calls back to the appropriate MGF handler routines are made through the
3239 .I mg_ehand
3240 dispatch table.
3241 .LP
3242 The global
3243 .I mg_file
3244 variable points to the current file context structure, which
3245 may be useful for the interpretation of certain entities, such as
3246 .UL ies,
3247 which must know the directory path of the enclosing file.
3248 This structure is of the defined type
3249 .I MG_FCTXT,
3250 given in "parser.h" as:
3251 .DS
3252 typedef struct mg_fctxt {
3253 char fname[96]; /* file name */
3254 FILE *fp; /* stream pointer */
3255 int fid; /* unique file context id */
3256 char inpline[4096]; /* input line */
3257 int lineno; /* line number */
3258 struct mg_fctxt *prev; /* previous context */
3259 } MG_FCTXT;
3260 .DE
3261 .SH
3262 DIAGNOSTICS
3263 .LP
3264 If an error is encountered during parsing,
3265 .I mg_load
3266 will print an appropriate error message to the standard error stream
3267 and return one of the non-zero values from "parser.h" listed below:
3268 .DS
3269 #define MG_OK 0 /* normal return value */
3270 #define MG_EUNK 1 /* unknown entity */
3271 #define MG_EARGC 2 /* wrong number of arguments */
3272 #define MG_ETYPE 3 /* argument type error */
3273 #define MG_EILL 4 /* illegal argument value */
3274 #define MG_EUNDEF 5 /* undefined reference */
3275 #define MG_ENOFILE 6 /* cannot open input file */
3276 #define MG_EINCL 7 /* error in included file */
3277 #define MG_EMEM 8 /* out of memory */
3278 #define MG_ESEEK 9 /* file seek error */
3279 #define MG_EBADMAT 10 /* bad material specification */
3280 #define MG_ELINE 11 /* input line too long */
3281
3282 #define MG_NERRS 12
3283 .DE
3284 If it is inappropriate to send output to standard error, the calling
3285 program should use the routines listed under
3286 .I mg_open
3287 for better control over the parsing process.
3288 .LP
3289 The
3290 .I mg_err
3291 array contains error messages corresponding to each of the values
3292 listed above in the native country's language.
3293 .SH
3294 SEE ALSO
3295 .LP
3296 mg_fgetpos, mg_handle, mg_init, mg_open
3297 .ds RH MG_OPEN
3298 .bp
3299 .SH
3300 NAME
3301 .LP
3302 mg_open, mg_read, mg_parse, mg_close - MGF file loading subroutines
3303 .SH
3304 SYNOPSIS
3305 .LP
3306 #include "parser.h"
3307 .LP
3308 .B int
3309 mg_open( MG_FCTXT *fcp,
3310 .B char
3311 *filename )
3312 .LP
3313 .B int
3314 mg_read(
3315 .B void
3316 )
3317 .LP
3318 .B int
3319 mg_parse(
3320 .B void
3321 )
3322 .LP
3323 .B void
3324 mg_close(
3325 .B void
3326 )
3327 .SH
3328 DESCRIPTION
3329 .LP
3330 Most loaders and translators will call the
3331 .I mg_load
3332 routine to handle the above operations, but some programs or
3333 entity handlers require tighter control over the loading process.
3334 .LP
3335 The
3336 .I mg_open
3337 routine takes an uninitialized
3338 .I MG_FCTXT
3339 structure and a file name as its arguments.
3340 If
3341 .I filename
3342 is the NULL pointer, the standard input is "opened."
3343 The
3344 .I fcp
3345 structure will be set by
3346 .I mg_open
3347 prior to its return, and the global
3348 .I mg_file
3349 pointer will be assigned to point to it.
3350 This variable must not be destroyed until after the file is closed
3351 with a call to
3352 .I mg_close.
3353 (See the
3354 .I mg_load
3355 page for a definition of
3356 .I mg_file
3357 and the
3358 .I MG_FCTXT
3359 type.)\0
3360 .LP
3361 The
3362 .I mg_read
3363 function reads the next input line from the current file,
3364 returning the number of characters in the line, or zero if the
3365 end of file is reached or there is a file error.
3366 If the last character read in the input line is not a newline,
3367 then the input line was too long, and you
3368 should return an MG_ELINE error.
3369 The function skips over escaped newlines, and keeps track of the
3370 line number in the current file context
3371 .I mg_file,
3372 which also contains the line that was read.
3373 .LP
3374 The
3375 .I mg_parse
3376 function breaks the current line in the
3377 .I mg_file
3378 structure into words and calls the appropriate handler routine, if
3379 any.
3380 Blank lines and unsupported entities cause a quick return.
3381 .LP
3382 The
3383 .I mg_close
3384 routine closes the current input file (unless it is the standard
3385 input) and returns to the previous file context (if any).
3386 .SH
3387 DIAGNOSTICS
3388 .LP
3389 The
3390 .I mg_open
3391 function returns
3392 .I MG_OK
3393 (0) normally, or
3394 .I MG_ENOFILE
3395 if the open fails for some reason.
3396 .LP
3397 The
3398 .I mg_parse
3399 function returns
3400 .I MG_OK
3401 if the current line was successfully interpreted, or one of the
3402 defined error values if there is a problem.
3403 (See the
3404 .I mg_load
3405 page for the defined error values.)\0
3406 .SH
3407 SEE ALSO
3408 .LP
3409 mg_fgetpos, mg_handle, mg_init, mg_load
3410 .ds RH MG_FGETPOS
3411 .bp
3412 .SH
3413 NAME
3414 .LP
3415 mg_fgetpos, mg_fgoto - get current file position and seek to pointer
3416 .SH
3417 SYNOPSIS
3418 .LP
3419 #include "parser.h"
3420 .LP
3421 .B void
3422 mg_fgetpos( MG_FPOS *pos )
3423 .LP
3424 .B int
3425 mg_fgoto( MG_FPOS *pos )
3426 .SH
3427 DESCRIPTION
3428 .LP
3429 The
3430 .I mg_fgetpos
3431 gets the current MGF file position and loads it into the passed
3432 .I MG_FPOS
3433 structure,
3434 .I pos.
3435 .LP
3436 The
3437 .I mg_fgoto
3438 function seeks to the position
3439 .I pos,
3440 taken from a previous call to
3441 .I mg_fgetpos.
3442 .SH
3443 DIAGNOSTICS
3444 .LP
3445 If
3446 .I mg_fgoto
3447 is passed an illegal pointer or one that does not correspond to the
3448 current
3449 .I mg_file
3450 context, it will return the
3451 .I MG_ESEEK
3452 error value.
3453 Normally, it returns
3454 .I MG_OK
3455 (0).
3456 .SH
3457 SEE ALSO
3458 .LP
3459 mg_load, mg_open
3460 .ds RH MG_HANDLE
3461 .bp
3462 .SH
3463 NAME
3464 .LP
3465 mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance and control
3466 .SH
3467 SYNOPSIS
3468 .LP
3469 .B int
3470 mg_handle(
3471 .B int
3472 en,
3473 .B int
3474 ac,
3475 .B char
3476 *av )
3477 .LP
3478 .B int
3479 mg_entity(
3480 .B char
3481 *name )
3482 .LP
3483 .B "extern char"
3484 mg_ename[MG_NENTITIES][MG_MAXELEN]
3485 .LP
3486 .B "extern int"
3487 mg_nqcdivs
3488 .SH
3489 DESCRIPTION
3490 .LP
3491 The
3492 .I mg_handle
3493 routine may be used to pass entities back to the parser
3494 to be redirected through the
3495 .I mg_ehand
3496 dispatch table.
3497 This method is recommended rather than calling through
3498 .I mg_ehand
3499 directly, since the parser sometimes has its own support routines
3500 that it needs to call for specific entities.
3501 The first argument,
3502 .I en,
3503 is the corresponding entity number, or -1 if
3504 .I mg_handle
3505 should figure it out from the first
3506 .I av
3507 argument.
3508 .LP
3509 The
3510 .I mg_entity
3511 function gets an entity number from its name, using a hash
3512 table on the
3513 .I mg_ename
3514 list.
3515 .LP
3516 The
3517 .I mg_ename
3518 table contains the string names corresponding to each MGF entity in
3519 the designated order.
3520 (See the
3521 .I mg_init
3522 page for the list of MGF entities.)\0
3523 .LP
3524 The global integer variable
3525 .I mg_nqcdivs
3526 tells the parser how many subdivisions to use per quarter circle (90
3527 degrees) when tesselating curved geometry.
3528 The default value is 5, and it may be reset at any time by the
3529 calling program.
3530 .SH
3531 DIAGNOSTICS
3532 .LP
3533 The
3534 .I mg_handle
3535 function returns
3536 .I MG_OK
3537 if the entity is handled correctly, or one of the predefined error
3538 values if there is a problem.
3539 (See the
3540 .I mg_load
3541 page for a list of error values.)\0
3542 .LP
3543 The
3544 .I mg_entity
3545 function returns -1 if the passed name does not appear in the
3546 .I mg_ename
3547 list.
3548 .SH
3549 SEE ALSO
3550 .LP
3551 mg_init, mg_load, mg_open
3552 .ds RH ISINT, ISFLT, ISNAME
3553 .bp
3554 .SH
3555 NAME
3556 .LP
3557 isint, isflt, isname - determine if string fits integer or real format,
3558 or is legal identifier
3559 .SH
3560 SYNOPSIS
3561 .LP
3562 .B int
3563 isint(
3564 .B char
3565 *str )
3566 .LP
3567 .B int
3568 isflt(
3569 .B char
3570 *str )
3571 .LP
3572 .B int
3573 isname(
3574 .B char
3575 *str )
3576 .SH
3577 DESCRIPTION
3578 .LP
3579 The
3580 .I isint
3581 function checks to see if the passed string
3582 .I str
3583 matches a decimal integer format (positive or negative),
3584 and returns 1 or 0 based on whether it does or does not.
3585 .LP
3586 The
3587 .I isflt
3588 function checks to see if the passed string
3589 .I str
3590 matches a floating point format (positive or negative with optional
3591 exponent), and returns 1 or 0 based on whether it does or does not.
3592 .LP
3593 The
3594 .I isname
3595 function checks to see if the passed string
3596 .I str
3597 is a legal identifier name.
3598 In MGF, a legal identifier must begin with a letter and contain only
3599 visible ASCII characters (those between decimal 33 and 127 inclusive).
3600 The one caveat to this is that names may begin with one or more
3601 underscores ('_'), but this is a trick employed by the parser to
3602 maintain a separate name space from the user, and is not legal usage
3603 otherwise.
3604 .LP
3605 Note that a string that matches an integer format is also a valid
3606 floating point value.
3607 Conversely, a string that is not a floating point number cannot be a
3608 valid integer.
3609 .LP
3610 These routines are useful for checking arguments passed to entity
3611 handlers that certain types in certain positions.
3612 If an invalid argument is passed, the handler should return an
3613 .I MG_ETYPE
3614 error.
3615 .SH
3616 SEE ALSO
3617 .LP
3618 mg_init, mg_load
3619 .ds LH Entity Support Routines
3620 .ds RH C_HVERTEX
3621 .bp
3622 .SH
3623 NAME
3624 .LP
3625 c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support
3626 .SH
3627 SYNOPSIS
3628 .LP
3629 #include "parser.h"
3630 .LP
3631 .B int
3632 c_hvertex(
3633 .B int
3634 argc,
3635 .B char
3636 **argv )
3637 .LP
3638 C_VERTEX *c_getvert(
3639 .B char
3640 *name )
3641 .LP
3642 .B "extern char"
3643 *c_vname
3644 .LP
3645 .B extern
3646 C_VERTEX *c_cvertex
3647 .SH
3648 DESCRIPTION
3649 .LP
3650 The
3651 .I c_hvertex
3652 function handles the MGF vertex entities,
3653 .UL v,
3654 .UL p
3655 and
3656 .UL n.
3657 If either
3658 .UL p
3659 or
3660 .UL n
3661 is supported, then
3662 .UL v
3663 must be also.
3664 The assignments are normally made to the
3665 .I mg_ehand
3666 array prior to parser initialization, like so:
3667 .DS
3668 mg_ehand[MG_E_VERTEX] = c_hvertex; /* support "v" entity */
3669 mg_ehand[MG_E_POINT] = c_hvertex; /* support "p" entity */
3670 mg_ehand[MG_E_NORMAL] = c_hvertex; /* support "n" entity */
3671 /* other entity handler assignments... */
3672 mg_init(); /* initialize parser */
3673 .DE
3674 If vertex normals are not understood by any of the program-supported
3675 entities, then the
3676 .I MG_E_NORMAL
3677 entry may be left with its original NULL assignment.
3678 .LP
3679 The
3680 .I c_getvert
3681 call takes the name of a defined vertex and returns a pointer to its
3682 .I C_VERTEX
3683 structure, defined in "parser.h" as:
3684 .DS
3685 typedef FLOAT FVECT[3]; /* a 3-d real vector */
3686
3687 typedef struct {
3688 int clock; /* incremented each change -- resettable */
3689 FVECT p, n; /* point and normal */
3690 } C_VERTEX; /* vertex context */
3691 .DE
3692 The
3693 .I clock
3694 member will be incremented each time the value gets changed by a
3695 .UL p
3696 or
3697 .UL n
3698 entity, and may be reset by the controlling program if desired.
3699 This is a convenient way to keep track of whether or not a vertex has
3700 changed since its last use.
3701 To link identical vertices, one must also check that the current
3702 transform has not changed, which is uniquely identified by the
3703 global
3704 .I xf_context->xid
3705 variable, but only if one is using the parser libraries transform
3706 handler.
3707 (See the
3708 .I xf_handler
3709 page.)\0
3710 .LP
3711 It is possible but not recommended to alter the contents of the
3712 vertex structure returned by
3713 .I c_getvert.
3714 Normally it is read during the
3715 interpretation of entities using named vertices.
3716 .LP
3717 The name of the current vertex is given by the global
3718 .I c_cvname
3719 variable, which is set to NULL if the unnamed vertex is current.
3720 The current vertex value is pointed to by the global variable
3721 .I c_cvertex,
3722 which should never be NULL.
3723 .SH
3724 DIAGNOSTICS
3725 .LP
3726 The
3727 .I c_hvertex
3728 function returns
3729 .I MG_OK
3730 (0) if the vertex is handled correctly, or one of the predefined
3731 error values if there is a problem.
3732 (See the
3733 .I mg_load
3734 page for a list of errors.)\0
3735 .LP
3736 The
3737 .I c_getvert
3738 function returns NULL if the specified vertex name is undefined, at
3739 which point the calling function should return an
3740 .I MG_EUNDEF
3741 error.
3742 .SH
3743 SEE ALSO
3744 .LP
3745 c_hcolor, c_hmaterial, mg_init, mg_load, xf_handler
3746 .ds RH C_HCOLOR
3747 .bp
3748 .SH
3749 NAME
3750 .LP
3751 c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey -
3752 color entity support
3753 .SH
3754 SYNOPSIS
3755 .LP
3756 #include "parser.h"
3757 .LP
3758 .B int
3759 c_hcolor(
3760 .B int
3761 argc,
3762 .B char
3763 **argv )
3764 .LP
3765 C_COLOR *c_getcolor(
3766 .B char
3767 *name )
3768 .LP
3769 .B "extern char"
3770 *c_ccname
3771 .LP
3772 .B extern
3773 C_COLOR *c_ccolor
3774 .LP
3775 .B void
3776 c_ccvt( C_COLOR *cvp,
3777 .B int
3778 cflags )
3779 .LP
3780 .B int
3781 c_isgrey( C_COLOR *cvp )
3782 .SH
3783 DESCRIPTION
3784 .LP
3785 The
3786 .I c_hcolor
3787 function supports the MGF entities,
3788 .UL c,
3789 .UL cxy,
3790 .UL cspec,
3791 .UL cct
3792 and
3793 .UL cmix.
3794 It is an error to support any of the color field entities without
3795 supporting the
3796 .UL c
3797 entity itself.
3798 The assignments are normally made to the
3799 .I mg_ehand
3800 array prior to parser initialization, like so:
3801 .DS
3802 mg_ehand[MG_E_COLOR] = c_hcolor; /* support "c" entity */
3803 mg_ehand[MG_E_CXY] = c_hcolor; /* support "cxy" entity */
3804 mg_ehand[MG_E_CSPEC] = c_hcolor; /* support "cspec" entity */
3805 mg_ehand[MG_E_CCT] = c_hcolor; /* support "cct" entity */
3806 mg_ehand[MG_E_CMIX] = c_hcolor; /* support "cmix" entity */
3807 /* other entity handler assignments... */
3808 mg_init(); /* initialize parser */
3809 .DE
3810 If the loader/translator has no use for spectral data, the entries for
3811 .UL cspec
3812 and
3813 .UL cct
3814 may be left with their original NULL assignments and these entities will
3815 be re-expressed appropriately as tristimulus values.
3816 .LP
3817 The
3818 .I c_getcolor
3819 function takes the name of a defined color and returns a pointer to its
3820 .I C_COLOR
3821 structure, defined in "parser.h" as:
3822 .DS
3823 #define C_CMINWL 380 /* minimum wavelength */
3824 #define C_CMAXWL 780 /* maximum wavelength */
3825 #define C_CNSS 41 /* number of spectral samples */
3826 #define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1))
3827 #define C_CMAXV 10000 /* nominal maximum sample value */
3828 #define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */
3829
3830 typedef struct {
3831 int clock; /* incremented each change */
3832 short flags; /* what's been set */
3833 short ssamp[C_CNSS]; /* spectral samples, min wl to max */
3834 long ssum; /* straight sum of spectral values */
3835 float cx, cy; /* xy chromaticity value */
3836 float eff; /* efficacy (lumens/watt) */
3837 } C_COLOR; /* color context */
3838 .DE
3839 The
3840 .I clock
3841 member will be incremented each time the value gets changed by a
3842 color field entity, and may be reset by the calling program if
3843 desired.
3844 This is a convenient way to keep track of whether or not a color has
3845 changed since its last use.
3846 The
3847 .I flags
3848 member indicates which color representations have been assigned,
3849 and is an inclusive OR of one or more of the following:
3850 .DS
3851 #define C_CSSPEC 01 /* flag if spectrum is set */
3852 #define C_CDSPEC 02 /* flag if defined w/ spectrum */
3853 #define C_CSXY 04 /* flag if xy is set */
3854 #define C_CDXY 010 /* flag if defined w/ xy */
3855 #define C_CSEFF 020 /* flag if efficacy set */
3856 .DE
3857 .LP
3858 It is possible but not recommended to alter the contents of the
3859 color structure returned by
3860 .I c_getcolor.
3861 Normally, this routine is never called directly, since there are no
3862 entities that access colors by name other than
3863 .UL c.
3864 .LP
3865 The global variable
3866 .I c_ccname
3867 points to the name of the current color, or NULL if it is unnamed.
3868 The variable
3869 .I c_ccolor
3870 points to the current color value, which should never be NULL.
3871 .LP
3872 The
3873 .I c_ccvt
3874 routine takes a
3875 .I C_COLOR
3876 structure and a set of desired flag settings and computes the
3877 missing color representation(s).
3878 .LP
3879 The
3880 .I c_isgrey
3881 function returns 1 if the passed color is very close to neutral
3882 grey, or 0 otherwise.
3883 .SH
3884 DIAGNOSTICS
3885 .LP
3886 The
3887 .I c_hcolor
3888 function returns
3889 .I MG_OK
3890 (0) if the color is handled correctly, or one of the predefined
3891 error values if there is a problem.
3892 (See the
3893 .I mg_load
3894 page for a list of errors.)\0
3895 .LP
3896 The
3897 .I c_getcolor
3898 function returns NULL if the specified color name is undefined, at
3899 which point the calling function should return an
3900 .I MG_EUNDEF
3901 error.
3902 .SH
3903 SEE ALSO
3904 .LP
3905 c_hmaterial, c_hvertex, mg_init, mg_load
3906 .ds RH C_HMATERIAL
3907 .bp
3908 .SH
3909 NAME
3910 .LP
3911 c_hmaterial, c_getmaterial, c_cmname, c_cmaterial -
3912 material entity support
3913 .SH
3914 SYNOPSIS
3915 .LP
3916 #include "parser.h"
3917 .LP
3918 .B int
3919 c_hmaterial(
3920 .B int
3921 argc,
3922 .B char
3923 **argv )
3924 .LP
3925 C_MATERIAL *c_getmaterial(
3926 .B char
3927 *name )
3928 .LP
3929 .B "extern char"
3930 *c_cmname
3931 .LP
3932 .B extern
3933 C_MATERIAL *c_cmaterial
3934 .SH
3935 DESCRIPTION
3936 .LP
3937 The
3938 .I c_hmaterial
3939 function supports the MGF entities,
3940 .UL m,
3941 .UL ed,
3942 .UL ir,
3943 .UL rd,
3944 .UL rs,
3945 .UL sides,
3946 .UL td,
3947 and
3948 .UL ts.
3949 It is an error to support any of the material field entities without
3950 supporting the
3951 .UL m
3952 entity itself.
3953 The assignments are normally made to the
3954 .I mg_ehand
3955 array prior to parser initialization, like so:
3956 .DS
3957 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* support "m" entity */
3958 mg_ehand[MG_E_ED] = c_hmaterial; /* support "ed" entity */
3959 mg_ehand[MG_E_IR] = c_hmaterial; /* support "ir" entity */
3960 mg_ehand[MG_E_RD] = c_hmaterial; /* support "rd" entity */
3961 mg_ehand[MG_E_RS] = c_hmaterial; /* support "rs" entity */
3962 mg_ehand[MG_E_SIDES] = c_hmaterial; /* support "sides" entity */
3963 mg_ehand[MG_E_TD] = c_hmaterial; /* support "td" entity */
3964 mg_ehand[MG_E_TS] = c_hmaterial; /* support "ts" entity */
3965 /* other entity handler assignments... */
3966 mg_init(); /* initialize parser */
3967 .DE
3968 Any of the above entities besides
3969 .UL m
3970 may be unsupported, but the parser will not attempt to include their
3971 effect into other members, e.g. an unsupported
3972 .UL rs
3973 component will not be added back into the
3974 .UL rd
3975 member.
3976 It is therefore safer to support all of the relevant material
3977 entities and make final approximations from the complete
3978 .I C_MATERIAL
3979 structure.
3980 .LP
3981 The
3982 .I c_getmaterial
3983 function takes the name of a defined material and returns a pointer to its
3984 .I C_MATERIAL
3985 structure, defined in "parser.h" as:
3986 .DS
3987 #define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */
3988
3989 typedef struct {
3990 int clock; /* incremented each change -- resettable */
3991 int sided; /* 1 if surface is 1-sided, 0 for 2-sided */
3992 float nr, ni; /* index of refraction, real and imaginary */
3993 float rd; /* diffuse reflectance */
3994 C_COLOR rd_c; /* diffuse reflectance color */
3995 float td; /* diffuse transmittance */
3996 C_COLOR td_c; /* diffuse transmittance color */
3997 float ed; /* diffuse emittance */
3998 C_COLOR ed_c; /* diffuse emittance color */
3999 float rs; /* specular reflectance */
4000 C_COLOR rs_c; /* specular reflectance color */
4001 float rs_a; /* specular reflectance roughness */
4002 float ts; /* specular transmittance */
4003 C_COLOR ts_c; /* specular transmittance color */
4004 float ts_a; /* specular transmittance roughness */
4005 } C_MATERIAL; /* material context */
4006 .DE
4007 The
4008 .I clock
4009 member will be incremented each time the value gets changed by a
4010 material field entity, and may be reset by the calling program if
4011 desired.
4012 This is a convenient way to keep track of whether or not a material has
4013 changed since its last use.
4014 .LP
4015 All reflectance and transmittance values correspond to normal
4016 incidence, and may vary as a function of angle depending on the
4017 index of refraction.
4018 A solid object is normally represented with a one-sided material.
4019 A two-sided material is most appropriate for thin surfaces, though
4020 it may be used also when the surface normal orientations in a model
4021 are unreliable.
4022 .LP
4023 If a transparent or translucent surface is one-sided, then the
4024 absorption will change as a function of distance through the
4025 material, and a single value for diffuse or specular transmittance is
4026 ambiguous.
4027 We therefore define a standard thickness,
4028 .I C_1SIDEDTHICK,
4029 which is the object thickness to which the given values correspond,
4030 so that one may compute the isotropic absorptance of the material.
4031 .LP
4032 It is possible but not recommended to alter the contents of the
4033 material structure returned by
4034 .I c_getmaterial.
4035 Normally, this routine is never called directly, since there are no
4036 entities that access materials by name other than
4037 .UL m.
4038 .LP
4039 The global variable
4040 .I c_cmname
4041 points to the name of the current material, or NULL if it is unnamed.
4042 The variable
4043 .I c_cmaterial
4044 points to the current material value, which should never be NULL.
4045 .SH
4046 DIAGNOSTICS
4047 .LP
4048 The
4049 .I c_hmaterial
4050 function returns
4051 .I MG_OK
4052 (0) if the color is handled correctly, or one of the predefined
4053 error values if there is a problem.
4054 (See the
4055 .I mg_load
4056 page for a list of errors.)\0
4057 .LP
4058 The
4059 .I c_getmaterial
4060 function returns NULL if the specified material name is undefined, at
4061 which point the calling function should return an
4062 .I MG_EUNDEF
4063 error.
4064 .SH
4065 SEE ALSO
4066 .LP
4067 c_hcolor, c_hvertex, mg_init, mg_load
4068 .ds RH OBJ_HANDLER
4069 .bp
4070 .SH
4071 NAME
4072 .LP
4073 obj_handler, obj_clear, obj_nnames, obj_name - object name support
4074 .SH
4075 SYNOPSIS
4076 .LP
4077 .B int
4078 obj_handler(
4079 .B int
4080 argc,
4081 .B char
4082 **argv )
4083 .LP
4084 .B void
4085 obj_clear(
4086 .B void
4087 )
4088 .LP
4089 .B "extern int"
4090 obj_nnames
4091 .LP
4092 .B "extern char"
4093 **obj_name
4094 .SH
4095 DESCRIPTION
4096 .LP
4097 The
4098 .I obj_handler
4099 routine should be assigned to the
4100 .I MG_E_OBJECT
4101 entry of the parser's
4102 .I mg_ehand
4103 array prior to calling
4104 .I mg_load
4105 if the loader/translator wishes to support hierarchical object
4106 names.
4107 .LP
4108 The
4109 .I obj_clear
4110 function may be used to clear the object name stack and free any
4111 associated memory, but this is usually not necessary since
4112 .UL o
4113 begin and end entities are normally balanced in the input.
4114 .LP
4115 The global
4116 .I obj_nnames
4117 variable indicates the number of names currently in the object
4118 stack, and the
4119 .I obj_name
4120 list contains the name strings in the same order as they were
4121 encountered on the input.
4122 (I.e. the most recently pushed name is last.)\0
4123 .SH
4124 DIAGNOSTICS
4125 .LP
4126 The
4127 .I obj_handler
4128 function returns
4129 .I MG_OK
4130 (0) if the color is handled correctly, or one of the predefined
4131 error values if there is a problem.
4132 (See the
4133 .I mg_load
4134 page for a list of errors.)\0
4135 .SH
4136 SEE ALSO
4137 .LP
4138 mg_init, mg_load, xf_handler
4139 .ds RH XF_HANDLER
4140 .bp
4141 .SH
4142 NAME
4143 .LP
4144 xf_handler, xf_clear, xf_context, xf_argend - transformation support
4145 .SH
4146 SYNOPSIS
4147 .LP
4148 .B int
4149 xf_handler(
4150 .B int
4151 argc,
4152 .B char
4153 **argv )
4154 .LP
4155 .B void
4156 xf_clear(
4157 .B void
4158 )
4159 .LP
4160 .B extern
4161 XF_SPEC *xf_context
4162 .LP
4163 .B "extern char"
4164 **xf_argend
4165 .SH
4166 DESCRIPTION
4167 .LP
4168 The
4169 .I xf_handler
4170 routine should be assigned to the
4171 .I MG_E_XF
4172 entry of the parser's
4173 .I mg_ehand
4174 array prior to calling
4175 .I mg_load
4176 if the loader/translator wishes to support hierarchical
4177 transformations.
4178 (Note that all MGF geometric entities require this support.)\0
4179 .LP
4180 The
4181 .I xf_clear
4182 function may be used to clear the transform stack and free any
4183 associated memory, but this is usually not necessary since
4184 .UL xf
4185 begin and end entities are normally balanced in the input.
4186 .LP
4187 The global
4188 .I xf_context
4189 variable points to the current transformation context, which is of
4190 the type
4191 .I XF_SPEC,
4192 described in "parser.h":
4193 .DS
4194 typedef struct xf_spec {
4195 long xid; /* unique transform id */
4196 short xac; /* context argument count */
4197 short rev; /* boolean true if vertices reversed */
4198 XF xf; /* cumulative transformation */
4199 struct xf_array *xarr; /* transformation array pointer */
4200 struct xf_spec *prev; /* previous transformation context */
4201 } XF_SPEC; /* followed by argument buffer */
4202 .DE
4203 The
4204 .I xid
4205 member is a identifier associated with this transformation,
4206 which should be the same for identical transformations, as an aid to
4207 vertex sharing.
4208 (See also the
4209 .I c_hvertex
4210 page.)\0
4211 The
4212 .I xac
4213 member indicates the total number of transform arguments, and is
4214 used to indicate the position of the first argument relative to the
4215 last one pointed to by the global
4216 .I xf_argend
4217 variable.
4218 .LP
4219 The first transform argument starts at
4220 .I xf_argv,
4221 which is a macro defined in "parser.h" as:
4222 .DS
4223 #define xf_argv (xf_argend - xf_context->xac)
4224 .DE
4225 Note that accessing this macro will result in a segmentation violation
4226 if the current context is NULL, so one should first test the second macro
4227 .I xf_argc
4228 against zero.
4229 This macro is defined as:
4230 .DS
4231 #define xf_argc (xf_context==NULL ? 0 : xf_context->xac)
4232 .DE
4233 .LP
4234 Normally, neither of these macros will be used, since there are
4235 routines for transforming points, vectors and scalars directly based
4236 on the current transformation context.
4237 (See the
4238 .I xf_xfmpoint
4239 page for details.)\0
4240 .LP
4241 The
4242 .I rev
4243 member of the
4244 .I XF_SPEC
4245 structure indicates whether or not this transform reverses the order
4246 of polygon vertices.
4247 This member will be 1 if the transformation mirrors about an odd
4248 number of coordinate axes, thus inverting faces.
4249 The usual thing to do in this circumstance is to interpret the
4250 vertex arguments in the reverse order, so as to bring the face back
4251 to its original orientation in the new position.
4252 .LP
4253 The
4254 .I xf
4255 member contains the transformation scalefactor (in xf.sca)
4256 and 4x4 homogeneous matrix (in xf.xfm), but these will usually not
4257 be accessed directly.
4258 Likewise, the
4259 .I xarr
4260 and
4261 .I prev
4262 members point to data that should not be needed by the calling
4263 program.
4264 .SH
4265 DIAGNOSTICS
4266 .LP
4267 The
4268 .I xf_handler
4269 function returns
4270 .I MG_OK
4271 (0) if the color is handled correctly, or one of the predefined
4272 error values if there is a problem.
4273 (See the
4274 .I mg_load
4275 page for a list of errors.)\0
4276 .SH
4277 SEE ALSO
4278 .LP
4279 mg_init, mg_load, obj_handler, xf_xfmpoint
4280 .ds RH XF_XFMPOINT
4281 .bp
4282 .SH
4283 NAME
4284 .LP
4285 xf_xfmpoint, xf_xfmvect, xf_rotvect, xf_scale - apply current
4286 transformation
4287 .SH
4288 SYNOPSIS
4289 .LP
4290 .B void
4291 xf_xfmpoint( FVECT pnew, FVECT pold )
4292 .LP
4293 .B void
4294 xf_xfmvect( FVECT vnew, FVECT vold )
4295 .LP
4296 .B void
4297 xf_rotvect( FVECT nnew, FVECT nold )
4298 .LP
4299 .B double
4300 xf_scale(
4301 .B double
4302 sold )
4303 .SH
4304 DESCRIPTION
4305 .LP
4306 The
4307 .I xf_xfmpoint
4308 routine applies the current transformation defined by
4309 .I xf_context
4310 to the point
4311 .I pold,
4312 scaling, rotating and moving it to its proper location, which is put in
4313 .I pnew.
4314 (As for
4315 .I xf_xfmvect
4316 and
4317 .I xf_rotvect,
4318 the two arguments may point to the same vector.)\0
4319 .LP
4320 The
4321 .I xf_xfmvect
4322 routine applies the current transformation to the vector
4323 .I vold,
4324 scaling and rotating it to its proper location, which is put in
4325 .I vnew.
4326 The only difference between
4327 .I xf_xfmpoint
4328 and
4329 .I xf_xfmvect
4330 is that in the latter, the final translation is not applied.
4331 .LP
4332 The
4333 .I xf_rotvect
4334 routine rotates the vector
4335 .I nold
4336 using the current transformation, and stores the result in
4337 .I nnew.
4338 No translation or scaling is applied, which is the appropriate
4339 action for surface normal vectors for example.
4340 .LP
4341 The
4342 .I xf_scale
4343 function takes a scalar argument
4344 .I sold
4345 and applies the current scale factor, returning the result.
4346 .SH
4347 SEE ALSO
4348 .LP
4349 xf_handler
4350 .ds LH
4351 .ds RH
4352 .bp
4353 .NH
4354 Application Notes
4355 .NH 2
4356 Relation to Standard Practices in Computer Graphics
4357 .LP
4358 For those coming from a computer graphics background, some of the
4359 choices in the material model may seem strange or even capricious.
4360 Why not simply stick with RGB colors and a Phong specular component
4361 like everyone else?
4362 What is the point in choosing the number of sides to a material?
4363 .LP
4364 In the real world, a surface can have only one side,
4365 defining the interface between one volume and another.
4366 Many object-space rendering packages (e.g. z-buffer algorithms) take
4367 advantage of this fact by culling back-facing polygons and thus saving
4368 as much as 50% of the preprocessing time.
4369 However, many models rely on an
4370 approximation whereby a single surface is used to represent a very thin
4371 volume, such as a pane of glass, and this also can provide significant
4372 calculational savings in an image-space algorithm (such as
4373 ray-tracing).
4374 Also, many models are created in such a way that the front vs. back
4375 information is lost or confused, so that the back side of one or
4376 more surfaces may have to serve as the front side during rendering.
4377 (AutoCAD is one easily identified culprit in this department.)\0
4378 Since both types of surface models are useful and any
4379 rendering algorithm may ultimately be applied, MGF provides a way
4380 to specify sidedness rather than picking one interpretation or the other.
4381 .LP
4382 The problem with RGB is that there is no accepted standard, and even
4383 if we were to set one it would either be impossible to realize (i.e.
4384 impossible to create phosphors with the chosen colors) or it would
4385 have a gamut that excludes many saturated colors.
4386 The CIE color system was very carefully conceived and developed,
4387 and is the standard to which all photometric measurements adhere.
4388 It is therefore the logical choice in any standard format, though it
4389 has been too often ignored by the computer graphics community.
4390 .LP
4391 Regarding Phong shading, this was never a physical model and making it
4392 behave basic laws of reciprocity and energy balance is difficult.
4393 More to the point, specular power has almost nothing to do with
4394 surface microstructure, and is difficult to set properly
4395 even if every physical characteristic of a material has
4396 been carefully measured.
4397 This is the ultimate indictment of any physical model -- that it
4398 is incapable of reproducing any measurement whatsoever.
4399 .LP
4400 Admittedly, the compliment of diffuse and specular component plus
4401 surface roughness and index of refraction used in MGF is less than a
4402 perfect model, but it is serviceable for most materials and
4403 relatively simple to incorporate into a rendering algorithm.
4404 In the long term, MGF shall probably include full spectral
4405 scattering functions, though the sheer quantity of data involved
4406 makes this burdensome from both the measurement side and the
4407 simulation side.
4408 .NH 3
4409 Converting between Phong Specular Power and Gaussian Roughness
4410 .LP
4411 So-called specular reflection and transmission are modeled using a
4412 Gaussian distribution of surface facets.
4413 The roughness parameters to the
4414 .UL rs
4415 and
4416 .UL ts
4417 entities specify
4418 the root-mean-squared (RMS) surface facet slope, which varies from 0
4419 for a perfectly smooth surface to around .2 for a fairly rough one.
4420 The effect this will have on the reflected component distribution is
4421 well-defined, but predicting the behavior of the transmitted
4422 component requires further assumptions.
4423 We assume that the surface
4424 scatters light passing through it just as much as it scatters
4425 reflected light.
4426 This assumption is approximately correct for a
4427 two-sided transparent material with an index of refraction of 1.5
4428 (like glass) and both sides having the given RMS facet slope.
4429 .LP
4430 Oftentimes, one is translating from a Phong exponent on the cosine
4431 of the half-vector-to-normal angle to the more physical but less
4432 familiar Gaussian model of MGF.
4433 The hardest part is translating the specular power to a roughness value.
4434 For this, we recommend the following approximation:
4435 .IP
4436 roughness = 0.6/sqrt(specular_power)
4437 .LP
4438 It is not a perfect correlation, but it is about as close as one can get.
4439 .NH 3
4440 Converting between RGB and CIE Colors
4441 .LP
4442 Unlike most graphics languages, MGF does not use an RGB color model,
4443 simply because there is no recognized definition for this model.
4444 It is based on computer monitor phosphors, which vary from one
4445 CRT to the next.
4446 (There is an RGB standard defined in the TV
4447 industry, but this has a rather poor correlation to most computer
4448 monitors and it is impossible to express many real-world colors
4449 within its limited gamut.)\0
4450 .LP
4451 MGF uses two alternative, well-defined standards, spectral power
4452 distributions and the 1931 CIE 2 degree standard observer.
4453 With the CIE standard, any viewable
4454 color may be exactly represented as an (x,y) chromaticity value.
4455 Unfortunately, the interaction between
4456 colors (i.e. colored light sources and interreflections) cannot be
4457 specified exactly with any finite coordinate set, including CIE
4458 chromaticities.
4459 So, MGF offers the ability to give reflectance,
4460 transmittance or emittance as a function of wavelength over the visible
4461 spectrum.
4462 This function is still discretized, but at a user-selectable
4463 resolution.
4464 Furthermore, spectral colors may be mixed, providing (nearly)
4465 arbitrary basis functions, which can produce more accurate results in
4466 some cases and are merely a convenience for translation in others.
4467 .LP
4468 Conversion back and forth between CIE chromaticity coordinates and spectral
4469 samples is provided within the MGF parser.
4470 Unfortunately, conversion
4471 to and from RGB values depends on a particular RGB definition, and as we
4472 have said, there is no recognized standard.
4473 We therefore recommend that
4474 you decide yourself what chromaticity values to use for each RGB primary,
4475 and adopt the following code to convert between CIE and RGB coordinates.
4476 .LP
4477 .nf
4478 #ifdef NTSC
4479 #define CIE_x_r 0.670 /* standard NTSC primaries */
4480 #define CIE_y_r 0.330
4481 #define CIE_x_g 0.210
4482 #define CIE_y_g 0.710
4483 #define CIE_x_b 0.140
4484 #define CIE_y_b 0.080
4485 #define CIE_x_w 0.3333 /* monitor white point */
4486 #define CIE_y_w 0.3333
4487 #else
4488 #define CIE_x_r 0.640 /* nominal CRT primaries */
4489 #define CIE_y_r 0.330
4490 #define CIE_x_g 0.290
4491 #define CIE_y_g 0.600
4492 #define CIE_x_b 0.150
4493 #define CIE_y_b 0.060
4494 #define CIE_x_w 0.3333 /* monitor white point */
4495 #define CIE_y_w 0.3333
4496 #endif
4497
4498 #define CIE_D ( CIE_x_r*(CIE_y_g - CIE_y_b) + \\
4499 CIE_x_g*(CIE_y_b - CIE_y_r) + \\
4500 CIE_x_b*(CIE_y_r - CIE_y_g) )
4501 #define CIE_C_rD ( (1./CIE_y_w) * \\
4502 ( CIE_x_w*(CIE_y_g - CIE_y_b) - \\
4503 CIE_y_w*(CIE_x_g - CIE_x_b) + \\
4504 CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g ) )
4505 #define CIE_C_gD ( (1./CIE_y_w) * \\
4506 ( CIE_x_w*(CIE_y_b - CIE_y_r) - \\
4507 CIE_y_w*(CIE_x_b - CIE_x_r) - \\
4508 CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r ) )
4509 #define CIE_C_bD ( (1./CIE_y_w) * \\
4510 ( CIE_x_w*(CIE_y_r - CIE_y_g) - \\
4511 CIE_y_w*(CIE_x_r - CIE_x_g) + \\
4512 CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r ) )
4513
4514 #define CIE_rf (CIE_y_r*CIE_C_rD/CIE_D)
4515 #define CIE_gf (CIE_y_g*CIE_C_gD/CIE_D)
4516 #define CIE_bf (CIE_y_b*CIE_C_bD/CIE_D)
4517
4518 float xyz2rgbmat[3][3] = { /* XYZ to RGB */
4519 {(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g)/CIE_C_rD,
4520 (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b)/CIE_C_rD,
4521 (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g)/CIE_C_rD},
4522 {(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b)/CIE_C_gD,
4523 (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r)/CIE_C_gD,
4524 (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b)/CIE_C_gD},
4525 {(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r)/CIE_C_bD,
4526 (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g)/CIE_C_bD,
4527 (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r)/CIE_C_bD}
4528 };
4529
4530 float rgb2xyzmat[3][3] = { /* RGB to XYZ */
4531 {CIE_x_r*CIE_C_rD/CIE_D,CIE_x_g*CIE_C_gD/CIE_D,CIE_x_b*CIE_C_bD/CIE_D},
4532 {CIE_y_r*CIE_C_rD/CIE_D,CIE_y_g*CIE_C_gD/CIE_D,CIE_y_b*CIE_C_bD/CIE_D},
4533 {(1.-CIE_x_r-CIE_y_r)*CIE_C_rD/CIE_D,
4534 (1.-CIE_x_g-CIE_y_g)*CIE_C_gD/CIE_D,
4535 (1.-CIE_x_b-CIE_y_b)*CIE_C_bD/CIE_D}
4536 };
4537
4538
4539 cie_rgb(rgbcolor, ciecolor) /* convert CIE to RGB */
4540 register float *rgbcolor, *ciecolor;
4541 {
4542 register int i;
4543
4544 for (i = 0; i < 3; i++) {
4545 rgbcolor[i] = xyz2rgbmat[i][0]*ciecolor[0] +
4546 xyz2rgbmat[i][1]*ciecolor[1] +
4547 xyz2rgbmat[i][2]*ciecolor[2] ;
4548 if (rgbcolor[i] < 0.0) /* watch for negative values */
4549 rgbcolor[i] = 0.0;
4550 }
4551 }
4552
4553
4554 rgb_cie(ciecolor, rgbcolor) /* convert RGB to CIE */
4555 register float *ciecolor, *rgbcolor;
4556 {
4557 register int i;
4558
4559 for (i = 0; i < 3; i++)
4560 ciecolor[i] = rgb2xyzmat[i][0]*rgbcolor[0] +
4561 rgb2xyzmat[i][1]*rgbcolor[1] +
4562 rgb2xyzmat[i][2]*rgbcolor[2] ;
4563 }
4564 .fi
4565 .LP
4566 An alternative to adopting the above code is to use the MGF "cmix"
4567 entity to convert from RGB directly by naming the three primaries in
4568 terms of their chromaticities, e.g:
4569 .DS
4570 c R =
4571 cxy 0.640 0.330
4572 c G =
4573 cxy 0.290 0.600
4574 c B =
4575 cxy 0.150 0.060
4576 .DE
4577 .LP
4578 Then, converting from RGB to MGF colors is as simple as multiplying each
4579 component by its relative luminance in a cmix statement, for instance:
4580 .DS
4581 c white =
4582 cmix 0.265 R 0.670 G 0.065 B
4583 .DE
4584 .LP
4585 For the chosen RGB standard, the above specification would result a pure
4586 white.
4587 The reason the coefficients are not all 1 as you might expect is
4588 that cmix uses relative luminance as the standard for its weights.
4589 Since
4590 blue is less luminous for the same energy than red, which is in turn
4591 less luminous than green, the weights cannot be the same to achieve an
4592 even spectral balance.
4593 Unfortunately, computing these relative weights
4594 is not straightforward, though it is given in the above macros as CIE_rf,
4595 CIE_gf and CIE_bf.
4596 (The common factors in these macros may of course
4597 be removed since
4598 .UL cmix
4599 weights are all relative.)\0
4600 Alternatively, one could measure the actual full scale luminance of
4601 the phosphors with a luminance probe and get the same relative
4602 values.
4603 .NH 2
4604 Relation to IESNA LM-63 and Luminaire Catalogs
4605 .LP
4606 Recently, the Illuminating Engineering Society of North America
4607 (IESNA) adopted MGF as the official standard for
4608 representing luminaire geometry and materials.
4609 The way this works in an IES luminaire data file is through the
4610 addition of a keyword called LUMINOUSGEOMETRY, which is given on a
4611 line in the header portion of a file (before the TILT specification)
4612 like so:
4613 .LP
4614 .B [LUMINOUSGEOMETRY]
4615 .I mgf_file
4616 .LP
4617 The given MGF file must exist relative to the directory containing
4618 the IES file (i.e. the same stipulations and restrictions on pathnames
4619 apply as for the MGF
4620 .UL i
4621 entity).
4622 Furthermore, the position of the MGF geometry must be
4623 such that the gross geometric specification of emitting surfaces
4624 in the IES file completely
4625 blocks or encloses the luminous portions of the MGF description.
4626 Specifically, any ray traced towards the MGF geometry must strike
4627 the IES gross geometry before it strikes any luminous surface in the
4628 MGF description.
4629 This provides a convenient way of preventing overcounting in the
4630 illumination calculation, while still allowing for accurate fixture
4631 appearance.
4632 .LP
4633 To give two examples, let us consider first a recessed can, followed
4634 by a hanging direct/indirect fluorescent fixture.
4635 .LP
4636 The most appropriate IES geometric specification for the emitting
4637 area of a can light would be a circular disk.
4638 Since the IES gross geometry gives only the diameter of the disk, the
4639 actual 3-dimensional placement is implicitly defined as having a
4640 center at the origin, with the radiating disk facing in the
4641 negative Z direction (nadir, downwards).
4642 The MGF geometry would then be placed such that any luminous portion
4643 was above this disk, and no portion of it would obstruct the IES
4644 geometry.
4645 The most sensible position therefore has the IES disk flush with the
4646 MGF can opening, as shown in Figure 3.
4647 .bp
4648 Replace this page with the second page from "figures.ps".
4649 .bp
4650 .LP
4651 In the case of a direct/indirect fluorescent fixture, light will
4652 exit both the top and the bottom sides, and the IES geometry must
4653 enclose the radiating portion of the fixture entirely.
4654 It is acceptable to have additional MGF geometry above the
4655 fixture so long as it does not radiate, which is what we must do if
4656 we wish to include the support rods, as shown in Figure 4.
4657 .LP
4658 Note that the origin is always in the exact center of the IES
4659 geometry.
4660 .LP
4661 Not all fixtures will fit the simple IES geometry specification so
4662 nicely.
4663 For odd-shaped fixtures, it may be necessary to use an IES geometry
4664 that does not match the radiating area terribly well in order that
4665 it completely block or enclose the required MGF specification.
4666 .LP
4667 The unit of length in the MGF file is always meters, regardless of
4668 the units specified in the enclosing IES file.
4669 However, any and all multipliers applied to the candlepower data in the
4670 IES file will also be applied to the emittance of surfaces in the
4671 MGF specification, so that one MGF file may serve similar
4672 luminaires that differ in their total output.
4673 .NH
4674 Credits
4675 .LP
4676 The MGF language grew out of a joint investigation into physical
4677 representations for rendering undertaken by the author
4678 (Greg Ward of LBL) and Holly Rushmeier of the National
4679 Institute of Standards and Technology.
4680 After deciding that a complete and robust specification was
4681 an extreme challenge, we shelved the project for another time.
4682 A few months later, the author spoke with Ian Ashdown and Robert
4683 Shakespeare, who are both members of the IES Computing Committee,
4684 about the need for extending the existing data standard to
4685 include luminaire geometry and near-field photometry.
4686 We then moved forward as a team towards a somewhat less ambitious
4687 approach to physical materials and geometry that had the advantage
4688 of simplicity and the possibility of support with a standard parser
4689 library.
4690 The author went to work over the next two months
4691 on the detailed design of the language
4692 and an ANSI-C parser, with regular feedback from the other three
4693 team members.
4694 Several months and several versions later, we arrived at release
4695 1.0, which is the occasion of this document's creation.
4696 .LP
4697 Funding for this work... would be nice.