ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/mgfdoc.tr
Revision: 1.2
Committed: Fri May 12 21:42:42 1995 UTC (29 years ago) by greg
Content type: application/x-troff
Branch: MAIN
Changes since 1.1: +14 -10 lines
Log Message:
fixed minor problems

File Contents

# User Rev Content
1 greg 1.1 .\" SCCSid "$SunId$ LBL"
2     .nr PS 11
3     .ps 11
4     .nr VS 12
5     .vs 12
6     .nr PD .5v
7     .ds LF MGF
8     .ds RF Version 1.0
9     .DA May 1995
10     .TL
11     The Materials and Geometry Format
12     .AU
13     Greg Ward
14     .br
15     Lawrence Berkeley Laboratory
16     .NH
17     Introduction
18     .LP
19     The Materials and Geometry Format (referred to henceforth as MGF)
20     is a description language for 3-dimensional environments expressly
21     suited to visible light simulation and rendering.
22     The materials are physically-based and rely on standard and
23     well-accepted definitions of color, reflectance and transmittance
24     for good accuracy and reproducibility.
25     The geometry is based on boundary representation using simple
26     geometric primitives such as polygons, spheres and cones.
27     The file format itself is terse but human-readable ASCII text.
28     .NH 2
29     What makes MGF special?
30     .LP
31     There are three principal reasons to use MGF as an input language for
32     lighting simulation and physically-based rendering:
33     .RS
34     .IP 1.
35     It's the only existing format that describes materials physically.
36     .IP 2.
37     It is endorsed by the Illuminating Engineering Society of North
38     America (IESNA) as part of their LM-63-1995 standard for luminaire data.
39     .IP 3.
40     It's easy and fun to support since it comes with a standard parser
41     and sample scenes and objects at the web site,
42     "http://radsite.lbl.gov/mgf/HOME.html".
43     .RE
44     .LP
45     The standard parser provides both immediate and a long-term
46     benefits, since it presents a programming interface that is more
47     stable even than the language itself.
48     Unlike AutoCAD DXF and other de facto standards, a change to the
49     language will not break existing programs.
50     This is because the parser gives the calling software only those
51     entities it can handle.
52     If the translator understands only polygons, it will be given only
53     polygons.
54     If a new geometric primitive is included in a later version of the
55     standard, the new parser that comes with it will still be able to
56     express this entity as polygons.
57     Thus, the urgency of modifying code to support a changing standard
58     is removed, and long-term stability is assured.
59     .LP
60     This notion of
61     .I extensibility
62     is a cornerstone of the format, and it goes well beyond the
63     extensibility of other languages because is guarantees that new
64     versions of the standard will not break existing programs, and the
65     new information will be used as much as possible.
66     Other languages either require that all translators stay up to date
67     with the latest standard, or allow forward compatibility by simply
68     .I ignoring
69     new entities.
70     In MGF, if NURBS are added at some point and the translator or
71     loader does not handle them directly, the new version of the parser
72     will automatically convert them to smoothed polygons without
73     changing a single line of the calling program.
74     It is merely necessary to link to the new library, and all the new
75     entities are supported\(dg.
76     .FS
77     \(dgIf an old version of the parser encounters new entities it does
78     not recognize, the default action is to ignore them, printing a warning
79     message.
80     This may be overridden to support custom entities, but such
81     practice is discouraged because it weakens the standard.
82     .FE
83     .NH 2
84     What does MGF look like?
85     .LP
86     MGF has a simple entity-per-line structure, with a similar
87     appearance to Wavefront's .OBJ format.
88     Each entity is specified by a short keyword, and
89     arguments are separated by white space (tabs and/or spaces).
90     A newline may be escaped with a backslash ('\\'), in which case it
91     counts as a space.
92     Lines and continued lines may have up to 4096 characters, including
93     newlines, tabs and spaces.
94     A comment is an ignored entity whose keyword is the pound sign ('#').
95     .LP
96     Here is an MGF file that describes a simple two-drawer file cabinet:
97     .DS
98     # Conversion from inches to meters
99     xf -s .0254
100     # Surface material
101     m burgundy_formica =
102     c
103     cxy .362 .283
104     rd .0402
105     c
106     rs .0284 .05
107     sides 1
108     # Cabinet vertices
109     v fc.xy =
110     p .05 0 0
111     v fc.xY =
112     p .05 18 0
113     v fc.XY =
114     p 35.95 18 0
115     v fc.Xy =
116     p 35.95 0 0
117     # Cabinet
118     prism fc.xy fc.xY fc.XY fc.Xy 24
119     # Drawer vertices
120     v fcd.Xz =
121     p 34 0 0
122     v fcd.XZ =
123     p 34 0 10
124     v fcd.xZ =
125     p 0 0 10
126     v fcd.xz =
127     p 0 0 0
128     # Two drawers
129     o drawer
130     xf -t 1 18.1 2 -a 2 -t 0 0 11
131     prism fcd.xz fcd.Xz fcd.XZ fcd.xZ .9
132     xf
133     o
134     # End of units conversion
135     xf
136     .DE
137     .NH 2
138     MGF's place in the world of standards
139     .LP
140     MGF was developed initially to support detailed geometric
141     description of light fixtures for the IESNA luminaire data standard,
142     publication LM-63\(dg.
143     .FS
144     \(dgTo obtain the latest version of this standard, write to:
145     Illuminating Engineering Society of North America,
146     345 East 47th St.,
147     New York, NY 10017.
148     .FE
149     Existing standards for geometric description were either too
150     cumbersome (e.g.
151     .I Radiance)
152     or did not include physical materials (e.g. IGES).
153     It was noted early on that a standard able to fully describe
154     luminaires would necessarily be
155     capable of describing other objects as well; indeed whole
156     environments could be defined this way.
157     Since the descriptions would be physical, they could serve as input
158     to both lighting simulation and rendering software.
159     A standard language for describing the appearance of physical
160     objects has been lacking for some time, and current efforts in this
161     direction (i.e. STEP) seem several years away from fruition.
162     (There are other languages for describing realistic scenes
163     that deserve mention here, such as VRML and the Manchester Scene
164     Description Language, but none give specific attention to physical
165     material properties and are thus unsuitable for lighting
166     simulation.)\0
167     .LP
168     In short, we saw this as an opportunity to offer the lighting and
169     rendering community a simple and easy-to-support standard for
170     describing environments in a physically valid way.
171     Our hope is that this will promote sharing color, material and object
172     libraries as well as complete scene descriptions.
173     Sharing libraries is of obvious benefit to users and software
174     developers alike.
175     Sharing scenes should also permit
176     comparisons between rendering systems and
177     intervalidation of lighting calculations.
178     As anyone who works in this field knows, modeling is the most
179     difficult step in creating any simulation or rendering, and there is
180     no excuse for this data being held prisoner by a proprietary data
181     format.
182     .NH
183     MGF Basics
184     .LP
185     The default coordinate system in MGF is right-handed with
186     distances given in meters, though this can be effectively changed
187     by specifying a global transformation.
188     The transformation context is affected by the
189     .UL xf
190     entity, and the whole of MGF can be understood in terms of entities
191     and contexts.
192     .NH 2
193     Entities and Contexts
194     .LP
195     An
196     .I entity
197     in MGF is any non-blank line, which must be one of a finite set of
198     command keywords followed by zero or more arguments.
199     (As mentioned previously, an entity may continue over multiple lines
200     by escaping the newline with a backslash.)\0
201     Table 1 gives a list of entities and their expected arguments.
202     Section 3 gives more detailed information on each entity.
203     .KF
204     .TS
205     expand, box;
206     l l l.
207     Keyword Arguments Interpretation
208     = = =
209     # [anything ...] a comment
210     o [name] begin/end object context
211     xf [xform] begin/end transformation context
212     i pathname [xform] include file (with transformation)
213     ies pathname [-m f][xform] include IES luminaire (with transformation)
214     _ _ _
215     c [id [= [template]]] get/set color context
216     cxy x y set CIE (x,y) chromaticity for current color
217     cspec l_min l_max v1 v2 ... set relative spectrum for current color
218     cct temperature set spectrum based on black body temperature
219     cmix w1 c1 w2 c2 ... mix named colors to make current color
220     _ _ _
221     m [id [= [template]]] get/set material context
222     sides {1|2} set number of sides for current material
223     rd rho_d set diffuse reflectance for current material
224     td tau_d set diffuse transmittance for current material
225     ed epsilon_d set diffuse emittance for current material
226     rs rho_s alpha_r set specular reflectance for current material
227     ts tau_s alpha_t set specular transmittance for current material
228     ir n_real n_imag set index of refraction for current material
229     _ _ _
230     v [id [= [template]]] get/set vertex context
231     p x y z set point position for current vertex
232     n dx dy dz set surface normal for current vertex
233     _ _ _
234     f v1 v2 v3 ... polygon using current material, spec. vertices
235     sph vc radius sphere
236     cyl v1 radius v2 truncated right cylinder (open-ended)
237     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
238     prism v1 v2 v3 ... length truncated right prism (closed solid)
239     ring vc rmin rmax circular ring with inner and outer radii
240     torus vc rmin rmax circular torus with inner and outer radii
241     .TE
242     .QP
243     .B "Table 1".
244     MGF entities and their arguments.
245     Arguments in brackets are optional.
246     Arguments in curly braces mean one of the given choices must
247     appear.
248     Ellipsis (...) mean that any number of arguments may be given.
249     .sp
250     .KE
251     .LP
252     A
253     .I context
254     describes the current state of the interpreter, and affects or is
255     affected by certain entities as they are read in.
256     MGF contexts can be divided into two types,
257     .I "hierarchical contexts"
258     and
259     .I "named contexts".
260     .LP
261     Hierarchical contexts are manipulated by a single entity and
262     have an associated "stack" onto which new
263     contexts are "pushed" using the entity.
264     The last context may be "popped" by giving the entity again with no
265     arguments.
266     The two hierarchical contexts in MGF are the current transformation,
267     manipulated with the
268     .UL xf
269     entity, and the current object, manipulated with the
270     .UL o
271     entity.
272     .KF
273     .TS
274     expand, allbox;
275     l c l l l.
276     Context Cntl. Entity Default Value Field Entities Affects
277     = = = = =
278     Object o - - -
279     Transform xf - - T{
280     f, sph, cyl, cone,
281     ring, torus, prism
282     T}
283     Material m 2-sided black T{
284     sides, rd, td,
285     ed, rs, ts
286     T} T{
287     f, sph, cyl, cone,
288     ring, torus, prism
289     T}
290     Color c neutral grey T{
291     cxy, cspec, cct, cmix
292     T} T{
293     rd, td, ed, rs, ts
294     T}
295     Vertex v T{
296     (0,0,0),
297     no normal
298     T} p, n T{
299     f, sph, cyl, cone,
300     ring, torus, prism
301     T}
302     .TE
303     .QP
304     .B "Table 2".
305     MGF contexts and their related entities and default values.
306     .sp
307     .KE
308     .LP
309     Named contexts in contrast hold sets of values that are swapped
310     in and out one at a time.
311     There are three named contexts in MGF, the current material, the
312     current color and the current vertex.
313     Each one may be associated with an identifier (any non-white
314     sequence of printing ASCII characters beginning with a letter),
315     and one of each is in effect at any given time.
316     Initially, these contexts are unnamed, and invoking an unnamed
317     context always returns to the original (default) values.
318     (See Table 2 for a list of contexts, their related
319     entities and defaults.)\0
320     .LP
321     It is easiest to think of a context as a "scratch space" where
322     values are written by some entities and read by others.
323     Naming a context allows us to reestablish the same scratch space
324     later, usually for reference but it can be altered as well.
325     Let us say we wanted to create a smooth blue plastic material with a
326     diffuse reflectance of 20% and a specular reflectance of 4%:
327     .DS
328     # Establish a new material context called "blue_plastic"
329     m blue_plastic =
330     # Reestablish a previous color context called "blue"
331     c blue
332     # Set the diffuse reflectance, which uses the above color
333     rd .20
334     # Get the unnamed color context (always starts out grey)
335     c
336     # Set the specular reflectance, which is uncolored
337     rs .04 0
338     # We're done, the current material context is now "blue_plastic"
339     .DE
340     Note that the above assumes that we have previously defined a color
341     context named "blue".
342     If we forgot to do that, the above description would generate an
343     "undefined" error.
344     The color context affects the material context indirectly because it
345     is read by the specular and diffuse reflectance entities, which are
346     in turn written to the current material.
347     It is not necessary to indent the entities that affect the material
348     definition, but it improves readability.
349     Note also that there is no explicit end to the material definition.
350     As long as a context remains in effect, its contents may be altered
351     by its field entities.
352     This will not affect previous uses of the context, however.
353     For example, a surface entity following the above definition will
354     have the specified color and reflectance, and later changes to the
355     material "blue_plastic" will have no effect on it.
356     .LP
357     Each of the three named contexts has an associated entity that
358     controls it.
359     The material context is controlled by the
360     .UL m
361     entity, the color context is controlled by the
362     .UL c
363     entity, and the vertex context is controlled by the
364     .UL v
365     entity.
366     There are exactly four forms for each entity.
367     The first form is the keyword by itself, which establishes
368     an unnamed context with predetermined default values.
369     This is a useful way to set values without worrying about saving
370     them for recall later.
371     The second form is to give the keyword with a previously defined
372     name.
373     This reestablishes a prior context for reuse.
374     The third form is to give the keyword with a name followed by an
375     equals sign.
376     (There must be a space between the name and the equals sign, since
377     it is a separate argument.)\0
378     This establishes a new context and assigns it the same default
379     values as the unnamed context.
380     The fourth and final form gives the keyword followed by a name then
381     an equals then the name of a previous context definition.
382     This establishes a new context for the first name, assigning the
383     values from the second named context rather than the usual defaults.
384     This is a convenient way create an alias or
385     to modify a context under a new name (i.e. "save as").
386     .NH 2
387     Hierarchical Contexts and Transformations
388     .LP
389     As mentioned in the last subsection, there are two hierarchical
390     contexts in MGF, the current object and the current transformation.
391     We will start by discussing the current object, since it is
392     the simpler of the two.
393     .NH 3
394     Objects
395     .LP
396     There is no particular need in lighting simulation or rendering to
397     name objects, but it may help the user
398     to know what object a particular surface is associated with.
399     The
400     .UL o
401     entity provides a convenient mechanism for associating names with
402     surfaces.
403     The basic use of this entity is as follows:
404     .DS
405     o object_name
406     [object entities...]
407     o subobject_name
408     [subobject entities...]
409     o
410     [more object entities and subobjects...]
411     o
412     .DE
413     The
414     .UL o
415     keyword by itself marks the end of an object context.
416     Any number of hierarchical context levels are supported, and there are no
417     rules governing the choice of object names except that they begin
418     with a letter and be made up of printing, non-white ASCII characters.
419     Indentation is not necessary of course, but it does improve
420     readability.
421     .NH 3
422     Transformations
423     .LP
424     MGF supports only rigid-body (i.e. non-distorting) transformations
425     with uniform scaling.
426     Unlike the other contexts, transformations have no associated
427     name, only arguments.
428     Thus, there is no way to reestablish a previous transformation other
429     than to give the same arguments over again.
430     Since the arguments are concise and self-explanatory, this was thought
431     sufficient.
432     The following transformation flags and
433     parameters are defined:
434 greg 1.2 .TS
435     center;
436 greg 1.1 l l.
437     -t dx dy dz translate objects along the given vector
438     -rx degrees rotate objects about the X-axis
439     -ry degrees rotate objects about the Y-axis
440     -rz degrees rotate objects about the Z-axis
441     -s scalefactor scale objects by the given factor
442     -mx mirror objects about the Y-Z plane
443     -my mirror objects about the X-Z plane
444     -mz mirror objects about the X-Y plane
445     -i N repeat the following arguments N times
446     -a N make an array of N geometric instances
447     .TE
448     Transform arguments have a cumulative effect.
449     That is, a rotation
450     about X of 20 degrees followed by a rotation about X of -50 degrees
451     results in a total rotation of -30 degrees.
452     However, if the two
453     rotations are separated by some translation vector, the cumulative
454     effect is quite different.
455     It is best to think of each argument as
456     acting on the included geometric objects, and each subsequent transformation
457     argument affects the objects relative to their new position/orientation.
458     .LP
459     For example, rotating an object about its center is most easily done
460     by translating
461     the object back to the origin, applying the desired rotation, and translating
462     it again back to its original position, like so:
463     .DS
464     # rotate an included object 20 degrees clockwise looking down
465     # an axis parallel to Y and passing through the point (15,0,-35)
466     xf -t -15 0 35 -ry -20 -t 15 0 -35
467     i object.mgf
468     xf
469     .DE
470     Note that the include entity,
471     .UL i,
472     permits a transformation to be given with it, so the above could
473     have been written more compactly as:
474     .DS
475     i object.mgf -t -15 0 35 -ry -20 -t 15 0 -35
476     .DE
477     .LP
478     Rotations are given in degrees counter-clockwise about a principal axis.
479     That is, with the thumb of the right hand pointing in the direction
480     of the axis, rotation follows the curl of the fingers.
481     .LP
482     The transform entity itself is cumulative, but in the reverse
483     order to its arguments.
484     That is, later transformations (i.e. enclosed transformations)
485     are prepended to existing (i.e. enclosing) ones.
486     A transform command
487     with no arguments is used to return to the previous condition.
488     It is
489     necessary that transforms and their end statements ("xf" by itself) be
490     balanced in a file, so that later or enclosing files are not affected.
491     .LP
492     Transformations apply only to geometric types, e.g. polygons, spheres, etc.
493     Vertices and the components that go into geometry are not directly affected.
494     This is to avoid confusion and the inadvertent multiple application of a
495     given transformation.
496     For example:
497     .DS
498     xf -t 5 0 0
499     v v1 =
500     p 0 10 0
501     n 0 0 1
502     xf -rx 180
503     # Transform now in effect is "-rx 180 -t 5 0 0"
504     ring v1 0 2
505     xf
506     xf
507     .DE
508     The final ring center is (5,-10,0) -- note that the vertex itself is
509     not affected by the transformation, only the geometry that calls on
510     it.
511     The normal orientation is (0,0,-1) due to the rotation about X,
512     which also reversed the sign of the central Y coordinate.
513     .NH 3
514     Arrays
515     .LP
516     The -a N transform specification causes the following transform
517     arguments to be repeated along with the contents of the included
518     objects N times.
519     The first instance of the geometry will be in its
520     initial location; the second instance will be repositioned according
521     to the named transformation; the third instance will be repositioned by
522     applying this transformation twice, and so on up to N-1 applications.
523     .LP
524     Multi-dimensional arrays may be specified with a single include
525     entity by giving multiple array commands separated by their
526     corresponding transforms.
527     A final transformation may be given
528     by preceding it with a -i 1 specification.
529     In other words, the
530     scope of an array command continues until the next -i or -a option.
531     .LP
532     The following MGF description places 60 spheres at a one unit spacing
533     in a 3x4x5 array, then moves the whole thing to an origin of
534     (15,30,45):
535     .DS
536     v v0 =
537     p 0 0 0
538     xf -a 3 -t 1 0 0 -a 4 -t 0 1 0 -a 5 -t 0 0 1 -i 1 -t 15 30 45
539     sph v0 0.1
540     xf
541     .DE
542     Note the "-i 1" in the specification, which marks the end of the
543     third array arguments before the final translation.
544     .NH 2
545     Detailed MGF Example
546     .LP
547     The following example of a simple room with a single door
548     and six file cabinets shows MGF in action, with copious comments to
549     help explain what's going on.
550 greg 1.2 .LP
551 greg 1.1 .DS
552     # "ceiling_tile" is a diffuse white surface with 75% reflectance:
553     # Create new named material context and clear it
554     m ceiling_tile =
555     # Specify one-sided material so we can see through from above
556     sides 1
557     # Set neutral color
558     c
559     # Set diffuse reflectance
560     rd .75
561     # "stainless_steel" is a mostly specular surface with 70% reflectance:
562     m stainless_steel =
563     sides 1
564     c
565     # Set specular reflectance to 50%, .08 roughness
566     rs .5 .08
567     # Other 20% reflectance is diffuse
568     rd .2
569    
570     # The following materials were measured with a spectrophotometer:
571     m beige_paint =
572     sides 1
573     # Set diffuse spectral reflectance
574     c
575     # Spectrum measured in 10 nm increments from 400 to 700 nm
576     cspec 400 700 35.29 44.87 47.25 47.03 46.87 47.00 47.09 \\\\
577     47.15 46.80 46.17 46.26 48.74 51.08 51.31 51.10 \\\\
578     51.11 50.52 50.36 51.72 53.61 53.95 52.08 49.49 \\\\
579     48.30 48.75 49.99 51.35 52.75 54.44 56.34 58.00
580     rd 0.5078
581     # Neutral (grey) specular component
582     c
583     rs 0.0099 0.08000
584     m mottled_carpet =
585     sides 1
586     c
587     cspec 400 700 11.23 11.28 11.39 11.49 11.61 11.73 11.88 \\\\
588     12.02 12.12 12.19 12.30 12.37 12.37 12.36 12.34 \\\\
589     12.28 12.22 12.29 12.45 12.59 12.70 12.77 12.82 \\\\
590     12.88 12.98 13.24 13.67 14.31 15.55 17.46 19.75
591     rd 0.1245
592     m reddish_cloth =
593     # 2-sided so we can observe it from behind
594     sides 2
595     c
596     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
597     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
598     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
599     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
600     rd 0.3210
601     m burgundy_formica =
602     sides 1
603     c
604     cspec 400 700 3.86 3.74 3.63 3.51 3.34 3.21 3.14 \\\\
605     3.09 3.08 3.14 3.13 2.91 2.72 2.74 2.72 \\\\
606     2.60 2.68 3.40 4.76 6.05 6.65 6.75 6.68 \\\\
607     6.63 6.56 6.51 6.46 6.41 6.36 6.34 6.34
608     rd 0.0402
609     c
610     rs 0.0284 0.05000
611     m speckled_grey_formica =
612     sides 1
613     c
614     cspec 400 700 30.95 44.77 51.15 52.60 53.00 53.37 53.68 \\\\
615     54.07 54.33 54.57 54.85 55.20 55.42 55.51 55.54 \\\\
616     55.46 55.33 55.30 55.52 55.81 55.91 55.92 56.00 \\\\
617     56.22 56.45 56.66 56.72 56.58 56.44 56.39 56.39
618     rd 0.5550
619     c
620     rs 0.0149 0.15000
621    
622     # 40' x 22' x 9' office space with no windows and one door
623    
624     # All measurements are in inches, so enclose with a metric conversion:
625     xf -s .0254
626    
627     # The room corner vertices:
628     v rc.xyz =
629     p 0 0 0
630     v rc.Xyz =
631     p 480 0 0
632     v rc.xYz =
633     p 0 264 0
634     v rc.xyZ =
635     p 0 0 108
636     v rc.XYz =
637     p 480 264 0
638     v rc.xYZ =
639     p 0 264 108
640     v rc.XyZ =
641     p 480 0 108
642     v rc.XYZ =
643     p 480 264 108
644    
645     # The floor:
646     # Push object name
647     o floor
648     # Get previously defined carpet material
649     m mottled_carpet
650     # Polygonal face using defined vertices
651     f rc.xyz rc.Xyz rc.XYz rc.xYz
652     # Pop object name
653     o
654    
655     # The ceiling:
656     o ceiling
657     m ceiling_tile
658     f rc.xyZ rc.xYZ rc.XYZ rc.XyZ
659     o
660    
661     # The door outline vertices:
662     v do.xz =
663     p 216 0 0
664     v do.Xz =
665     p 264 0 0
666     v do.xZ =
667     p 216 0 84
668     v do.XZ =
669     p 264 0 84
670    
671     # The walls:
672     o wall
673     m beige_paint
674     o x
675     f rc.xyz rc.xYz rc.xYZ rc.xyZ
676     o
677     o X
678     f rc.Xyz rc.XyZ rc.XYZ rc.XYz
679     o
680     o y
681     f rc.xyz rc.xyZ rc.XyZ rc.Xyz do.Xz do.XZ do.xZ do.xz
682     o
683     o Y
684     f rc.xYz rc.XYz rc.XYZ rc.xYZ
685     o
686     o
687    
688     # The door and jam vertices:
689     v djo.xz =
690     p 216 .5 0
691     v djo.xZ =
692     p 216 .5 84
693     v djo.XZ =
694     p 264 .5 84
695     v djo.Xz =
696     p 264 .5 0
697     v dji.Xz =
698     p 262 .5 0
699     v dji.XZ =
700     p 262 .5 82
701     v dji.xZ =
702     p 218 .5 82
703     v dji.xz =
704     p 218 .5 0
705     v door.xz =
706     p 218 0 0
707     v door.xZ =
708     p 218 0 82
709     v door.XZ =
710     p 262 0 82
711     v door.Xz =
712     p 262 0 0
713    
714     # The door, jam and knob
715     o door
716     m burgundy_formica
717     f door.xz door.xZ door.XZ door.Xz
718     o jam
719     m beige_paint
720     f djo.xz djo.xZ djo.XZ djo.Xz dji.Xz dji.XZ dji.xZ dji.xz
721     f djo.xz do.xz do.xZ djo.xZ
722     f djo.xZ do.xZ do.XZ djo.XZ
723     f djo.Xz djo.XZ do.XZ do.Xz
724     f dji.xz dji.xZ door.xZ door.xz
725     f dji.xZ dji.XZ door.XZ door.xZ
726     f dji.Xz door.Xz door.XZ dji.XZ
727     o
728     o knob
729     m stainless_steel
730     # Define vertices needed for curved geometry
731     v kb1 =
732     p 257 0 36
733     v kb2 =
734     p 257 .25 36
735     n 0 1 0
736     v kb3 =
737     p 257 2 36
738     # 1" diameter cylindrical base from kb1 to kb2
739     cyl kb1 1 kb2
740     # Ring at base of knob stem
741     ring kb2 .4 1
742     # Knob stem
743     cyl kb2 .4 kb3
744     # Spherical knob
745     sph kb3 .85
746     o
747     o
748    
749     i cubfurn.inc -mx -t 405 133.5 0
750     o
751    
752     # Six file cabinets (36" wide each)
753     # ("filecab.inc" was given as an earlier example in Section 1.2)
754     o filecab.x
755     # include a file as an array of three 36" apart
756     i filecab.inc -t -36 0 0 -rz -90 -t 1 54 0 -a 3 -t 0 36 0
757     o
758     o filecab.X
759     # the other three cabinets
760     i filecab.inc -rz 90 -t 479 54 0 -a 3 -t 0 36 0
761     o
762    
763     # End of transform from inches to meters:
764     xf
765    
766     # The 10 recessed fluorescent ceiling fixtures
767     ies hlrs2gna.ies -t 1.2192 2.1336 2.74 -a 5 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
768     .DE
769     .bp
770     .NH
771     MGF Entity Reference
772     .LP
773     There are currently 28 entities in the MGF specification.
774     For ease of reference we have broken these into five categories:
775     .IP 1.
776     General
777 greg 1.2 .TS
778 greg 1.1 lw(.75i) lw(1.75i) lw(3i).
779     # [anything ...] a comment
780     o [name] begin/end object context
781     xf [xform] begin/end transformation context
782     i pathname [xform] include file (with transformation)
783     ies pathname [-m f][xform] include IES luminaire (with transformation)
784     .TE
785     .IP 2.
786     Color
787 greg 1.2 .TS
788 greg 1.1 lw(.75i) lw(1.75i) lw(3i).
789     c [id [= [template]]] get/set color context
790     cxy x y set CIE (x,y) chromaticity for current color
791     cspec l_min l_max v1 v2 ... set relative spectrum for current color
792     cct temperature set spectrum based on black body temperature
793     cmix w1 c1 w2 c2 ... mix named colors to make current color
794     .TE
795     .IP 3.
796     Material
797     .TS
798     lw(.75i) lw(1.75i) lw(3i).
799     m [id [= [template]]] get/set material context
800     sides {1|2} set number of sides for current material
801     rd rho_d set diffuse reflectance for current material
802     td tau_d set diffuse transmittance for current material
803     ed epsilon_d set diffuse emittance for current material
804     rs rho_s alpha_r set specular reflectance for current material
805     ts tau_s alpha_t set specular transmittance for current material
806     ir n_real n_imag set index of refraction for current material
807     .TE
808     .IP 4.
809     Vertex
810     .TS
811     lw(.75i) lw(1.75i) lw(3i).
812     v [id [= [template]]] get/set vertex context
813     p x y z set point position for current vertex
814     n dx dy dz set surface normal for current vertex
815     .TE
816     .IP 5.
817     Geometry
818     .TS
819     lw(.75i) lw(1.75i) lw(3i).
820     f v1 v2 v3 ... polygon using current material, spec. vertices
821     sph vc radius sphere
822     cyl v1 radius v2 truncated right cylinder (open-ended)
823     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
824     prism v1 v2 v3 ... length truncated right prism (closed solid)
825     ring vc rmin rmax circular ring with inner and outer radii
826     torus vc rmin rmax circular torus with inner and outer radii
827     .TE
828     .ds LH General Entities
829     .ds RH #
830     .bp
831     .SH
832     NAME
833     .LP
834     # - a comment
835     .SH
836     SYNOPSIS
837     .LP
838     .B #
839     [
840     .I anything
841     ]
842     .SH
843     DESCRIPTION
844     .LP
845     A comment is a bit of text explanation.
846     Since it is an entity like any other (except that it has no effect),
847     there must be at least one space between the keyword (which is a
848     pound sign) and the "arguments," and the end of line may be escaped
849     as usual with the backslash character ('\\').
850     .LP
851     A comment may actually be used to hold auxiliary information such as
852     view parameters, which may be interpreted by some destination program.
853     Care should be taken under such circumstances that the user does not
854     inadvertently mung or mimic this information in other comments, and
855     it is therefore advisable to use an additional set of identifying
856     characters to distinguish such data.
857     .SH
858     EXAMPLE
859     .DS
860     # The following include file is in inches, so convert to meters
861     i cubgeom.inc -s .0254
862     # Stuff we don't want to see at the moment:
863     # i person.mgf -t 3 2 0
864     # ies hlrs3gna.ies -rz 90 -t 1.524 1.8288 2.74 \\\\
865     -a 6 -t 1.8288 0 0 -a 2 -t 0 3.048 0
866     .DE
867     .ds RH O
868     .bp
869     .SH
870     NAME
871     .LP
872     o - begin or end object context
873     .SH
874     SYNOPSIS
875     .LP
876     .B o
877     [
878     .I name
879     ]
880     .SH
881     DESCRIPTION
882     .LP
883     If
884     .I name
885     is given, we push a new object context onto the stack, which is to
886     say that we begin a new subobject by this name\(dg.
887     .FS
888     \(dgA name is any sequence of printing, non-white ASCII characters
889     beginning with a letter.
890     .FE
891     If the
892     .UL o
893     keyword is given by itself, then we pop the last object context off
894     the stack, which means that we leave the current subobject.
895     .LP
896     All geometry between the start of an object context and its matching
897     end statement is associated with the given name.
898     This may be used in modeling software to help identify objects and
899     subobjects, or it may be ignored altogether.
900     .LP
901     Object begin and end statements should be balanced in a file, and
902     care should be taken not to overlap transform
903     .UL (xf)
904     contexts with object contexts, especially when arrays are involved.
905     This is because the standard parser will assign object contexts to
906     instanced geometry, which can get confused with other object
907     contexts if a clear enclosure is not maintained.
908     .SH
909     EXAMPLE
910     .DS
911     o body
912     o torso
913     i torso.mgf
914     o
915     o arm
916     o left
917     i leftarm.mgf
918     o
919     o right
920     i leftarm.mgf -mx
921     o
922     o
923     o
924     .DE
925     .SH
926     SEE ALSO
927     .LP
928     .UL xf
929     .ds RH XF
930     .bp
931     .SH
932     NAME
933     .LP
934     xf - begin or end transformation context
935     .SH
936     SYNOPSIS
937     .LP
938     .B xf
939     [
940     .I transform
941     ]
942     .SH
943     DESCRIPTION
944     .LP
945     If a set of
946     .I transform
947     arguments are given, we push a new transformation context onto the
948     stack.
949     If the
950     .UL xf
951     keyword is given by itself, then we pop the last transformation
952     context off the stack.
953     The total transformation in effect at any given time is
954     computed by prepending each set subcontext arguments onto those of
955     its enclosing context.
956     This and other details about transformation specifications
957     are explained in some detail in section 2.2.2.
958     .LP
959     The following transformation flags and
960     parameters are defined:
961     .TS
962     center;
963     l l.
964     -t dx dy dz translate objects along the given vector
965     -rx degrees rotate objects about the X-axis
966     -ry degrees rotate objects about the Y-axis
967     -rz degrees rotate objects about the Z-axis
968     -s scalefactor scale objects by the given factor
969     -mx mirror objects about the Y-Z plane
970     -my mirror objects about the X-Z plane
971     -mz mirror objects about the X-Y plane
972     -i N repeat the following arguments N times
973     -a N make an array of N geometric instances
974     .TE
975     .SH
976     EXAMPLE
977     .DS
978     # Create 3x5 array of evenly-spaced spheres (grid size = 3)
979     v vc =
980     p 0 0 0
981     xf -t 1 1 10 -a 3 -t 3 0 0 -a 5 -t 0 3 0
982     sph vc .5
983     xf
984     .DE
985     .SH
986     SEE ALSO
987     .LP
988     .UL i,
989     .UL ies,
990     .UL o
991     .ds RH I
992     .bp
993     .SH
994     NAME
995     .LP
996     i - include MGF data file
997     .SH
998     SYNOPSIS
999     .LP
1000     .B i
1001     .I pathname
1002     [
1003     .I transform
1004     ]
1005     .SH
1006     DESCRIPTION
1007     .LP
1008     Include the information contained in the file
1009     .I pathname.
1010     If a
1011     .I transform
1012     specification is given, then it will be applied as though the
1013     include statement were enclosed by beginning and ending
1014     .UL xf
1015     entities with this transformation.
1016     .LP
1017     The
1018     .I pathname
1019     will be interpreted relative to the enclosing MGF file.
1020     That is, if the file containing the include statement is in some
1021     parent or subdirectory, then the given pathname is appended to this
1022     directory.
1023     It is illegal to specify a
1024     .I pathname
1025     relative to the root directory, and the MGF standard requires that
1026     all filenames adhere to the ISO-9660 8.3 name format for maximum
1027     portability between systems.
1028     The directory separator is defined to be slash ('/'), and drive
1029     specifications (such as "c:") are not allowed.
1030     All pathnames should be given in lower case, and will be converted to
1031     upper case on systems that require it.
1032     (That way, there are no accidental name collisions.)\0
1033     .LP
1034     The suggested suffix for MGF-adherent files is ".mgf".
1035     Files that are not in metric units but are in MGF may be given any
1036     suffix, but we suggest using ".inc" as a convention.
1037     .SH
1038     EXAMPLE
1039     .DS
1040     # Define vertices for 62x30" partition
1041     i pv62x30.inc
1042     # Insert 2 62x30" partitions
1043     o cpart1
1044     i partn.inc -t 75 130.5 0
1045     o
1046     o cpart3
1047     i partn.inc -t 186 130.5 0
1048     o
1049     # Define vertices for 62x36" partition
1050     i pv62x36.inc
1051     # Insert 62x36" partition
1052     o cpart2
1053     i partn.inc -t 105 130.5 0
1054     o
1055     .DE
1056     .SH
1057     SEE ALSO
1058     .LP
1059     .UL ies,
1060     .UL o,
1061     .UL xf
1062     .ds RH IES
1063     .bp
1064     .SH
1065     NAME
1066     .LP
1067     ies - include IESNA luminaire file
1068     .SH
1069     SYNOPSIS
1070     .LP
1071     .B ies
1072     .I pathname
1073     [
1074     .B \-m
1075     .I multiplier
1076     ]
1077     [
1078     .I transform
1079     ]
1080     .SH
1081     DESCRIPTION
1082     .LP
1083     Load the IES standard luminaire information contained in the file
1084     .I pathname.
1085     If a
1086     .I multiplier
1087     is given, all candela values will be multiplied by this factor.
1088     (This option must appear first if present.)\0
1089     If a
1090     .I transform
1091     specification is given, then it will be applied as though the
1092     statement were enclosed by beginning and ending
1093     .UL xf
1094     entities with this transformation.
1095     .LP
1096     The
1097     .I pathname
1098     will be interpreted relative to the enclosing MGF file, and all
1099     restrictions discussed under the
1100     .UL i
1101     entity also apply to the IES file name.
1102     The suggested suffix is ".ies", but this has not been followed
1103     consistently by lighting manufacturers.
1104     .SH
1105     EXAMPLE
1106     .DS
1107     # Insert 10 2x4' fluorescent troffers in two groups
1108     ies cf9pr240.ies -t 3.6576 2.1336 2.74 -a 3 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
1109     ies cf9pr240.ies -rz 90 -t 1.2192 1.8288 2.74 \\\\
1110     -a 2 -t 9.7536 0 0 -a 2 -t 0 3.048 0
1111     .DE
1112     .SH
1113     SEE ALSO
1114     .LP
1115     .UL i,
1116     .UL o,
1117     .UL xf
1118     .ds LH Color Entities
1119     .ds RH C
1120     .bp
1121     .SH
1122     NAME
1123     .LP
1124     c - get or set the current color context
1125     .SH
1126     SYNOPSIS
1127     .LP
1128     .B c
1129     [
1130     .I id
1131     [
1132     .B =
1133     [
1134     .I template
1135     ]
1136     ]
1137     ]
1138     .SH
1139     DESCRIPTION
1140     .LP
1141     If the
1142     .UL c
1143     keyword is given by itself, then it establishes the unnamed color
1144     context, which is neutral (i.e. equal-energy) grey.
1145     This context may be modified, but the changes will not be saved.
1146     .LP
1147     If the keyword is followed by an identifier
1148     .I id,
1149     then it reestablishes a previous context.
1150     If the specified context was never defined, an error will result.
1151     .LP
1152     If the entity is given with an identifier
1153     followed by an equals sign ('='), then a new context is established,
1154     and cleared to the default neutral grey.
1155     (Note that the equals sign must be separated from other
1156     arguments by white space to be properly recognized.)\0
1157     If the equals sign is followed by a second identifier
1158     .I template,
1159     then this previously defined color will be used as a source of
1160     default values rather than grey.
1161     This is most useful for establishing a color alias.
1162     .SH
1163     EXAMPLE
1164     .DS
1165     # Define the color "red32"
1166     c red32 =
1167     cxy .42 .15
1168     # Make "cabinet_color" an alias for "red32"
1169     c cabinet_color = red32
1170    
1171     # Later in another part of the description...
1172    
1173     # Get our cabinet color
1174     c cabinet_color
1175     # Get the geometry
1176     i cabgeom.mgf
1177     .DE
1178     .SH
1179     SEE ALSO
1180     .LP
1181     .UL cct,
1182     .UL cmix,
1183     .UL cspec,
1184     .UL cxy,
1185     .UL m
1186     .ds RH CXY
1187     .bp
1188     .SH
1189     NAME
1190     .LP
1191     cxy - set the CIE (x,y) chromaticity for the current color
1192     .SH
1193     SYNOPSIS
1194     .LP
1195     .B cxy
1196     .I "x y"
1197     .SH
1198     DESCRIPTION
1199     .LP
1200     This entity sets the current color using (x,y) chromaticity
1201     coordinates for the 1931 CIE standard 2 degree observer.
1202     Legal values for
1203     .I x
1204     and
1205     .I y
1206     are greater than zero and sum to less than one, and more
1207     specifically they must fit within the curve of the visible spectrum.
1208     The
1209     .I x
1210     coordinate roughly corresponds to the red part of the spectrum and
1211     the
1212     .I y
1213     coordinate corresponds to the green.
1214     The CIE z coordinate is implicit, since it is equal to (1-x-y).
1215     .LP
1216     All colors in MGF are absolute, thus colorimeter measurements should
1217     be conducted the same for surfaces as for light sources.
1218     Applying a standard illuminant calculation is redundant and
1219     introduces inaccuracies, and should therefore be avoided if
1220     possible.
1221     .LP
1222     Conversion between CIE colors and those more commonly used in
1223     computer graphics are described in the application notes section
1224     6.1.1.
1225     .SH
1226     EXAMPLE
1227     .DS
1228     # Set unnamed color context
1229     c
1230     # Set CIE chromaticity to a bluish hue
1231     cxy .15 .2
1232     # Apply color to diffuse reflectance of 15%
1233     rd .15
1234     .DE
1235     .SH
1236     SEE ALSO
1237     .LP
1238     .UL c,
1239     .UL cct,
1240     .UL cmix,
1241     .UL cspec
1242     .ds RH CSPEC
1243     .bp
1244     .SH
1245     NAME
1246     .LP
1247     cspec - set the relative spectrum for the current color
1248     .SH
1249     SYNOPSIS
1250     .LP
1251     .B cspec
1252     .I "l_min l_max o1 o2 ... oN"
1253     .SH
1254     DESCRIPTION
1255     .LP
1256     Assign a relative spectrum measured between
1257     .I l_min
1258     and
1259     .I l_max
1260     nanometers at evenly spaced intervals.
1261     The first value,
1262     .I o1
1263     corresponds to the measurement at
1264     .I l_min,
1265     and the last value,
1266     .I oN
1267     corresponds to the measurement at
1268     .I l_max.
1269     Values in between are separated by
1270     .I "(l_max-l_min)/(N-1)"
1271     nanometers.
1272     All values must be non-negative, and the spectrum outside of the
1273     specified range is assumed to be zero.
1274     (The visible range is 380 to 780 nm.)\0
1275     The actual units and scale of the measurements do not matter,
1276     since the total will be
1277     normalized according to whatever the color is modifying
1278     (e.g. photometric reflectance or emittance).
1279     .SH
1280     EXAMPLE
1281     .DS
1282     # Color measured at 10 nm increments from 400 to 700
1283     m reddish_cloth =
1284     c
1285     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
1286     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
1287     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
1288     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
1289     rd 0.3210
1290     .DE
1291     .SH
1292     SEE ALSO
1293     .LP
1294     .UL c,
1295     .UL cct,
1296     .UL cmix,
1297     .UL cxy
1298     .ds RH CCT
1299     .bp
1300     .SH
1301     NAME
1302     .LP
1303     cct - set the current color to a black body spectrum
1304     .SH
1305     SYNOPSIS
1306     .LP
1307     .B cct
1308     .I temperature
1309     .SH
1310     DESCRIPTION
1311     .LP
1312     The
1313     .UL cct
1314     entity sets the current color to the spectrum of an ideal
1315     black body radiating at
1316     .I temperature
1317     degrees Kelvin.
1318     This is often the most convenient way to set the color of an
1319     incandescent light source, but it is not recommended for
1320     fluorescent lamps or other materials that do not fit a
1321     black body spectrum.
1322     .SH
1323     EXAMPLE
1324     .DS
1325     # Define an incandescent source material at 3000 degrees K
1326     m incand3000k =
1327     c
1328     cct 3000
1329     ed 1500
1330     .DE
1331     .SH
1332     SEE ALSO
1333     .LP
1334     .UL c,
1335     .UL cmix,
1336     .UL cspec,
1337     .UL cxy
1338     .ds RH CMIX
1339     .bp
1340     .SH
1341     NAME
1342     .LP
1343     cmix - mix two or more named colors to make the current color
1344     .SH
1345     SYNOPSIS
1346     .LP
1347     .B cmix
1348     .I "w1 c1 w2 c2 ..."
1349     .SH
1350     DESCRIPTION
1351     .LP
1352     The
1353     .UL cmix
1354     entity sums together two or more named colors using specified
1355     weighting coefficients, which correspond to the relative
1356     photometric brightness of each.
1357     As in all color specifications, the result is normalized so the
1358     absolute scale of the weights does not matter, only their relative
1359     values.
1360     .LP
1361     If any of the colors is a spectral quantity (i.e. from a
1362     .UL cspec
1363     or
1364     .UL cct
1365     entity), then all the colors are first converted to spectral
1366     quantities.
1367     This is done with an approximation for CIE (x,y) chromaticities,
1368     which may be problematic depending on their values.
1369     In general, it is safest to add together colors that are either
1370     all spectral quantities or all CIE quantities.
1371     .SH
1372     EXAMPLE
1373     .DS
1374     # Define RGB primaries for a standard color monitor
1375     c R =
1376     cxy 0.640 0.330
1377     c G =
1378     cxy 0.290 0.600
1379     c B =
1380     cxy 0.150 0.060
1381     # Mix them together in appropriate amounts for white
1382     c white =
1383     cmix 0.265 R 0.670 G 0.065 B
1384     .DE
1385     .SH
1386     SEE ALSO
1387     .LP
1388     .UL c,
1389     .UL cct,
1390     .UL cspec,
1391     .UL cxy
1392     .ds LH Material Entities
1393     .ds RH M
1394     .bp
1395     .SH
1396     NAME
1397     .LP
1398     m - get or set the current material context
1399     .SH
1400     SYNOPSIS
1401     .LP
1402     .B m
1403     [
1404     .I id
1405     [
1406     .B =
1407     [
1408     .I template
1409     ]
1410     ]
1411     ]
1412     .SH
1413     DESCRIPTION
1414     .LP
1415     If the
1416     .UL m
1417     keyword is given by itself, then it establishes
1418     the unnamed material context, which is a perfect two-sided black absorber.
1419     This context may be modified, but the changes will not be saved.
1420     .LP
1421     If the keyword is followed by an identifier
1422     .I id,
1423     then it reestablishes a previous context.
1424     If the specified context was never defined, an error will result.
1425     .LP
1426     If the entity is given with an identifier
1427     followed by an equals sign ('='), then a new context is established,
1428     and cleared to the default material.
1429     (Note that the equals sign must be separated from other
1430     arguments by white space to be properly recognized.)\0
1431     If the equals sign is followed by a second identifier
1432     .I template,
1433     then this previously defined material will be used as a source of
1434     default values instead.
1435     This may be used to establish a material alias, or to modify an
1436     existing material and give it a new name.
1437     .LP
1438     The sum of the diffuse and specular reflectances and transmittances
1439     must not be greater than one (with no negative values, obviously).
1440     These values are assumed to be measured at normal incidence.
1441     If an index of refraction is given, this may modify the balance between
1442     diffuse and specular reflectance at other incident angles.
1443     If the
1444     material is one-sided (see
1445     .UL sides
1446     entity), then it may be a dielectric interface.
1447     In this case, the specular transmittance given is that which would be
1448     measured at normal incidence for a pane of the material 5 mm thick.
1449     This is important for figuring the actual transmittance for non-planar
1450     geometries assuming a uniformly absorbing medium.
1451     (Diffuse transmittance will not be affected by thickness.)\0
1452     If the index of
1453     refraction has an imaginary part, then the surface is a metal and this
1454     implies other properties as well.
1455     The default index of refraction is that of a vacuum, i.e. (1,0).
1456     .SH
1457     EXAMPLE
1458     .DS
1459     # Define a blue enamel paint
1460     m blue_enamel =
1461     c
1462     cxy 0.2771 0.2975
1463     rd 0.5011
1464     c
1465     rs 0.0100 0.0350
1466     # Assign blue_enamel to be the color of the south wall
1467     m swall_mat = blue_enamel
1468     # ...
1469     # South wall face
1470     m swall_mat
1471     f sv1 sv2 sv3 sv4
1472     .DE
1473     .SH
1474     SEE ALSO
1475     .LP
1476     .UL ed,
1477     .UL ir,
1478     .UL rd,
1479     .UL rs,
1480     .UL sides,
1481     .UL td,
1482     .UL ts
1483     .ds RH SIDES
1484     .bp
1485     .SH
1486     NAME
1487     .LP
1488     sides - set the number of sides for the current material
1489     .SH
1490     SYNOPSIS
1491     .LP
1492     .B sides
1493     {
1494     .B 1
1495     |
1496     .B 2
1497     }
1498     .SH
1499     DESCRIPTION
1500     .LP
1501     The
1502     .UL sides
1503     entity is used to set the number of sides for the current material.
1504     If a surface is two-sided, then it will appear
1505     identical when viewed from either the front or the back.
1506     If a surface is one-sided,
1507     then it appears invisible when viewed from the back side.
1508     This means
1509     that a transmitting object will affect the light coming in through the
1510     front surface and ignore the characteristics of the back surface,
1511     unless the index of refraction is set.
1512     If the index of refraction is set, then the object will act as a
1513     solid piece of dielectric material.
1514     In either case, the transmission properties of the exiting surface
1515     should be the same as the incident surface for the model to be
1516     physically valid.
1517     .LP
1518     The default number of sides is two.
1519     .SH
1520     EXAMPLE
1521     .DS
1522     # Describe a blue crystal ball
1523     m blue_crystal =
1524     ir 1.650000 0
1525     # Solid dielectrics must use one-sided materials
1526     sides 1
1527     c
1528     rs 0.0602 0
1529     c
1530     cxy 0.3127 0.2881
1531     ts 0.6425 0
1532     v sc =
1533     p 10 15 1.5
1534     sph sc .02
1535     .DE
1536     .SH
1537     SEE ALSO
1538     .LP
1539     .UL ed,
1540     .UL ir,
1541     .UL m,
1542     .UL rd,
1543     .UL rs,
1544     .UL td,
1545     .UL ts
1546     .ds RH RD
1547     .bp
1548     .SH
1549     NAME
1550     .LP
1551     rd - set the diffuse reflectance for the current material
1552     .SH
1553     SYNOPSIS
1554     .LP
1555     .B rd
1556     .I rho_d
1557     .SH
1558     DESCRIPTION
1559     .LP
1560     Set the diffuse reflectance for the current material to
1561     .I rho_d
1562     using the current color to determine the spectral characteristics.
1563     This is the fraction of visible light that is reflected from a
1564     surface equally in all directions according to Lambert's law, and is
1565     often called the "Lambertian component."
1566     Photometric reflectance is measured according to v(lambda)
1567     response function of the 1931 CIE standard 2
1568     degree observer, and assumes an equal-energy white light source.
1569     The value must be between zero and one, and may be further
1570     restricted by the luminosity of the selected color.
1571     (I.e. it is impossible to have a violet material with a photometric
1572     reflectance close to one since the eye is less sensitive in this part
1573     of the spectrum.)\0
1574     .LP
1575     The default diffuse reflectance is zero.
1576     .SH
1577     EXAMPLE
1578     .DS
1579     # An off-white paint with 70% reflectance
1580     m flat_white70 =
1581     c
1582     cxy .3632 .3420
1583     rd .70
1584     .DE
1585     .SH
1586     SEE ALSO
1587     .LP
1588     .UL c,
1589     .UL ed,
1590     .UL ir,
1591     .UL m,
1592     .UL rs,
1593     .UL sides,
1594     .UL td,
1595     .UL ts
1596     .ds RH TD
1597     .bp
1598     .SH
1599     NAME
1600     .LP
1601     td - set the diffuse transmittance for the current material
1602     .SH
1603     SYNOPSIS
1604     .LP
1605     .B td
1606     .I tau_d
1607     .SH
1608     DESCRIPTION
1609     .LP
1610     Set the diffuse transmittance for the current material to
1611     .I tau_d
1612     using the current color to determine the spectral characteristics.
1613     This is the fraction of visible light that is transmitted through a
1614     surface equally in all (transmitted) directions.
1615     Like reflectance, transmittance is measured according to the
1616     standard v(lambda) curve, and assumes an equal-energy white light source.
1617     It is probably not possible to create a material with a diffuse
1618     transmittance above 50%, since well-diffused light will be reflected
1619     as well.
1620     .LP
1621     The default diffuse transmittance is zero.
1622     .SH
1623     EXAMPLE
1624     .DS
1625     # Model a perfect spherical diffuser, i.e. light hitting \
1626     either side will be scattered equally in all directions
1627     m wonderland_diffuser =
1628     c
1629     td .5
1630     rd .5
1631     .DE
1632     .SH
1633     SEE ALSO
1634     .LP
1635     .UL c,
1636     .UL ed,
1637     .UL ir,
1638     .UL m,
1639     .UL rd,
1640     .UL rs,
1641     .UL sides,
1642     .UL ts
1643     .ds RH ED
1644     .bp
1645     .SH
1646     NAME
1647     .LP
1648     ed - set the diffuse emittance for the current material
1649     .SH
1650     SYNOPSIS
1651     .LP
1652     .B ed
1653     .I epsilon_d
1654     .SH
1655     DESCRIPTION
1656     .LP
1657     Set the diffuse emittance for the current material to
1658     .I epsilon_d
1659     lumens per square meter using the current color to determine the
1660     spectral characteristics.
1661     Note that this is emittance rather than exitance, and therefore
1662     does not include reflected or transmitted light, which is a function
1663     of the other material settings and the illuminated environment.
1664     .LP
1665     The total lumen output of a convex emitting object
1666     is the radiating area of that object multiplied by its emittance.
1667     Therefore, one can compute the appropriate
1668     .I epsilon_d
1669     value for an emitter by dividing the total lumen output by the
1670     radiating area (in square meters).
1671     .LP
1672     The default emittance is zero.
1673     .SH
1674     EXAMPLE
1675     .DS
1676     # A 100-watt incandescent bulb (1600 lumens) modeled as a sphere
1677     m
1678     c
1679     cct 3000
1680     ed 87712
1681     v cent =
1682     p 0 0 0
1683     sph cent .0381
1684     .DE
1685     .SH
1686     SEE ALSO
1687     .LP
1688     .UL c,
1689     .UL ir,
1690     .UL m,
1691     .UL rd,
1692     .UL rs,
1693     .UL sides,
1694     .UL td,
1695     .UL ts
1696     .ds RH RS
1697     .bp
1698     .SH
1699     NAME
1700     .LP
1701     rs - set the specular reflectance for the current material
1702     .SH
1703     SYNOPSIS
1704     .LP
1705     .B rs
1706     .I "rho_s alpha_r"
1707     .SH
1708     DESCRIPTION
1709     .LP
1710     Set the specular reflectance for the current material to
1711     .I rho_s
1712     using the current color to determine the spectral characteristics.
1713     The surface roughness parameter is set to
1714     .I alpha_r,
1715     which is the RMS height of surface variations over the
1716     autocorrelation distance (equivalent to RMS facet slope).
1717     A roughness value of zero means a perfectly smooth surface, and
1718     values greater than 0.2 are unusual.
1719     (See application notes section 6.1.2 for a comparison between the
1720     roughness parameter and Phong specular power.)\0
1721     .LP
1722     The default specular reflectance is zero.
1723     .SH
1724     EXAMPLE
1725     .DS
1726     # Define a slightly rough brass metallic surface
1727     m rough_brass =
1728     c
1729     cxy .3820 .4035
1730     # 30% specular, 9% diffuse
1731     rs .30 .08
1732     rd .09
1733     .DE
1734     .SH
1735     SEE ALSO
1736     .LP
1737     .UL c,
1738     .UL ed,
1739     .UL ir,
1740     .UL m,
1741     .UL rd,
1742     .UL sides,
1743     .UL td,
1744     .UL ts
1745     .ds RH TS
1746     .bp
1747     .SH
1748     NAME
1749     .LP
1750     ts - set the specular transmittance for the current material
1751     .SH
1752     SYNOPSIS
1753     .LP
1754     .B ts
1755     .I "tau_s alpha_t"
1756     .SH
1757     DESCRIPTION
1758     .LP
1759     Set the specular transmittance for the current material to
1760     .I tau_s
1761     using the current color to determine the spectral characteristics.
1762     The effective surface roughness is set to
1763     .I alpha_t.
1764     Rays will be transmitted with the same distribution as they would
1765     have been reflected with if this roughness value were given to the
1766     .UL rs
1767     entity.
1768     .LP
1769     The default specular transmittance is zero.
1770     .SH
1771     EXAMPLE
1772     .DS
1773     # Define a green glass material (58% transmittance)
1774     m glass =
1775     sides 2
1776     ir 1.52 0
1777     c
1778     rs 0.0725 0
1779     c
1780     cxy .23 .38
1781     ts 0.5815 0
1782     # Define an uncolored translucent plastic (40% transmittance)
1783     m translucent =
1784     sides 2
1785     ir 1.4 0
1786     c
1787     rs .045 0
1788     ts .40 .05
1789     .DE
1790     .SH
1791     SEE ALSO
1792     .LP
1793     .UL c,
1794     .UL ed,
1795     .UL ir,
1796     .UL m,
1797     .UL rd,
1798     .UL rs,
1799     .UL sides,
1800     .UL td
1801     .ds RH IR
1802     .bp
1803     .SH
1804     NAME
1805     .LP
1806     ir - set the complex index of refraction for the current material
1807     .SH
1808     SYNOPSIS
1809     .LP
1810     .B ir
1811     .I "n_real n_imag"
1812     .SH
1813     DESCRIPTION
1814     .LP
1815     Set the index of refraction for the current material to
1816     .I (n_real,n_imag).
1817     If the material is a dielectric (as opposed to metallic), then
1818     .I n_imag
1819     should be zero.
1820     For solid dielectric objects, the material should be made one-sided.
1821     If it is being used for thin objects, then a two-sided
1822     material is appropriate.
1823     (See the
1824     .UL sides
1825     entity.)\0
1826     .LP
1827     The default index of refraction is that of a vacuum, (1,0).
1828     .SH
1829     EXAMPLE
1830     .DS
1831     # Define polished aluminum material
1832     m polished_aluminum =
1833     # Complex index of refraction (from physics table)
1834     ir .770058 6.08351
1835     c
1836     rs .75 0
1837     .DE
1838     .SH
1839     SEE ALSO
1840     .LP
1841     .UL c,
1842     .UL ed,
1843     .UL m,
1844     .UL rd,
1845     .UL rs,
1846     .UL sides,
1847     .UL td,
1848     .UL ts
1849     .ds LH Vertex Entities
1850     .ds RH V
1851     .bp
1852     .SH
1853     NAME
1854     .LP
1855     v - get or set the current vertex context
1856     .SH
1857     SYNOPSIS
1858     .LP
1859     .B v
1860     [
1861     .I id
1862     [
1863     .B =
1864     [
1865     .I template
1866     ]
1867     ]
1868     ]
1869     .SH
1870     DESCRIPTION
1871     .LP
1872     If the
1873     .UL v
1874     keyword is given by itself, then it establishes
1875     the unnamed vertex context, which is the origin with no normal.
1876     This context may be modified, but the changes will not be saved.
1877     (The unnamed vertex is never used except as a source of default
1878     values since all geometric entities call their vertices by name.)\0
1879     .LP
1880     If the keyword is followed by an identifier
1881     .I id,
1882     then it reestablishes a previous context.
1883     If the specified context was never defined, an error will result.
1884     .LP
1885     If the entity is given with an identifier
1886     followed by an equals sign ('='), then a new context is established,
1887     and cleared to the default vertex (the origin).
1888     (Note that the equals sign must be separated from other
1889     arguments by white space to be properly recognized.)\0
1890     If the equals sign is followed by a second identifier
1891     .I template,
1892     then this previously defined vertex will be used as a source of
1893     default values instead.
1894     This may be used to establish a vertex alias, or to modify an
1895     existing vertex and give it a new name.
1896     .LP
1897     A non-zero vertex normal must be given for
1898     certain entities, specifically
1899     .UL ring
1900     and
1901     .UL torus
1902     require a normal direction.
1903     An
1904     .UL f
1905     entity will interpolate vertex normals if given, and
1906     use the polygon plane normal otherwise.
1907     See the
1908     .UL prism
1909     entry for an explanation of how it interprets and uses vertex
1910     normals.
1911     The other entities ignore vertex normals if present.
1912     .LP
1913     The actual position and normal direction for a vertex is determined
1914     at the time of use by a geometric entity.
1915     Specifically, the transformation in effect at the time the vertex is
1916     defined is irrelevant.
1917     The only transformation that matters is the one that is applied to
1918     the geometry itself.
1919     This prevents double-transformation of vertices and allows one set
1920     of vertices to be used for multiple purposes, e.g. the front and
1921     back sides of a drawer.
1922     .SH
1923     EXAMPLE
1924     .DS
1925     # Make a capped cylinder
1926     v end1 =
1927     p 0 0 0
1928     n 0 0 -1
1929     v end2 =
1930     p 0 0 1
1931     cyl end1 1.2 end2
1932     # Forgot normal for end2
1933     v end2
1934     n 0 0 1
1935     ring end1 0 1.2
1936     ring end2 0 1.2
1937     .DE
1938     .SH
1939     SEE ALSO
1940     .LP
1941     .UL cone,
1942     .UL cyl,
1943     .UL f,
1944     .UL n,
1945     .UL p,
1946     .UL prism,
1947     .UL ring,
1948     .UL sph,
1949     .UL torus
1950     .ds RH P
1951     .bp
1952     .SH
1953     NAME
1954     .LP
1955     p - set the point location for the current vertex
1956     .SH
1957     SYNOPSIS
1958     .LP
1959     .B p
1960     .I "px py pz"
1961     .SH
1962     DESCRIPTION
1963     .LP
1964     Set the 3-dimensional position for the current vertex to
1965     .I (px,py,pz).
1966     The actual position of the vertex will be determined by the
1967     transformation in effect at the time the vertex is applied to a
1968     geometric surface entity.
1969     The transform current when the position is set is irrelevant.
1970     .LP
1971     The default vertex position is the origin, (0,0,0).
1972     .SH
1973     EXAMPLE
1974     .DS
1975     # Make a small circle of 6 spheres
1976     v scent =
1977     p 1 0 0
1978     xf -a 6 -rz 60
1979     sph scent .05
1980     xf
1981     .DE
1982     .SH
1983     SEE ALSO
1984     .LP
1985     .UL cone,
1986     .UL cyl,
1987     .UL f,
1988     .UL n,
1989     .UL prism,
1990     .UL ring,
1991     .UL sph,
1992     .UL torus,
1993     .UL v
1994     .ds RH N
1995     .bp
1996     .SH
1997     NAME
1998     .LP
1999     n - set the surface normal direction for the current vertex
2000     .SH
2001     SYNOPSIS
2002     .LP
2003     .B n
2004     .I "dx dy dz"
2005     .SH
2006     DESCRIPTION
2007     .LP
2008     Set the 3-dimensional surface normal for the current vertex to the
2009     normalized vector along
2010     .I (dx,dy,dz).
2011     If this vector is zero, then the surface normal is effectively
2012     unset.
2013     The actual surface normal orientation of the vertex will be determined
2014     by the transformation in effect at the time the vertex is applied to a
2015     geometric surface entity.
2016     The current transform when the normal is set is irrelevant.
2017     .LP
2018     The default vertex normal is the zero vector (i.e. no normal).
2019     .SH
2020     EXAMPLE
2021     .DS
2022     # Make a chain of 10 interlocking doughnuts
2023     v tcent =
2024     p 0 0 0
2025     n 0 1 0
2026     xf -a 10 -rx 90 -t .2 0 0
2027     torus tcent .1 .2
2028     xf
2029     .DE
2030     .SH
2031     SEE ALSO
2032     .LP
2033     .UL f,
2034     .UL p,
2035     .UL prism,
2036     .UL ring,
2037     .UL torus,
2038     .UL v
2039     .ds LH Geometric Entities
2040     .ds RH F
2041     .bp
2042     .SH
2043     NAME
2044     .LP
2045     f - create an N-sided polygonal face
2046     .SH
2047     SYNOPSIS
2048     .LP
2049     .B f
2050     .I "v1 v2 ... vN"
2051     .SH
2052     DESCRIPTION
2053     .LP
2054     Create a polygonal face made of the current material
2055     by connecting the named vertices in order, and connecting the last
2056     vertex to the first.
2057     There must be at least three vertices, and if any vertex is undefined,
2058     an error will result.
2059     .LP
2060     The surface orientation is determined by the right-hand rule; when
2061     the curl of the fingers follows the given order of the vertices, the
2062     surface normal points in the thumb direction.
2063     Face vertices should be coplanar, though this is difficult to guarantee
2064     in a 3-dimensional specification.
2065     .LP
2066     If any vertices have associated surface normals, they will be used
2067     instead of the average plane normal, though it is safest to specify
2068     either all normals or no normals, and to stick with triangles
2069     when normals are used.
2070     Also, specified normals should point in the general direction of the
2071     surface for best results.
2072     .LP
2073     There is no explicit representation of holes in MGF. A hole must be
2074     represented implicitly by connecting vertices to form "seams." For
2075     example, a wall with a window in it might look as shown in Figure 1.
2076     In many systems, the wall itself would be represented with the first
2077     list of vertices, (v1,v2,v3,v4) and the hole associated with that
2078     wall as a second set of vertices (v5,v6,v7,v8). In MGF, we must
2079     give the whole thing as a single polygon, connecting the vertices so
2080     as to create a "seam," as shown in Figure 2.
2081     This could be written in MGF as "f v1 v2 v3 v4 v5 v6 v7 v8 v5 v4".
2082     .LP
2083     It is very important that the order of the hole be opposite to the
2084     order of the outer perimeter, otherwise the polygon will be
2085     "twisted" on top of itself. Note also that the seam was traversed
2086     in both directions, once going from v4 to v5, and again returning
2087     from v5 to v4. This is a necessary condition for a proper seam.
2088     .LP
2089     The choice of vertices to make into a seam is somewhat arbitrary, but
2090     some rendering systems may not give sane results if you cross over a
2091     hole with part of your seam. If we had chosen to create the seam
2092     between v2 and v5 in the above example instead of v4 and v5, the seam
2093     would cross our hole and may not render correctly\(dg.
2094     .FS
2095     \(dgFor systems that
2096     are sensitive to this, it is probably safest for their MGF
2097     loader/translator to re-expresses seams in terms of holes again, which can
2098     be done easily so long as vertices are shared in the fashion shown.
2099     .FE
2100     .bp
2101     Replace this page with the first page from "figures.ps".
2102     .bp
2103     .SH
2104     EXAMPLE
2105     .DS
2106     # Make a pyramid
2107     v apex =
2108     p 1 1 1
2109     v base0 =
2110     p 0 0 0
2111     v base1 =
2112     p 0 2 0
2113     v base2 =
2114     p 2 2 0
2115     v base3 =
2116     p 2 0 0
2117     # Bottom
2118     f base0 base1 base2 base3
2119     # Sides
2120     f base0 apex base1
2121     f base1 apex base2
2122     f base2 apex base3
2123     f base3 apex base0
2124     .DE
2125     .SH
2126     SEE ALSO
2127     .LP
2128     .UL cone,
2129     .UL cyl,
2130     .UL m,
2131     .UL prism,
2132     .UL ring,
2133     .UL sph,
2134     .UL torus,
2135     .UL v
2136     .ds RH SPH
2137     .bp
2138     .SH
2139     NAME
2140     .LP
2141     sph - create a sphere
2142     .SH
2143     SYNOPSIS
2144     .LP
2145     .B sph
2146     .I "vc rad"
2147     .SH
2148     DESCRIPTION
2149     .LP
2150     Create a sphere made of the current material with its center at the
2151     named vertex
2152     .I vc
2153     and a radius of
2154     .I rad.
2155     If the vertex is undefined an error will result.
2156     .LP
2157     The surface normal is usually directed outward, but will be directed
2158     inward if the given radius is negative.
2159     (This typically matters only for one-sided materials.)\0
2160     A zero radius is illegal.
2161     .SH
2162     EXAMPLE
2163     .DS
2164     # Create a thick glass sphere with a hollow inside
2165     m glass =
2166     sides 1
2167     ir 1.52 0
2168     c
2169     rs .06 0
2170     ts .88 0
2171     v cent =
2172     p 0 0 1.1
2173     # The outer shell
2174     sph cent .1
2175     # The inner bubble
2176     sph cent -.08
2177     .DE
2178     .SH
2179     SEE ALSO
2180     .LP
2181     .UL cone,
2182     .UL cyl,
2183     .UL f,
2184     .UL m,
2185     .UL prism,
2186     .UL ring,
2187     .UL torus,
2188     .UL v
2189     .ds RH CYL
2190     .bp
2191     .SH
2192     NAME
2193     .LP
2194     cyl - create an open-ended, truncated right cylinder
2195     .SH
2196     SYNOPSIS
2197     .LP
2198     .B cyl
2199     .I "v1 rad v2"
2200     .SH
2201     DESCRIPTION
2202     .LP
2203     Create a truncated right cylinder of radius
2204     .I rad
2205     using the current material, starting at the named vertex
2206     .I v1
2207     and continuing to
2208     .I v2.
2209     The ends will be open, but may be capped using the
2210     .UL ring
2211     entity if desired.
2212     .LP
2213     The surface normal will usually be directed outward, but may be
2214     directed inward by giving a negative value for
2215     .I rad.
2216     A zero radius is illegal, and
2217     .I v1
2218     cannot equal
2219     .I v2.
2220     .SH
2221     EXAMPLE
2222     .DS
2223     # A stylus with one rounded and one pointed end
2224     o stylus
2225     v vtip0 =
2226     p 0 0 0
2227     v vtip1 =
2228     p 0 0 .005
2229     v vend =
2230     p 0 0 .05
2231     cyl vtip1 .0015
2232     sph vend .0015
2233     cone vtip0 0 vtip1 .0015
2234     o
2235     .DE
2236     .SH
2237     SEE ALSO
2238     .LP
2239     .UL cone,
2240     .UL f,
2241     .UL m,
2242     .UL prism,
2243     .UL ring,
2244     .UL sph,
2245     .UL torus,
2246     .UL v
2247     .ds RH CONE
2248     .bp
2249     .SH
2250     NAME
2251     .LP
2252     cone - create an open-ended, truncated right cone
2253     .SH
2254     SYNOPSIS
2255     .LP
2256     .B cone
2257     .I "v1 rad1 v2 rad2"
2258     .SH
2259     DESCRIPTION
2260     .LP
2261     Create a truncated right cone using the current material.
2262     The starting radius is
2263     .I rad1
2264     at
2265     .I v1
2266     and the ending radius is
2267     is
2268     .I rad2
2269     at
2270     .I v2.
2271     The ends will be open, but may be capped using the
2272     .UL ring
2273     entity if desired.
2274     .LP
2275     The surface normal will usually be directed outward, but may be
2276     directed inward by giving negative values for both radii.
2277     (It is illegal for the signs of the two radii to disagree.)\0
2278     One but not both radii may be zero, indicating that the cone comes
2279     to a point.
2280     .LP
2281     Although it is not strictly forbidden to have equal cone radii, the
2282     .UL cyl
2283     entity should be used in such cases.
2284     Likewise, the
2285     .UL ring
2286     entity must be used if
2287     .I v1
2288     and
2289     .I v2
2290     are equal.
2291     .SH
2292     EXAMPLE
2293     .DS
2294     # A parasol
2295     o parasol
2296     v v1 =
2297     p 0 0 0
2298     v v2 =
2299     p 0 0 .75
2300     v v3 =
2301     p 0 0 .7
2302     m handle_mat
2303     cyl v1 .002 v2
2304     m parasol_paper
2305     cyl v2 0 v3 .33
2306     o
2307     .DE
2308     .SH
2309     SEE ALSO
2310     .LP
2311     .UL cyl,
2312     .UL f,
2313     .UL m,
2314     .UL prism,
2315     .UL ring,
2316     .UL sph,
2317     .UL torus,
2318     .UL v
2319     .ds RH PRISM
2320     .bp
2321     .SH
2322     NAME
2323     .LP
2324     prism - create a closed right prism
2325     .SH
2326     SYNOPSIS
2327     .LP
2328     .B prism
2329     .I "v1 v2 ... vN length"
2330     .SH
2331     DESCRIPTION
2332     .LP
2333     Create a closed right prism using the current material.
2334     One end face will be enclosed by the named vertices, and the
2335     opposite end face will be a mirror image at a distance
2336     .I length
2337     from the original.
2338     The edges will be extruded into N quadrilaterals connecting
2339     the two end faces.
2340     .LP
2341     The order of vertices determines the original face orientation
2342     according to the right-hand rule as explained for the
2343     .UL f
2344     entity.
2345     Normally, the prism is extruded in the direction opposite to the
2346     original surface normal, resulting in faces that all point outward.
2347     If the specified
2348     .I length
2349     is negative, the prism will be extruded above the original face
2350     and all surface normals will point inward.
2351     .LP
2352     If the vertices have associated normals, they are applied to the
2353     side faces only, and should generally point in the appropriate
2354     direction (i.e. in or out depending on whether
2355     .I length
2356     is negative or positive).
2357     .SH
2358     EXAMPLE
2359     .DS
2360     # Make a unit cube starting at the origin and \\\\
2361     extending to the positive octant
2362     v cv0 =
2363     p 0 0 0
2364     v cv1 =
2365     p 0 1 0
2366     v cv2 =
2367     p 1 1 0
2368     v cv3 =
2369     p 1 0 0
2370     # Right hand rule has original face looking in -Z direction
2371     prism cv0 cv1 cv2 cv3 1
2372     .DE
2373     .SH
2374     SEE ALSO
2375     .LP
2376     .UL cyl,
2377     .UL cone,
2378     .UL f,
2379     .UL m,
2380     .UL ring,
2381     .UL sph,
2382     .UL torus,
2383     .UL v
2384     .ds RH RING
2385     .bp
2386     .SH
2387     NAME
2388     .LP
2389     ring - create a circular ring with inner and outer radii
2390     .SH
2391     SYNOPSIS
2392     .LP
2393     .B cyl
2394     .I "vc rmin rmax"
2395     .SH
2396     DESCRIPTION
2397     .LP
2398     Create a circular face of the current material centered on the named
2399     vertex
2400     .I vc
2401     with an inner radius of
2402     .I rmin
2403     and an outer radius of
2404     .I rmax.
2405     The surface orientation is determined by the normal vector
2406     associated with
2407     .I vc.
2408     If this vertex is undefined or has no normal, an error will result.
2409     The minimum radius may be equal to but not less than zero, and the
2410     maximum radius must be strictly greater than the minimum.
2411     .SH
2412     EXAMPLE
2413     .DS
2414     # The proverbial brass ring
2415     o brass_ring
2416     m brass
2417     v end1 =
2418     p 0 -.005 0
2419     n 0 -1 0
2420     v end2 =
2421     p 0 .005 0
2422     n 0 1 0
2423     ring end1 .02 .03
2424     cyl end1 .03 end2
2425     ring end2 .02 .03
2426     cyl end2 -.02 end1
2427     o
2428     .DE
2429     .SH
2430     SEE ALSO
2431     .LP
2432     .UL cyl,
2433     .UL cone,
2434     .UL f,
2435     .UL m,
2436     .UL prism,
2437     .UL sph,
2438     .UL torus,
2439     .UL v
2440     .ds RH TORUS
2441     .bp
2442     .SH
2443     NAME
2444     .LP
2445     torus - create a regular torus
2446     .SH
2447     SYNOPSIS
2448     .LP
2449     .B torus
2450     .I "vc rmin rmax"
2451     .SH
2452     DESCRIPTION
2453     .LP
2454     Create a torus of the current material centered on the named vertex
2455     .I vc
2456     with an inner radius of
2457     .I rmin
2458     and an outer radius of
2459     .I rmax.
2460     The plane of the torus will be perpendicular to the normal vector
2461     associated with
2462     .I vc.
2463     If this vertex is undefined or has no normal, an error will result.
2464     .LP
2465     If a torus with an inward facing surface normal is desired,
2466     .I rmin
2467     and
2468     .I rmax
2469     may be negative.
2470     The minimum radius may be zero, but may not be negative when
2471     .I rmax
2472     is positive or vice versa.
2473     The magnitude or
2474     .I rmax
2475     must always be strictly greater than that of
2476     .I rmin.
2477     .SH
2478     EXAMPLE
2479     .DS
2480     # The proverbial brass ring -- easy grip version
2481     o brass_ring
2482     m brass
2483     v center =
2484     p 0 0 0
2485     n 0 1 0
2486     torus center .02 .03
2487     o
2488     .DE
2489     .SH
2490     SEE ALSO
2491     .LP
2492     .UL cyl,
2493     .UL cone,
2494     .UL f,
2495     .UL m,
2496     .UL prism,
2497     .UL ring,
2498     .UL sph,
2499     .UL v
2500     .ds RH
2501     .ds LH
2502     .bp
2503     .NH
2504     MGF Translators
2505     .LP
2506     Initially, there are four translators for MGF data, but only
2507     one of these is distributed with the MGF parser itself,
2508     .I mgfilt.
2509     Two of the other translators,
2510     .I mgf2rad
2511     and
2512     .I rad2mgf
2513     convert between MGF and the Radiance scene description language,
2514     and are distributed for free with the rest of the Radiance
2515     package\(dg.
2516     .FS
2517     \(dgRadiance is available by anonymous ftp from hobbes.lbl.gov and
2518     nestor.epfl.ch, or by WWW from
2519     "http://radsite.lbl.gov/radiance/HOME.html"
2520     .FE
2521     A third translator,
2522     .I mgf2meta,
2523     converts to a 2-dimensional line plot, and is also
2524     distributed with Radiance.
2525     .LP
2526     Mgfilt is a simple but useful utility that takes MGF on its input
2527     and produces MGF on its output.
2528     It uses the parser to convert entities that are not wanted or
2529     understood, and produces only the requested ones.
2530     This is useful for seeing what exactly a program must understand
2531     when it supports a given set of entities, and may serve as a
2532     substitute for linking to the parser library for programmers who
2533     wish to interpret the ASCII input directly but without all the
2534     unwanted entities.
2535     In future releases of MGF, this utility will also be handy for
2536     taking new entities and producing older versions of MGF for
2537     translators that have not yet been updated properly.
2538     .ds LH Translators
2539     .ds RH MGFILT
2540     .bp
2541     .SH
2542     NAME
2543     .LP
2544     mgfilt - get usable MGF entities from input
2545     .SH
2546     SYNOPSIS
2547     .LP
2548     .B mgfilt
2549     .B version
2550     [
2551     .B input ..
2552     ]
2553     .br
2554     or
2555     .br
2556     .B mgfilt
2557     .B "e1,e2,.."
2558     [
2559     .B input ..
2560     ]
2561     .SH
2562     DESCRIPTION
2563     .LP
2564     .I Mgfilt
2565     takes one or more MGF input files and converts all the entities to
2566     the types listed.
2567     In the first form, a single integer is given for the
2568     .I version
2569     of MGF that is to be produced.
2570     Since MGF is in its first major release, this is not yet a useful
2571     form, but it will be when the second major release comes out.
2572     .LP
2573     In the second form,
2574     .I mgfilt
2575     produces only the entities listed in the first argument, which must
2576     be comma-separated.
2577     The listed entity order is not important, but all entities given
2578     must be defined in the current version of MGF.
2579     Unknown entities will be summarily discarded on the input, and a
2580     warning message will be printed to the standard error.
2581     .SH
2582     EXAMPLES
2583     .LP
2584     To take an MGF version 3 file and send it to a version 2
2585     translator:
2586     .IP
2587     mgfilt 2 input.mgf | mgf2rad > input.rad
2588     .LP
2589     To take an MGF file and produce only flat polygonal faces
2590     with no materials:
2591     .IP
2592     mgfilt f,v,p,xf input.mgf > flatpoly.mgf
2593     .SH
2594     SEE ALSO
2595     .LP
2596     mgf2rad, rad2mgf
2597     .ds RH MGF2RAD
2598     .bp
2599     .SH
2600     NAME
2601     .LP
2602     mgf2rad - convert Materials and Geometry Format file to RADIANCE description
2603     .SH
2604     SYNOPSIS
2605     .LP
2606     .B mgf2rad
2607     [
2608     .B "\-m matfile"
2609     ][
2610     .B "\-e mult"
2611     ][
2612     .B "\-g dist"
2613     ]
2614     [
2615     .B input ..
2616     ]
2617     .SH
2618     DESCRIPTION
2619     .LP
2620     .I Mgf2rad
2621     converts one or more Materials and Geometry Format (MGF)
2622     files to a RADIANCE scene description.
2623     By definition, all output dimensions are in meters.
2624     The material names and properties
2625     for the surfaces will be those assigned in MGF.
2626     Any materials not defined in MGF will result in an error during
2627     translation.
2628     Light sources are described inline as IES luminaire files, and
2629     .I mgf2rad
2630     calls the program
2631     .I ies2rad(1)
2632     to translate these files.
2633     If an IES file in turn contains an MGF description of the local
2634     fixture geometry, this may result in a recursive call to
2635     .I mgf2rad,
2636     which is normal and should be transparent.
2637     The only side-effect of this additional translation is the
2638     appearance of other RADIANCE scene and data files produced
2639     automatically by
2640     .I ies2rad.
2641     .LP
2642     The
2643     .I \-m
2644     option may be used to put all the translated materials into a separate
2645     RADIANCE file.
2646     This is not always advisable, as any given material name may be
2647     reused at different points in the MGF description, and writing them
2648     to a separate file loses the contextual association between
2649     materials and surfaces.
2650     As long as unique material names are used throughout the MGF
2651     description and material properties are not redefined, there
2652     will be no problem.
2653     Note that this is the only way to get all the translated materials
2654     into a single file, since no output is produced for unreferenced
2655     materials; i.e. translating just the MGF materials does not work.
2656     .LP
2657     The
2658     .I \-e
2659     option may be used to multiply all the emission values by the
2660     given
2661     .I mult
2662     factor.
2663     The
2664     .I \-g
2665     option may be used to establish a glow distance (in meters)
2666     for all emitting surfaces.
2667     These two options are employed principally by
2668     .I ies2rad,
2669     and are not generally useful to most users.
2670     .SH
2671     EXAMPLES
2672     .LP
2673     To translate two MGF files into one RADIANCE materials file and
2674     one geometry file:
2675     .IP
2676     mgf2rad -m materials.rad building1.mgf building2.mgf > building1+2.rad
2677     .LP
2678     To create an octree directly from two MGF files and one RADIANCE
2679     file:
2680     .IP
2681     oconv '\\!mgf2rad materials.mgf scene.mgf' source.rad > scene.oct
2682     .SH
2683     FILES
2684     .LP
2685     tmesh.cal Used to smooth polygonal geometry
2686     .br
2687     *.rad RADIANCE source descriptions created by ies2rad
2688     .br
2689     *.dat RADIANCE source data created by ies2rad
2690     .br
2691     source.cal Used for IES source coordinates
2692     .SH
2693     AUTHOR
2694     .LP
2695     Greg Ward
2696     .SH
2697     SEE ALSO
2698     .LP
2699     ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)
2700     .ds RH
2701     RAD2MGF
2702     .bp
2703     .SH
2704     NAME
2705     .LP
2706     rad2mgf - convert RADIANCE scene description to Materials and Geometry Format
2707     .SH
2708     SYNOPSIS
2709     .LP
2710     .B rad2mgf
2711     [
2712     .B \-dU
2713     ]
2714     [
2715     .B input ..
2716     ]
2717     .SH
2718     DESCRIPTION
2719     .LP
2720     .I Rad2mgf
2721     converts one or more RADIANCE scene files
2722     to the Materials and Geometry Format (MGF).
2723     Input units are specified with the
2724     .I \-mU
2725     option, where
2726     .I U
2727     is one of 'm' (meters), 'c' (centimeters), 'f' (feet) or 'i'
2728     (inches).
2729     The assumed unit is meters, which is the required output unit for
2730     MGF (thus the need to know).
2731     If the input dimensions are in none of these units, then the user
2732     should apply
2733     .I xform(1)
2734     with the
2735     .I \-s
2736     option to bring the units into line prior to translation.
2737     .LP
2738     The MGF material names and properties
2739     for the surfaces will be those assigned in RADIANCE.
2740     If a referenced material has not been defined, then its name will
2741     be invoked in the MGF output without definition, and the description
2742     will be incomplete.
2743     .SH
2744     LIMITATIONS
2745     .LP
2746     Although MGF supports all of the geometric types and the most
2747     common material types used in RADIANCE, there is currently no
2748     support for advanced BRDF materials, patterns, textures or mixtures.
2749     Also, the special types "source" and "antimatter" are not supported,
2750     and all light source materials are converted to simple diffuse emitters
2751     (except "illum" materials, which are converted to their alternates).
2752     These primitives are reproduced as comments in the output and
2753     must be replaced manually if necessary.
2754     .LP
2755     The RADIANCE "instance" type is treated specially.
2756     .I Rad2mgf
2757     converts each instance to an MGF include statement, using the corresponding
2758     transformation and a file name derived from the octree name.
2759     (The original octree suffix is replaced by ".mgf".)\0
2760     For this to work, the user must separately create the referenced
2761     MGF files from the original RADIANCE descriptions.
2762     The description file names can usually be determined using the
2763     .I getinfo(1)
2764     command run on the octrees in question.
2765     .SH
2766     EXAMPLES
2767     .LP
2768     To convert three RADIANCE files (in feet) to one MGF file:
2769     .IP
2770     mgf2rad -df file1.rad file2.rad file3.rad > scene.mgf
2771     .LP
2772     To translate a RADIANCE materials file to MGF:
2773     .IP
2774     mgf2rad materials.rad > materials.mgf
2775     .SH
2776     AUTHOR
2777     .LP
2778     Greg Ward
2779     .SH
2780     SEE ALSO
2781     .LP
2782     getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)
2783     .ds RH MGF2META
2784     .bp
2785     .SH
2786     NAME
2787     .LP
2788     mgf2meta - convert Materials and Geometry Format file to Metafile graphics
2789     .SH
2790     SYNOPSIS
2791     .LP
2792     .B mgf2meta
2793     [
2794     .B "-t threshold"
2795     ]
2796     .B "{x|y|z} xmin xmax ymin ymax zmin zmax"
2797     [
2798     .B input ..
2799     ]
2800     .SH
2801     DESCRIPTION
2802     .LP
2803     .I Mgf2meta
2804     converts one or more Materials and Geometry Format (MGF)
2805     files to a 2-D orthographic projection along the selected axis in the
2806     .I metafile(1)
2807     graphics format.
2808     All geometry is clipped to the specified bounding box, and the
2809     resulting orientation is as follows:
2810     .sp .5
2811     .nf
2812     Projection Orientation
2813     ======= ========
2814     x Y-axis right, Z-axis up
2815     y Z-axis right, X-axis up
2816     z X-axis right, Z-axis up
2817     .fi
2818     .LP
2819     If multiple input files are given, the first file prints in black,
2820     the second prints in red, the third in green and the fourth in blue.
2821     If more than four input files are given, they cycle through the
2822     colors again in three other line types: dashed, dotted and
2823     dot-dashed.
2824     .LP
2825     The
2826     .I \-t
2827     option may be used to randomly throw out line segments that are
2828     shorter than the given
2829     .I threshold
2830     (given as a fraction of the plot width).
2831     Segments are included with a
2832     probability equal to the square of the line length over the square
2833     of the threshold.
2834     This can greatly reduce the number of lines in the drawing (and
2835     therefore improve the drawing speed) with only a modest loss in
2836     quality.
2837     A typical value for this parameter is 0.005.
2838     .LP
2839     All MGF material information is ignored on the input.
2840     .SH
2841     EXAMPLES
2842     .LP
2843     To project two MGF files along the Z-axis and display them under
2844     X11:
2845     .IP
2846     mgf2meta z 0 10 0 15 0 9 building1.mgf building2.mgf | x11meta
2847     .LP
2848     To convert a RADIANCE scene to a line drawing in RADIANCE picture
2849     format:
2850     .IP
2851     rad2mgf scene.rad | mgf2meta x `getbbox -h scene.rad` | meta2tga |
2852     ra_t8 -r > scene.pic
2853     .SH
2854     AUTHOR
2855     .LP
2856     Greg Ward
2857     .SH
2858     SEE ALSO
2859     .LP
2860     getbbox(1), meta2tga(1), metafile(5), mgf2rad(1), pflip(1),
2861     protate(1), psmeta(1), ra_t8(1), rad2mgf(1), t4014(1), x11meta(1)
2862     .ds RH
2863     .ds LH
2864     .bp
2865     .NH
2866     MGF Parser Library
2867     .LP
2868     The principal motivation for creating a standard parser library for
2869     MGF is to make it easy for software developers to offer some base
2870     level of compliance.
2871     The key to making MGF easy to support in fact is the parser, which
2872     has the ability to express higher order entities in terms of
2873     lower order ones.
2874     For example, tori are part of the MGF specification, but if a given
2875     program or translator does not support them, the parser will convert
2876     them to cones.
2877     If cones are not supported either, it will convert them further into
2878     smoothed polygons.
2879     If smoothing (vertex normal information) is not supported, it will
2880     be ignored and the program will just get flat polygons.
2881     This is done in such a way that future versions of the standard may
2882     include new entities that old software does not even have to know
2883     about, and they will be converted appropriately.
2884     Forward compatibility is thus built right into the parser loading
2885     mechanism itself -- the programmer simply links to the new code and
2886     the new standard is supported without any further changes.
2887     .SH
2888     Language
2889     .LP
2890     The provided MGF parser is written in ANSI-C.
2891     This language was chosen for reasons of portability and efficiency.
2892     Almost all systems support some form of ANSI-compatible C, and many
2893     languages can cross-link to C libraries without modification.
2894     Backward compatibility to Kernighan and Ritchie C is achieved by
2895     compiling with the -DNOPROTO flag.
2896     .LP
2897     All of the data structures and prototypes needed for the library
2898     are in the header file "parser.h".
2899     This file is the best resource for the parser and is updated with
2900     each MGF release.
2901     .SH
2902     Mechanism
2903     .LP
2904     The parser works by a simple callback mechanism to routines that
2905     actually interpret the individual entities.
2906     Some of these routines will belong to the calling program, and some
2907     will be entity support routines included in the library itself.
2908     There is a global array of function pointers, called
2909     .I mg_ehand.
2910     It is defined thus:
2911     .DS
2912     extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv);
2913     .DE
2914     Before parsing begins, this dispatch table is initialized to point to the
2915     routines that will handle each supported entity.
2916     Every entity handler has the same basic prototype, which is the
2917     same as the
2918     .I main
2919     function, i.e:
2920     .DS
2921     extern int \f2handler\f1(int argc, char **argv);
2922     .DE
2923     The first argument is the number of words in the MGF entity
2924     (counting the entity itself) and the second argument is an array of
2925     nul-terminated strings with the entity and its arguments.
2926     The function should return zero or one of the error
2927     codes defined in "parser.h".
2928     A non-zero return value causes the parser to abort, returning the
2929     error up through its call stack to the entry function, usually
2930     .I mg_load.
2931     .LP
2932     A special function pointer for undefined entities is
2933     defined as follows:
2934     .DS
2935     extern int (*mg_uhand)(int argc, char **argv);
2936     .DE
2937     By default, this points to the library function
2938     .I mg_defuhand,
2939     which prints an error message on the first unknown entity and keeps a
2940     count from then on, which is stored in the global unsigned integer
2941     .I mg_nunknown.
2942     If the
2943     .I mg_uhand
2944     pointer is assigned a value of NULL instead, parsing will abort at the
2945     first unrecognized entity.
2946     The reason this is not the default action is that ignoring unknown entities
2947     offers a certain base level of forward compatibility.
2948     Ignoring things one does not understand is not the best approach, but it
2949     is usually better than quitting with an error message if the input is
2950     in fact valid, but is a later version of the standard.
2951     The real solution is to update the interpreter by linking to a new version
2952     of the parser, or use a new version of the
2953     .I mgfilt
2954     command to convert the new MGF input to an older standard.
2955     .LP
2956     The
2957     .I mg_uhand
2958     pointer may also be used to customize the language for a particular
2959     application by adding entities, though this is discouraged because it
2960     tends to weaken the standard.
2961     .LP
2962     The skeletal framework for an MGF loader or translator is to assign
2963     function pointers to the
2964     .I mg_ehand
2965     array, call the parser initialization function
2966     .I mg_init,
2967     then call the file loader function
2968     .I mg_load
2969     once for each input file.
2970     This will in turn make calls back to the functions assigned to
2971     .I mg_ehand.
2972     To give a simple example, let us look at a
2973     translator that understands only flat polygonal faces, putting out
2974     vertex locations immediately after each "face" keyword:
2975     .DS
2976     #include <stdio.h>
2977     #include "parser.h"
2978    
2979     int
2980     myfaceh(ac, av) /* face handling routine */
2981     int ac;
2982     char **av;
2983     {
2984     C_VERTEX *vp; /* vertex structure pointer */
2985     FVECT vert; /* vertex point location */
2986     int i;
2987    
2988     if (ac < 4) /* check # arguments */
2989     return(MG_EARGC);
2990 greg 1.2 printf("face\\\\n"); /* begin face output */
2991 greg 1.1 for (i = 1; i < ac; i++) {
2992     if ((vp = c_getvert(av[i])) == NULL) /* vertex from name */
2993     return(MG_EUNDEF);
2994     xf_xfmpoint(vert, vp->p); /* apply transform */
2995 greg 1.2 printf("%15.9f %15.9f %15.9f\\\\n",
2996 greg 1.1 vert[0], vert[1], vert[2]); /* output vertex */
2997     }
2998 greg 1.2 printf(";\\\\n"); /* end of face output */
2999 greg 1.1 return(MG_OK); /* normal exit */
3000     }
3001    
3002     main(argc, argv) /* translate MGF file(s) */
3003     int argc;
3004     char **argv;
3005     {
3006     int i;
3007     /* initialize dispatch table */
3008     mg_ehand[MG_E_FACE] = myfaceh; /* ours */
3009     mg_ehand[MG_E_VERTEX] = c_hvertex; /* parser lib */
3010     mg_ehand[MG_E_POINT] = c_hvertex; /* parser lib */
3011     mg_ehand[MG_E_XF] = xf_handler; /* parser lib */
3012     mg_init(); /* initialize parser */
3013     for (i = 1; i < argc; i++) /* load each file argument */
3014     if (mg_load(argv[i]) != MG_OK) /* and check for error */
3015     exit(1);
3016     exit(0); /* all done! */
3017     }
3018     .DE
3019     Hopefully, this example demonstrates just how easy it is to
3020     write an MGF translator.
3021     Of course, translators get more complicated the more entity
3022     types they support, but the point is that one does not
3023     .I have
3024     to support every entity -- the parser handles what the translator
3025     does not.
3026     Also, the library includes many general entity handlers,
3027     further reducing the burden on the programmer.
3028     This same principle means that it is not necessary to modify an
3029     existing program to accommodate a new version of MGF -- one need only
3030     link to the new parser library to comply with the new standard.
3031     .SH
3032     Division of Labor
3033     .LP
3034     As seen in the previous example, there are two parser routines that
3035     are normally called directly in an MGF translator or loader program.
3036     The first is
3037     .I mg_init,
3038     which takes no arguments but relies on the program having
3039     initialized those parts of the global
3040     .I mg_ehand
3041     array it cares about.
3042     The second routine is
3043     .I mg_load,
3044     which is called once on each input file.
3045     (A third routine,
3046     .I mg_clear,
3047     may be called to free the parser data structures after each file or
3048     after all files, if the program plans to continue rather than
3049     exit.)\0
3050     .LP
3051     The rest of the routines in a translator or loader program are
3052     called indirectly through the
3053     .I mg_ehand
3054     dispatch table, and they are the ones that do the real work of
3055     supporting the MGF entities.
3056     In addition to converting or discarding entities that the calling
3057     program does not know or care about, the parser library includes a
3058     set of context handlers that greatly simplify the translation
3059     process.
3060     There are three handlers for each of the three named contexts and
3061     their constituents, and two handlers for the two hierarchical
3062     context entities.
3063     To use these handlers, one simply sets the appropriate positions in the
3064     .I mg_ehand
3065     dispatch table to point to these functions.
3066     Additional functions and global data structures provide convenient
3067     access to the relevant contexts, and all of these are detailed in
3068     the following manual pages.
3069     .ds LH Basic Parser Routines
3070     .ds RH MG_INIT
3071     .bp
3072     .SH
3073     NAME
3074     .LP
3075     mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers
3076     .SH
3077     SYNOPSIS
3078     .LP
3079     #include "parser.h"
3080     .LP
3081     .B void
3082     mg_init(
3083     .B void
3084     )
3085     .LP
3086     .B int
3087     mg_defuhand(
3088     .B int
3089     argc,
3090     .B char
3091     **argv )
3092     .LP
3093     .B "extern int"
3094     (*mg_ehand[MG_NENTITIES])(
3095     .B int
3096     argc,
3097     .B char
3098     **argv )
3099     .LP
3100     .B "extern int"
3101     (*mg_uhand)(
3102     .B int
3103     argc,
3104     .B char
3105     **argv )
3106     .LP
3107     .B "extern unsigned"
3108     mg_nunknown
3109     .SH
3110     DESCRIPTION
3111     .LP
3112     The parser dispatch table,
3113     .I mg_ehand
3114     is initially set to all NULL pointers, and it
3115     is the duty of the calling program to assign entity handler functions to
3116     each of the supported entity positions in the array.
3117     The entities are given in the include file "parser.h" as the
3118     following:
3119     .DS
3120     #define MG_E_COMMENT 0 /* # */
3121     #define MG_E_COLOR 1 /* c */
3122     #define MG_E_CCT 2 /* cct */
3123     #define MG_E_CONE 3 /* cone */
3124     #define MG_E_CMIX 4 /* cmix */
3125     #define MG_E_CSPEC 5 /* cspec */
3126     #define MG_E_CXY 6 /* cxy */
3127     #define MG_E_CYL 7 /* cyl */
3128     #define MG_E_ED 8 /* ed */
3129     #define MG_E_FACE 9 /* f */
3130     #define MG_E_INCLUDE 10 /* i */
3131     #define MG_E_IES 11 /* ies */
3132 greg 1.2 #define MG_E_IR 12 /* ir */
3133 greg 1.1 #define MG_E_MATERIAL 13 /* m */
3134     #define MG_E_NORMAL 14 /* n */
3135     #define MG_E_OBJECT 15 /* o */
3136     #define MG_E_POINT 16 /* p */
3137     #define MG_E_PRISM 17 /* prism */
3138     #define MG_E_RD 18 /* rd */
3139     #define MG_E_RING 19 /* ring */
3140     #define MG_E_RS 20 /* rs */
3141     #define MG_E_SIDES 21 /* sides */
3142     #define MG_E_SPH 22 /* sph */
3143     #define MG_E_TD 23 /* td */
3144     #define MG_E_TORUS 24 /* torus */
3145     #define MG_E_TS 25 /* ts */
3146     #define MG_E_VERTEX 26 /* v */
3147     #define MG_E_XF 27 /* xf */
3148    
3149     #define MG_NENTITIES 28 /* total # entities */
3150     .DE
3151     .LP
3152     Once the
3153     .I mg_ehand
3154     array has been set by the program, the
3155     .I mg_init
3156     routine must be called to complete the initialization process.
3157     This should be done once and only once per invocation, before any other
3158     parser routines are called.
3159     .LP
3160     The
3161     .I mg_uhand
3162     variable points to the current handler for unknown entities
3163     encountered on the input.
3164     Its default value points to the
3165     .I mg_defuhand
3166     function, which simply increments the global variable
3167     .I mg_nunknown,
3168     printing a warning message on the standard error on the first
3169     offense.
3170     (This message may be avoided by incrementing
3171     .I mg_nunknown
3172     before processing begins.)\0
3173     If
3174     .I mg_uhand
3175     is assigned a value of NULL, then an unknown entity will return an
3176     .I MG_EUNK
3177     error, which will cause the parser to abort.
3178     (See the
3179     .I mg_load
3180     page for a list of errors.)\0
3181     If the
3182     .I mg_uhand
3183     pointer is assigned to another function, that function will receive
3184     any unknown entities and their arguments, and the parsing will
3185     abort if the new function returns a non-zero error value.
3186     This offers a convenient way to customize the language by adding
3187     non-standard entities.
3188     .SH
3189     DIAGNOSTICS
3190     .LP
3191     If an inconsistent set of entities has been set for support, the
3192     .I mg_init
3193     routine will print an informative message to standard error and abort
3194     the calling program with a call to
3195     .I exit.
3196     This is normally unacceptable behavior for a library routine, but since
3197     such an error indicates a fault with the calling program itself,
3198     recovery is impossible.
3199     .SH
3200     SEE ALSO
3201     .LP
3202     mg_load, mg_handle
3203     .ds RH MG_LOAD
3204     .bp
3205     .SH
3206     NAME
3207     .LP
3208     mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures
3209     .SH
3210     SYNOPSIS
3211     .LP
3212     #include "parser.h"
3213     .LP
3214     .B int
3215     mg_load(
3216     .B char
3217     *filename )
3218     .LP
3219     .B void
3220     mg_clear(
3221     .B void
3222     )
3223     .LP
3224     .B extern
3225     MG_FCTXT *mg_file
3226     .LP
3227     .B "extern char"
3228     *mg_err[MG_NERRS]
3229     .SH
3230     DESCRIPTION
3231     .LP
3232     The
3233     .I mg_load
3234     function loads the named file, or standard input if
3235     .I filename
3236     is the NULL pointer.
3237     Calls back to the appropriate MGF handler routines are made through the
3238     .I mg_ehand
3239     dispatch table.
3240     .LP
3241     The global
3242     .I mg_file
3243     variable points to the current file context structure, which
3244     may be useful for the interpretation of certain entities, such as
3245     .UL ies,
3246     which must know the directory path of the enclosing file.
3247     This structure is of the defined type
3248     .I MG_FCTXT,
3249     given in "parser.h" as:
3250     .DS
3251     typedef struct mg_fctxt {
3252     char fname[96]; /* file name */
3253     FILE *fp; /* stream pointer */
3254     int fid; /* unique file context id */
3255     char inpline[4096]; /* input line */
3256     int lineno; /* line number */
3257     struct mg_fctxt *prev; /* previous context */
3258     } MG_FCTXT;
3259     .DE
3260     .SH
3261     DIAGNOSTICS
3262     .LP
3263     If an error is encountered during parsing,
3264     .I mg_load
3265     will print an appropriate error message to the standard error stream
3266     and return one of the non-zero values from "parser.h" listed below:
3267     .DS
3268     #define MG_OK 0 /* normal return value */
3269     #define MG_EUNK 1 /* unknown entity */
3270     #define MG_EARGC 2 /* wrong number of arguments */
3271     #define MG_ETYPE 3 /* argument type error */
3272     #define MG_EILL 4 /* illegal argument value */
3273     #define MG_EUNDEF 5 /* undefined reference */
3274     #define MG_ENOFILE 6 /* cannot open input file */
3275     #define MG_EINCL 7 /* error in included file */
3276     #define MG_EMEM 8 /* out of memory */
3277     #define MG_ESEEK 9 /* file seek error */
3278     #define MG_EBADMAT 10 /* bad material specification */
3279    
3280     #define MG_NERRS 11
3281     .DE
3282     If it is inappropriate to send output to standard error, the calling
3283     program should use the routines listed under
3284     .I mg_open
3285     for better control over the parsing process.
3286     .LP
3287     The
3288     .I mg_err
3289     array contains error messages corresponding to each of the values
3290     listed above in the native country's language.
3291     .SH
3292     SEE ALSO
3293     .LP
3294     mg_fgetpos, mg_handle, mg_init
3295     .ds RH MG_OPEN
3296     .bp
3297     .SH
3298     NAME
3299     .LP
3300     mg_open, mg_read, mg_parse, mg_close - MGF file loading subroutines
3301     .SH
3302     SYNOPSIS
3303     .LP
3304     #include "parser.h"
3305     .LP
3306     .B int
3307     mg_open( MG_FCTXT *fcp,
3308     .B char
3309     *filename )
3310     .LP
3311     .B int
3312     mg_read(
3313     .B void
3314     )
3315     .LP
3316     .B int
3317     mg_parse(
3318     .B void
3319     )
3320     .LP
3321     .B void
3322     mg_close(
3323     .B void
3324     )
3325     .SH
3326     DESCRIPTION
3327     .LP
3328     Most loaders and translators will call the
3329     .I mg_load
3330     routine to handle the above operations, but some programs or
3331     entity handlers require tighter control over the loading process.
3332     .LP
3333     The
3334     .I mg_open
3335     routine takes an uninitialized
3336     .I MG_FCTXT
3337     structure and a file name as its arguments.
3338     If
3339     .I filename
3340     is the NULL pointer, the standard input is "opened."
3341     The
3342     .I fcp
3343     structure will be set by
3344     .I mg_open
3345     prior to its return, and the global
3346     .I mg_file
3347     pointer will be assigned to point to it.
3348     This variable must not be destroyed until after the file is closed
3349     with a call to
3350     .I mg_close.
3351     (See the
3352     .I mg_load
3353     page for a definition of
3354     .I mg_file
3355     and the
3356     .I MG_FCTXT
3357     type.)\0
3358     .LP
3359     The
3360     .I mg_read
3361     function reads the next input line from the current file,
3362     returning the number of characters in the line, or zero if the
3363     end of file is reached or there is a file error.
3364     The function skips over escaped newlines, and keeps track of the
3365     line number in the current file context
3366     .I mg_file,
3367     which also contains the line that was read.
3368     .LP
3369     The
3370     .I mg_parse
3371     function breaks the current line in the
3372     .I mg_file
3373     structure into words and calls the appropriate handler routine, if
3374     any.
3375     Blank lines and unsupported entities cause a quick return.
3376     .LP
3377     The
3378     .I mg_close
3379     routine closes the current input file (unless it is the standard
3380     input) and returns to the previous file context (if any).
3381     .SH
3382     DIAGNOSTICS
3383     .LP
3384     The
3385     .I mg_open
3386     function returns
3387     .I MG_OK
3388     (0) normally, or
3389     .I MG_ENOFILE
3390     if the open fails for some reason.
3391     .LP
3392     The
3393     .I mg_parse
3394     function returns
3395     .I MG_OK
3396     if the current line was successfully interpreted, or one of the
3397     defined error values if there is a problem.
3398     (See the
3399     .I mg_load
3400     page for the defined error values.)\0
3401     .SH
3402     SEE ALSO
3403     .LP
3404     mg_fgetpos, mg_handle, mg_init, mg_load
3405     .ds RH MG_FGETPOS
3406     .bp
3407     .SH
3408     NAME
3409     .LP
3410     mg_fgetpos, mg_fgoto - get current file position and seek to pointer
3411     .SH
3412     SYNOPSIS
3413     .LP
3414     #include "parser.h"
3415     .LP
3416     .B void
3417     mg_fgetpos( MG_FPOS *pos )
3418     .LP
3419     .B int
3420     mg_fgoto( MG_FPOS *pos )
3421     .SH
3422     DESCRIPTION
3423     .LP
3424     The
3425     .I mg_fgetpos
3426     gets the current MGF file position and loads it into the passed
3427     .I MG_FPOS
3428     structure,
3429     .I pos.
3430     .LP
3431     The
3432     .I mg_fgoto
3433     function seeks to the position
3434     .I pos,
3435     taken from a previous call to
3436     .I mg_fgetpos.
3437     .SH
3438     DIAGNOSTICS
3439     .LP
3440     If
3441     .I mg_fgoto
3442     is passed an illegal pointer or one that does not correspond to the
3443     current
3444     .I mg_file
3445     context, it will return the
3446     .I MG_ESEEK
3447     error value.
3448     Normally, it returns
3449     .I MG_OK
3450     (0).
3451     .SH
3452     SEE ALSO
3453     .LP
3454     mg_load, mg_open
3455     .ds RH MG_HANDLE
3456     .bp
3457     .SH
3458     NAME
3459     .LP
3460     mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance and control
3461     .SH
3462     SYNOPSIS
3463     .LP
3464     .B int
3465     mg_handle(
3466     .B int
3467     en,
3468     .B int
3469     ac,
3470     .B char
3471     *av )
3472     .LP
3473     .B int
3474     mg_entity(
3475     .B char
3476     *name )
3477     .LP
3478     .B "extern char"
3479     mg_ename[MG_NENTITIES][MG_MAXELEN]
3480     .LP
3481     .B "extern int"
3482     mg_nqcdivs
3483     .SH
3484     DESCRIPTION
3485     .LP
3486     The
3487     .I mg_handle
3488     routine may be used to pass entities back to the parser
3489     to be redirected through the
3490     .I mg_ehand
3491     dispatch table.
3492     This method is recommended rather than calling through
3493     .I mg_ehand
3494     directly, since the parser sometimes has its own support routines
3495     that it needs to call for specific entities.
3496     The first argument,
3497     .I en,
3498     is the corresponding entity number, or -1 if
3499     .I mg_handle
3500     should figure it out from the first
3501     .I av
3502     argument.
3503     .LP
3504     The
3505     .I mg_entity
3506     function gets an entity number from its name, using a hash
3507     table on the
3508     .I mg_ename
3509     list.
3510     .LP
3511     The
3512     .I mg_ename
3513     table contains the string names corresponding to each MGF entity in
3514     the designated order.
3515     (See the
3516     .I mg_init
3517     page for the list of MGF entities.)\0
3518     .LP
3519     The global integer variable
3520     .I mg_nqcdivs
3521     tells the parser how many subdivisions to use per quarter circle (90
3522     degrees) when tesselating curved geometry.
3523     The default value is 5, and it may be reset at any time by the
3524     calling program.
3525     .SH
3526     DIAGNOSTICS
3527     .LP
3528     The
3529     .I mg_handle
3530     function returns
3531     .I MG_OK
3532     if the entity is handled correctly, or one of the predefined error
3533     values if there is a problem.
3534     (See the
3535     .I mg_load
3536     page for a list of error values.)\0
3537     .LP
3538     The
3539     .I mg_entity
3540     function returns -1 if the passed name does not appear in the
3541     .I mg_ename
3542     list.
3543     .SH
3544     SEE ALSO
3545     .LP
3546     mg_init, mg_load, mg_open
3547     .ds RH ISINT, ISFLT, ISNAME
3548     .bp
3549     .SH
3550     NAME
3551     .LP
3552     isint, isflt, isname - determine if string fits integer or real format,
3553     or is legal identifier
3554     .SH
3555     SYNOPSIS
3556     .LP
3557     .B int
3558     isint(
3559     .B char
3560     *str )
3561     .LP
3562     .B int
3563     isflt(
3564     .B char
3565     *str )
3566     .LP
3567     .B int
3568     isname(
3569     .B char
3570     *str )
3571     .SH
3572     DESCRIPTION
3573     .LP
3574     The
3575     .I isint
3576     function checks to see if the passed string
3577     .I str
3578     matches a decimal integer format (positive or negative),
3579     and returns 1 or 0 based on whether it does or does not.
3580     .LP
3581     The
3582     .I isflt
3583     function checks to see if the passed string
3584     .I str
3585     matches a floating point format (positive or negative with optional
3586     exponent), and returns 1 or 0 based on whether it does or does not.
3587     .LP
3588     The
3589     .I isname
3590     function checks to see if the passed string
3591     .I str
3592     is a legal identifier name.
3593     In MGF, a legal identifier must begin with a letter and contain only
3594     visible ASCII characters (those between decimal 33 and 127 inclusive).
3595     The one caveat to this is that names may begin with one or more
3596     underscores ('_'), but this is a trick employed by the parser to
3597     maintain a separate name space from the user, and is not legal usage
3598     otherwise.
3599     .LP
3600     Note that a string that matches an integer format is also a valid
3601     floating point value.
3602     Conversely, a string that is not a floating point number cannot be a
3603     valid integer.
3604     .LP
3605     These routines are useful for checking arguments passed to entity
3606     handlers that certain types in certain positions.
3607     If an invalid argument is passed, the handler should return an
3608     .I MG_ETYPE
3609     error.
3610     .SH
3611     SEE ALSO
3612     .LP
3613     mg_init, mg_load
3614     .ds LH Entity Support Routines
3615     .ds RH C_HVERTEX
3616     .bp
3617     .SH
3618     NAME
3619     .LP
3620     c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support
3621     .SH
3622     SYNOPSIS
3623     .LP
3624     #include "parser.h"
3625     .LP
3626     .B int
3627     c_hvertex(
3628     .B int
3629     argc,
3630     .B char
3631     **argv )
3632     .LP
3633     C_VERTEX *c_getvert(
3634     .B char
3635     *name )
3636     .LP
3637     .B "extern char"
3638     *c_vname
3639     .LP
3640     .B extern
3641     C_VERTEX *c_cvertex
3642     .SH
3643     DESCRIPTION
3644     .LP
3645     The
3646     .I c_hvertex
3647     function handles the MGF vertex entities,
3648     .UL v,
3649     .UL p
3650     and
3651     .UL n.
3652     If either
3653     .UL p
3654     or
3655     .UL n
3656     is supported, then
3657     .UL v
3658     must be also.
3659     The assignments are normally made to the
3660     .I mg_ehand
3661     array prior to parser initialization, like so:
3662     .DS
3663     mg_ehand[MG_E_VERTEX] = c_hvertex; /* support "v" entity */
3664     mg_ehand[MG_E_POINT] = c_hvertex; /* support "p" entity */
3665     mg_ehand[MG_E_NORMAL] = c_hvertex; /* support "n" entity */
3666     /* other entity handler assignments... */
3667     mg_init(); /* initialize parser */
3668     .DE
3669     If vertex normals are not understood by any of the program-supported
3670     entities, then the
3671     .I MG_E_NORMAL
3672     entry may be left with its original NULL assignment.
3673     .LP
3674     The
3675     .I c_getvert
3676     call takes the name of a defined vertex and returns a pointer to its
3677     .I C_VERTEX
3678     structure, defined in "parser.h" as:
3679     .DS
3680     typedef FLOAT FVECT[3]; /* a 3-d real vector */
3681    
3682     typedef struct {
3683     int clock; /* incremented each change -- resettable */
3684     FVECT p, n; /* point and normal */
3685     } C_VERTEX; /* vertex context */
3686     .DE
3687     The
3688     .I clock
3689     member will be incremented each time the value gets changed by a
3690     .UL p
3691     or
3692     .UL n
3693     entity, and may be reset by the controlling program if desired.
3694     This is a convenient way to keep track of whether or not a vertex has
3695     changed since its last use.
3696     To link identical vertices, one must also check that the current
3697     transform has not changed, which is uniquely identified by the
3698     global
3699     .I xf_context->xid
3700     variable, but only if one is using the parser libraries transform
3701     handler.
3702     (See the
3703     .I xf_handler
3704     page.)\0
3705     .LP
3706     It is possible but not recommended to alter the contents of the
3707     vertex structure returned by
3708     .I c_getvert.
3709     Normally it is read during the
3710     interpretation of entities using named vertices.
3711     .LP
3712     The name of the current vertex is given by the global
3713     .I c_cvname
3714     variable, which is set to NULL if the unnamed vertex is current.
3715     The current vertex value is pointed to by the global variable
3716     .I c_cvertex,
3717     which should never be NULL.
3718     .SH
3719     DIAGNOSTICS
3720     .LP
3721     The
3722     .I c_hvertex
3723     function returns
3724     .I MG_OK
3725     (0) if the vertex is handled correctly, or one of the predefined
3726     error values if there is a problem.
3727     (See the
3728     .I mg_load
3729     page for a list of errors.)\0
3730     .LP
3731     The
3732     .I c_getvert
3733     function returns NULL if the specified vertex name is undefined, at
3734     which point the calling function should return an
3735     .I MG_EUNDEF
3736     error.
3737     .SH
3738     SEE ALSO
3739     .LP
3740     c_hcolor, c_hmaterial, mg_init, mg_load, xf_handler
3741     .ds RH C_HCOLOR
3742     .bp
3743     .SH
3744     NAME
3745     .LP
3746     c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey -
3747     color entity support
3748     .SH
3749     SYNOPSIS
3750     .LP
3751     #include "parser.h"
3752     .LP
3753     .B int
3754     c_hcolor(
3755     .B int
3756     argc,
3757     .B char
3758     **argv )
3759     .LP
3760     C_COLOR *c_getcolor(
3761     .B char
3762     *name )
3763     .LP
3764     .B "extern char"
3765     *c_ccname
3766     .LP
3767     .B extern
3768     C_COLOR *c_ccolor
3769     .LP
3770     .B void
3771     c_ccvt( C_COLOR *cvp,
3772     .B int
3773     cflags )
3774     .LP
3775     .B int
3776     c_isgrey( C_COLOR *cvp )
3777     .SH
3778     DESCRIPTION
3779     .LP
3780     The
3781     .I c_hcolor
3782     function supports the MGF entities,
3783     .UL c,
3784     .UL cxy,
3785     .UL cspec,
3786     .UL cct
3787     and
3788     .UL cmix.
3789     It is an error to support any of the color field entities without
3790     supporting the
3791     .UL c
3792     entity itself.
3793     The assignments are normally made to the
3794     .I mg_ehand
3795     array prior to parser initialization, like so:
3796     .DS
3797     mg_ehand[MG_E_COLOR] = c_hcolor; /* support "c" entity */
3798     mg_ehand[MG_E_CXY] = c_hcolor; /* support "cxy" entity */
3799     mg_ehand[MG_E_CSPEC] = c_hcolor; /* support "cspec" entity */
3800     mg_ehand[MG_E_CCT] = c_hcolor; /* support "cct" entity */
3801     mg_ehand[MG_E_CMIX] = c_hcolor; /* support "cmix" entity */
3802     /* other entity handler assignments... */
3803     mg_init(); /* initialize parser */
3804     .DE
3805     If the loader/translator has no use for spectral data, the entries for
3806     .UL cspec
3807     and
3808     .UL cct
3809     may be left with their original NULL assignments and these entities will
3810     be re-expressed appropriately as tristimulus values.
3811     .LP
3812     The
3813     .I c_getcolor
3814     function takes the name of a defined color and returns a pointer to its
3815     .I C_COLOR
3816     structure, defined in "parser.h" as:
3817     .DS
3818     #define C_CMINWL 380 /* minimum wavelength */
3819     #define C_CMAXWL 780 /* maximum wavelength */
3820     #define C_CNSS 41 /* number of spectral samples */
3821     #define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1))
3822     #define C_CMAXV 10000 /* nominal maximum sample value */
3823     #define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */
3824    
3825     typedef struct {
3826     int clock; /* incremented each change */
3827     short flags; /* what's been set */
3828     short ssamp[C_CNSS]; /* spectral samples, min wl to max */
3829     long ssum; /* straight sum of spectral values */
3830     float cx, cy; /* xy chromaticity value */
3831     float eff; /* efficacy (lumens/watt) */
3832     } C_COLOR; /* color context */
3833     .DE
3834     The
3835     .I clock
3836     member will be incremented each time the value gets changed by a
3837     color field entity, and may be reset by the calling program if
3838     desired.
3839     This is a convenient way to keep track of whether or not a color has
3840     changed since its last use.
3841     The
3842     .I flags
3843     member indicates which color representations have been assigned,
3844     and is an inclusive OR of one or more of the following:
3845     .DS
3846     #define C_CSSPEC 01 /* flag if spectrum is set */
3847     #define C_CDSPEC 02 /* flag if defined w/ spectrum */
3848     #define C_CSXY 04 /* flag if xy is set */
3849     #define C_CDXY 010 /* flag if defined w/ xy */
3850     #define C_CSEFF 020 /* flag if efficacy set */
3851     .DE
3852     .LP
3853     It is possible but not recommended to alter the contents of the
3854     color structure returned by
3855     .I c_getcolor.
3856     Normally, this routine is never called directly, since there are no
3857     entities that access colors by name other than
3858     .UL c.
3859     .LP
3860     The global variable
3861     .I c_ccname
3862     points to the name of the current color, or NULL if it is unnamed.
3863     The variable
3864     .I c_ccolor
3865     points to the current color value, which should never be NULL.
3866     .LP
3867     The
3868     .I c_ccvt
3869     routine takes a
3870     .I C_COLOR
3871     structure and a set of desired flag settings and computes the
3872     missing color representation(s).
3873     .LP
3874     The
3875     .I c_isgrey
3876     function returns 1 if the passed color is very close to neutral
3877     grey, or 0 otherwise.
3878     .SH
3879     DIAGNOSTICS
3880     .LP
3881     The
3882     .I c_hcolor
3883     function returns
3884     .I MG_OK
3885     (0) if the color is handled correctly, or one of the predefined
3886     error values if there is a problem.
3887     (See the
3888     .I mg_load
3889     page for a list of errors.)\0
3890     .LP
3891     The
3892     .I c_getcolor
3893     function returns NULL if the specified color name is undefined, at
3894     which point the calling function should return an
3895     .I MG_EUNDEF
3896     error.
3897     .SH
3898     SEE ALSO
3899     .LP
3900     c_hmaterial, c_hvertex, mg_init, mg_load
3901     .ds RH C_HMATERIAL
3902     .bp
3903     .SH
3904     NAME
3905     .LP
3906     c_hmaterial, c_getmaterial, c_cmname, c_cmaterial -
3907     material entity support
3908     .SH
3909     SYNOPSIS
3910     .LP
3911     #include "parser.h"
3912     .LP
3913     .B int
3914     c_hmaterial(
3915     .B int
3916     argc,
3917     .B char
3918     **argv )
3919     .LP
3920     C_MATERIAL *c_getmaterial(
3921     .B char
3922     *name )
3923     .LP
3924     .B "extern char"
3925     *c_cmname
3926     .LP
3927     .B extern
3928     C_MATERIAL *c_cmaterial
3929     .SH
3930     DESCRIPTION
3931     .LP
3932     The
3933     .I c_hmaterial
3934     function supports the MGF entities,
3935     .UL m,
3936     .UL ed,
3937     .UL ir,
3938     .UL rd,
3939     .UL rs,
3940     .UL sides,
3941     .UL td,
3942     and
3943     .UL ts.
3944     It is an error to support any of the material field entities without
3945     supporting the
3946     .UL m
3947     entity itself.
3948     The assignments are normally made to the
3949     .I mg_ehand
3950     array prior to parser initialization, like so:
3951     .DS
3952     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* support "m" entity */
3953     mg_ehand[MG_E_ED] = c_hmaterial; /* support "ed" entity */
3954     mg_ehand[MG_E_IR] = c_hmaterial; /* support "ir" entity */
3955     mg_ehand[MG_E_RD] = c_hmaterial; /* support "rd" entity */
3956     mg_ehand[MG_E_RS] = c_hmaterial; /* support "rs" entity */
3957     mg_ehand[MG_E_SIDES] = c_hmaterial; /* support "sides" entity */
3958     mg_ehand[MG_E_TD] = c_hmaterial; /* support "td" entity */
3959     mg_ehand[MG_E_TS] = c_hmaterial; /* support "ts" entity */
3960     /* other entity handler assignments... */
3961     mg_init(); /* initialize parser */
3962     .DE
3963     Any of the above entities besides
3964     .UL m
3965     may be unsupported, but the parser will not attempt to include their
3966     effect into other members, e.g. an unsupported
3967     .UL rs
3968     component will not be added back into the
3969     .UL rd
3970     member.
3971     It is therefore safer to support all of the relevant material
3972     entities and make final approximations from the complete
3973     .I C_MATERIAL
3974     structure.
3975     .LP
3976     The
3977     .I c_getmaterial
3978     function takes the name of a defined material and returns a pointer to its
3979     .I C_MATERIAL
3980     structure, defined in "parser.h" as:
3981     .DS
3982     #define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */
3983    
3984     typedef struct {
3985     int clock; /* incremented each change -- resettable */
3986     int sided; /* 1 if surface is 1-sided, 0 for 2-sided */
3987     float nr, ni; /* index of refraction, real and imaginary */
3988     float rd; /* diffuse reflectance */
3989     C_COLOR rd_c; /* diffuse reflectance color */
3990     float td; /* diffuse transmittance */
3991     C_COLOR td_c; /* diffuse transmittance color */
3992     float ed; /* diffuse emittance */
3993     C_COLOR ed_c; /* diffuse emittance color */
3994     float rs; /* specular reflectance */
3995     C_COLOR rs_c; /* specular reflectance color */
3996     float rs_a; /* specular reflectance roughness */
3997     float ts; /* specular transmittance */
3998     C_COLOR ts_c; /* specular transmittance color */
3999     float ts_a; /* specular transmittance roughness */
4000     } C_MATERIAL; /* material context */
4001     .DE
4002     The
4003     .I clock
4004     member will be incremented each time the value gets changed by a
4005     material field entity, and may be reset by the calling program if
4006     desired.
4007     This is a convenient way to keep track of whether or not a material has
4008     changed since its last use.
4009     .LP
4010     All reflectance and transmittance values correspond to normal
4011     incidence, and may vary as a function of angle depending on the
4012     index of refraction.
4013     A solid object is normally represented with a one-sided material.
4014     A two-sided material is most appropriate for thin surfaces, though
4015     it may be used also when the surface normal orientations in a model
4016     are unreliable.
4017     .LP
4018     If a transparent or translucent surface is one-sided, then the
4019     absorption will change as a function of distance through the
4020     material, and a single value for diffuse or specular transmittance is
4021     ambiguous.
4022     We therefore define a standard thickness,
4023     .I C_1SIDEDTHICK,
4024     which is the object thickness to which the given values correspond,
4025     so that one may compute the isotropic absorptance of the material.
4026     .LP
4027     It is possible but not recommended to alter the contents of the
4028     material structure returned by
4029     .I c_getmaterial.
4030     Normally, this routine is never called directly, since there are no
4031     entities that access materials by name other than
4032     .UL m.
4033     .LP
4034     The global variable
4035     .I c_cmname
4036     points to the name of the current material, or NULL if it is unnamed.
4037     The variable
4038     .I c_cmaterial
4039     points to the current material value, which should never be NULL.
4040     .SH
4041     DIAGNOSTICS
4042     .LP
4043     The
4044     .I c_hmaterial
4045     function returns
4046     .I MG_OK
4047     (0) if the color is handled correctly, or one of the predefined
4048     error values if there is a problem.
4049     (See the
4050     .I mg_load
4051     page for a list of errors.)\0
4052     .LP
4053     The
4054     .I c_getmaterial
4055     function returns NULL if the specified material name is undefined, at
4056     which point the calling function should return an
4057     .I MG_EUNDEF
4058     error.
4059     .SH
4060     SEE ALSO
4061     .LP
4062     c_hcolor, c_hvertex, mg_init, mg_load
4063     .ds RH OBJ_HANDLER
4064     .bp
4065     .SH
4066     NAME
4067     .LP
4068     obj_handler, obj_clear, obj_nnames, obj_name - object name support
4069     .SH
4070     SYNOPSIS
4071     .LP
4072     .B int
4073     obj_handler(
4074     .B int
4075     argc,
4076     .B char
4077     **argv )
4078     .LP
4079     .B void
4080     obj_clear(
4081     .B void
4082     )
4083     .LP
4084     .B "extern int"
4085     obj_nnames
4086     .LP
4087     .B "extern char"
4088     **obj_name
4089     .SH
4090     DESCRIPTION
4091     .LP
4092     The
4093     .I obj_handler
4094     routine should be assigned to the
4095     .I MG_E_OBJECT
4096     entry of the parser's
4097     .I mg_ehand
4098     array prior to calling
4099     .I mg_load
4100     if the loader/translator wishes to support hierarchical object
4101     names.
4102     .LP
4103     The
4104     .I obj_clear
4105     function may be used to clear the object name stack and free any
4106     associated memory, but this is usually not necessary since
4107     .UL o
4108     begin and end entities are normally balanced in the input.
4109     .LP
4110     The global
4111     .I obj_nnames
4112     variable indicates the number of names currently in the object
4113     stack, and the
4114     .I obj_name
4115     list contains the name strings in the same order as they were
4116     encountered on the input.
4117     (I.e. the most recently pushed name is last.)\0
4118     .SH
4119     DIAGNOSTICS
4120     .LP
4121     The
4122     .I obj_handler
4123     function returns
4124     .I MG_OK
4125     (0) if the color is handled correctly, or one of the predefined
4126     error values if there is a problem.
4127     (See the
4128     .I mg_load
4129     page for a list of errors.)\0
4130     .SH
4131     SEE ALSO
4132     .LP
4133     mg_init, mg_load, xf_handler
4134     .ds RH XF_HANDLER
4135     .bp
4136     .SH
4137     NAME
4138     .LP
4139     xf_handler, xf_clear, xf_context, xf_argend - transformation support
4140     .SH
4141     SYNOPSIS
4142     .LP
4143     .B int
4144     xf_handler(
4145     .B int
4146     argc,
4147     .B char
4148     **argv )
4149     .LP
4150     .B void
4151     xf_clear(
4152     .B void
4153     )
4154     .LP
4155     .B extern
4156     XF_SPEC *xf_context
4157     .LP
4158     .B "extern char"
4159     **xf_argend
4160     .SH
4161     DESCRIPTION
4162     .LP
4163     The
4164     .I xf_handler
4165     routine should be assigned to the
4166     .I MG_E_XF
4167     entry of the parser's
4168     .I mg_ehand
4169     array prior to calling
4170     .I mg_load
4171     if the loader/translator wishes to support hierarchical
4172     transformations.
4173     (Note that all MGF geometric entities require this support.)\0
4174     .LP
4175     The
4176     .I xf_clear
4177     function may be used to clear the transform stack and free any
4178     associated memory, but this is usually not necessary since
4179     .UL xf
4180     begin and end entities are normally balanced in the input.
4181     .LP
4182     The global
4183     .I xf_context
4184     variable points to the current transformation context, which is of
4185     the type
4186     .I XF_SPEC,
4187     described in "parser.h":
4188     .DS
4189     typedef struct xf_spec {
4190     long xid; /* unique transform id */
4191     short xac; /* context argument count */
4192     short rev; /* boolean true if vertices reversed */
4193     XF xf; /* cumulative transformation */
4194     struct xf_array *xarr; /* transformation array pointer */
4195     struct xf_spec *prev; /* previous transformation context */
4196     } XF_SPEC; /* followed by argument buffer */
4197     .DE
4198     The
4199     .I xid
4200     member is a identifier associated with this transformation,
4201     which should be the same for identical transformations, as an aid to
4202     vertex sharing.
4203     (See also the
4204     .I c_hvertex
4205     page.)\0
4206     The
4207     .I xac
4208     member indicates the total number of transform arguments, and is
4209     used to indicate the position of the first argument relative to the
4210     last one pointed to by the global
4211     .I xf_argend
4212     variable.
4213     .LP
4214     The first transform argument starts at
4215     .I xf_argv,
4216     which is a macro defined in "parser.h" as:
4217     .DS
4218     #define xf_argv (xf_argend - xf_context->xac)
4219     .DE
4220     Note that accessing this macro will result in a segmentation violation
4221     if the current context is NULL, so one should first test the second macro
4222     .I xf_argc
4223     against zero.
4224     This macro is defined as:
4225     .DS
4226     #define xf_argc (xf_context==NULL ? 0 : xf_context->xac)
4227     .DE
4228     .LP
4229     Normally, neither of these macros will be used, since there are
4230     routines for transforming points, vectors and scalars directly based
4231     on the current transformation context.
4232     (See the
4233     .I xf_xfmpoint
4234     page for details.)\0
4235     .LP
4236     The
4237     .I rev
4238     member of the
4239     .I XF_SPEC
4240     structure indicates whether or not this transform reverses the order
4241     of polygon vertices.
4242     This member will be 1 if the transformation mirrors about an odd
4243     number of coordinate axes, thus inverting faces.
4244     The usual thing to do in this circumstance is to interpret the
4245     vertex arguments in the reverse order, so as to bring the face back
4246     to its original orientation in the new position.
4247     .LP
4248     The
4249     .I xf
4250     member contains the transformation scalefactor (in xf.sca)
4251     and 4x4 homogeneous matrix (in xf.xfm), but these will usually not
4252     be accessed directly.
4253     Likewise, the
4254     .I xarr
4255     and
4256     .I prev
4257     members point to data that should not be needed by the calling
4258     program.
4259     .SH
4260     DIAGNOSTICS
4261     .LP
4262     The
4263     .I xf_handler
4264     function returns
4265     .I MG_OK
4266     (0) if the color is handled correctly, or one of the predefined
4267     error values if there is a problem.
4268     (See the
4269     .I mg_load
4270     page for a list of errors.)\0
4271     .SH
4272     SEE ALSO
4273     .LP
4274     mg_init, mg_load, obj_handler, xf_xfmpoint
4275     .ds RH XF_XFMPOINT
4276     .bp
4277     .SH
4278     NAME
4279     .LP
4280     xf_xfmpoint xf_xfmvect, xf_rotvect, xf_scale - apply current
4281     transformation
4282     .SH
4283     SYNOPSIS
4284     .LP
4285     .B void
4286     xf_xfmpoint( FVECT pnew, FVECT pold )
4287     .LP
4288     .B void
4289     xf_xfmvect( FVECT vnew, FVECT vold )
4290     .LP
4291     .B void
4292     xf_rotvect( FVECT nnew, FVECT nold )
4293     .LP
4294     .B double
4295     xf_scale(
4296     .B double
4297     sold )
4298     .SH
4299     DESCRIPTION
4300     .LP
4301     The
4302     .I xf_xfmpoint
4303     routine applies the current transformation defined by
4304     .I xf_context
4305     to the point
4306     .I pold,
4307     scaling, rotating and moving it to its proper location, which is put in
4308     .I pnew.
4309 greg 1.2 (As for
4310     .I xf_xfmvect
4311     and
4312     .I xf_rotvect,
4313     the two arguments may point to the same vector.)\0
4314 greg 1.1 .LP
4315     The
4316     .I xf_xfmvect
4317     routine applies the current transformation to the vector
4318     .I vold,
4319     scaling and rotating it to its proper location, which is put in
4320     .I vnew.
4321     The only difference between
4322     .I xf_xfmpoint
4323     and
4324     .I xf_xfmvect
4325     is that in the latter, the final translation is not applied.
4326     .LP
4327     The
4328     .I xf_rotvect
4329     routine rotates the vector
4330     .I nold
4331     using the current transformation, and stores the result in
4332     .I nnew.
4333     No translation or scaling is applied, which is the appropriate
4334     action for surface normal vectors for example.
4335     .LP
4336     The
4337     .I xf_scale
4338     function takes a scalar argument
4339     .I sold
4340     and applies the current scale factor, returning the result.
4341     .SH
4342     SEE ALSO
4343     .LP
4344     xf_handler
4345     .ds LH
4346     .ds RH
4347     .bp
4348     .NH
4349     Application Notes
4350     .NH 2
4351     Relation to Standard Practices in Computer Graphics
4352     .LP
4353     For those coming from a computer graphics background, some of the
4354     choices in the material model may seem strange or even capricious.
4355     Why not simply stick with RGB colors and a Phong specular component
4356     like everyone else?
4357     What is the point in choosing the number of sides to a material?
4358     .LP
4359     In the real world, a surface can have only one side,
4360     defining the interface between one volume and another.
4361     Many object-space rendering packages (e.g. z-buffer algorithms) take
4362     advantage of this fact by culling back-facing polygons and thus saving
4363     as much as 50% of the preprocessing time.
4364     However, many models rely on an
4365     approximation whereby a single surface is used to represent a very thin
4366     volume, such as a pane of glass, and this also can provide significant
4367     calculational savings in an image-space algorithm (such as
4368     ray-tracing).
4369     Also, many models are created in such a way that the front vs. back
4370     information is lost or confused, so that the back side of one or
4371     more surfaces may have to serve as the front side during rendering.
4372     (AutoCAD is one easily identified culprit in this department.)\0
4373     Since both types of surface models are useful and any
4374     rendering algorithm may ultimately be applied, MGF provides a way
4375     to specify sidedness rather than picking one interpretation or the other.
4376     .LP
4377     The problem with RGB is that there is no accepted standard, and even
4378     if we were to set one it would either be impossible to realize (i.e.
4379     impossible to create phosphors with the chosen colors) or it would
4380     have a gamut that excludes many saturated colors.
4381     The CIE color system was very carefully conceived and developed,
4382     and is the standard to which all photometric measurements adhere.
4383     It is therefore the logical choice in any standard format, though it
4384     has been too often ignored by the computer graphics community.
4385     .LP
4386     Regarding Phong shading, this was never a physical model and making it
4387     behave basic laws of reciprocity and energy balance is difficult.
4388     More to the point, specular power has almost nothing to do with
4389     surface microstructure, and is difficult to set properly
4390     even if every physical characteristic of a material has
4391     been carefully measured.
4392     This is the ultimate indictment of any physical model -- that it
4393     is incapable of reproducing any measurement whatsoever.
4394     .LP
4395     Admittedly, the compliment of diffuse and specular component plus
4396     surface roughness and index of refraction used in MGF is less than a
4397     perfect model, but it is serviceable for most materials and
4398     relatively simple to incorporate into a rendering algorithm.
4399     In the long term, MGF shall probably include full spectral
4400     scattering functions, though the sheer quantity of data involved
4401     makes this burdensome from both the measurement side and the
4402     simulation side.
4403     .NH 3
4404     Converting between Phong Specular Power and Gaussian Roughness
4405     .LP
4406     So-called specular reflection and transmission are modeled using a
4407     Gaussian distribution of surface facets.
4408     The roughness parameters to the
4409     .UL rs
4410     and
4411     .UL ts
4412     entities specify
4413     the root-mean-squared (RMS) surface facet slope, which varies from 0
4414     for a perfectly smooth surface to around .2 for a fairly rough one.
4415     The effect this will have on the reflected component distribution is
4416     well-defined, but predicting the behavior of the transmitted
4417     component requires further assumptions.
4418     We assume that the surface
4419     scatters light passing through it just as much as it scatters
4420     reflected light.
4421     This assumption is approximately correct for a
4422     two-sided transparent material with an index of refraction of 1.5
4423     (like glass) and both sides having the given RMS facet slope.
4424     .LP
4425     Oftentimes, one is translating from a Phong exponent on the cosine
4426     of the half-vector-to-normal angle to the more physical but less
4427     familiar Gaussian model of MGF.
4428     The hardest part is translating the specular power to a roughness value.
4429     For this, we recommend the following approximation:
4430     .IP
4431     roughness = 0.6/sqrt(specular_power)
4432     .LP
4433     It is not a perfect correlation, but it is about as close as one can get.
4434     .NH 3
4435     Converting between RGB and CIE Colors
4436     .LP
4437     Unlike most graphics languages, MGF does not use an RGB color model,
4438     simply because there is no recognized definition for this model.
4439     It is based on computer monitor phosphors, which vary from one
4440     CRT to the next.
4441     (There is an RGB standard defined in the TV
4442     industry, but this has a rather poor correlation to most computer
4443     monitors and it is impossible to express many real-world colors
4444     within its limited gamut.)\0
4445     .LP
4446     MGF uses two alternative, well-defined standards, spectral power
4447     distributions and the 1931 CIE 2 degree standard observer.
4448     With the CIE standard, any viewable
4449     color may be exactly represented as an (x,y) chromaticity value.
4450     Unfortunately, the interaction between
4451     colors (i.e. colored light sources and interreflections) cannot be
4452     specified exactly with any finite coordinate set, including CIE
4453     chromaticities.
4454     So, MGF offers the ability to give reflectance,
4455     transmittance or emittance as a function of wavelength over the visible
4456     spectrum.
4457     This function is still discretized, but at a user-selectable
4458     resolution.
4459     Furthermore, spectral colors may be mixed, providing (nearly)
4460     arbitrary basis functions, which can produce more accurate results in
4461     some cases and are merely a convenience for translation in others.
4462     .LP
4463     Conversion back and forth between CIE chromaticity coordinates and spectral
4464     samples is provided within the MGF parser.
4465     Unfortunately, conversion
4466     to and from RGB values depends on a particular RGB definition, and as we
4467     have said, there is no recognized standard.
4468     We therefore recommend that
4469     you decide yourself what chromaticity values to use for each RGB primary,
4470     and adopt the following code to convert between CIE and RGB coordinates.
4471     .LP
4472     .nf
4473     #ifdef NTSC
4474     #define CIE_x_r 0.670 /* standard NTSC primaries */
4475     #define CIE_y_r 0.330
4476     #define CIE_x_g 0.210
4477     #define CIE_y_g 0.710
4478     #define CIE_x_b 0.140
4479     #define CIE_y_b 0.080
4480     #define CIE_x_w 0.3333 /* monitor white point */
4481     #define CIE_y_w 0.3333
4482     #else
4483     #define CIE_x_r 0.640 /* nominal CRT primaries */
4484     #define CIE_y_r 0.330
4485     #define CIE_x_g 0.290
4486     #define CIE_y_g 0.600
4487     #define CIE_x_b 0.150
4488     #define CIE_y_b 0.060
4489     #define CIE_x_w 0.3333 /* monitor white point */
4490     #define CIE_y_w 0.3333
4491     #endif
4492    
4493     #define CIE_D ( CIE_x_r*(CIE_y_g - CIE_y_b) + \\\\
4494     CIE_x_g*(CIE_y_b - CIE_y_r) + \\\\
4495     CIE_x_b*(CIE_y_r - CIE_y_g) )
4496     #define CIE_C_rD ( (1./CIE_y_w) * \\\\
4497     ( CIE_x_w*(CIE_y_g - CIE_y_b) - \\\\
4498     CIE_y_w*(CIE_x_g - CIE_x_b) + \\\\
4499     CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g ) )
4500     #define CIE_C_gD ( (1./CIE_y_w) * \\\\
4501     ( CIE_x_w*(CIE_y_b - CIE_y_r) - \\\\
4502     CIE_y_w*(CIE_x_b - CIE_x_r) - \\\\
4503     CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r ) )
4504     #define CIE_C_bD ( (1./CIE_y_w) * \\\\
4505     ( CIE_x_w*(CIE_y_r - CIE_y_g) - \\\\
4506     CIE_y_w*(CIE_x_r - CIE_x_g) + \\\\
4507     CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r ) )
4508    
4509     #define CIE_rf (CIE_y_r*CIE_C_rD/CIE_D)
4510     #define CIE_gf (CIE_y_g*CIE_C_gD/CIE_D)
4511     #define CIE_bf (CIE_y_b*CIE_C_bD/CIE_D)
4512    
4513     float xyz2rgbmat[3][3] = { /* XYZ to RGB */
4514     {(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g)/CIE_C_rD,
4515     (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b)/CIE_C_rD,
4516     (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g)/CIE_C_rD},
4517     {(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b)/CIE_C_gD,
4518     (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r)/CIE_C_gD,
4519     (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b)/CIE_C_gD},
4520     {(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r)/CIE_C_bD,
4521     (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g)/CIE_C_bD,
4522     (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r)/CIE_C_bD}
4523     };
4524    
4525     float rgb2xyzmat[3][3] = { /* RGB to XYZ */
4526     {CIE_x_r*CIE_C_rD/CIE_D,CIE_x_g*CIE_C_gD/CIE_D,CIE_x_b*CIE_C_bD/CIE_D},
4527     {CIE_y_r*CIE_C_rD/CIE_D,CIE_y_g*CIE_C_gD/CIE_D,CIE_y_b*CIE_C_bD/CIE_D},
4528     {(1.-CIE_x_r-CIE_y_r)*CIE_C_rD/CIE_D,
4529     (1.-CIE_x_g-CIE_y_g)*CIE_C_gD/CIE_D,
4530     (1.-CIE_x_b-CIE_y_b)*CIE_C_bD/CIE_D}
4531     };
4532    
4533    
4534     cie_rgb(rgbcolor, ciecolor) /* convert CIE to RGB */
4535     register float *rgbcolor, *ciecolor;
4536     {
4537     register int i;
4538    
4539     for (i = 0; i < 3; i++) {
4540     rgbcolor[i] = xyz2rgbmat[i][0]*ciecolor[0] +
4541     xyz2rgbmat[i][1]*ciecolor[1] +
4542     xyz2rgbmat[i][2]*ciecolor[2] ;
4543     if (rgbcolor[i] < 0.0) /* watch for negative values */
4544     rgbcolor[i] = 0.0;
4545     }
4546     }
4547    
4548    
4549     rgb_cie(ciecolor, rgbcolor) /* convert RGB to CIE */
4550     register float *ciecolor, *rgbcolor;
4551     {
4552     register int i;
4553    
4554     for (i = 0; i < 3; i++)
4555     ciecolor[i] = rgb2xyzmat[i][0]*rgbcolor[0] +
4556     rgb2xyzmat[i][1]*rgbcolor[1] +
4557     rgb2xyzmat[i][2]*rgbcolor[2] ;
4558     }
4559     .fi
4560     .LP
4561     An alternative to adopting the above code is to use the MGF "cmix"
4562     entity to convert from RGB directly by naming the three primaries in
4563     terms of their chromaticities, e.g:
4564     .DS
4565     c R =
4566     cxy 0.640 0.330
4567     c G =
4568     cxy 0.290 0.600
4569     c B =
4570     cxy 0.150 0.060
4571     .DE
4572     .LP
4573     Then, converting from RGB to MGF colors is as simple as multiplying each
4574     component by its relative luminance in a cmix statement, for instance:
4575     .DS
4576     c white =
4577     cmix 0.265 R 0.670 G 0.065 B
4578     .DE
4579     .LP
4580     For the chosen RGB standard, the above specification would result a pure
4581     white.
4582     The reason the coefficients are not all 1 as you might expect is
4583     that cmix uses relative luminance as the standard for its weights.
4584     Since
4585     blue is less luminous for the same energy than red, which is in turn
4586     less luminous than green, the weights cannot be the same to achieve an
4587     even spectral balance.
4588     Unfortunately, computing these relative weights
4589     is not straightforward, though it is given in the above macros as CIE_rf,
4590     CIE_gf and CIE_bf.
4591     (The common factors in these macros may of course
4592     be removed since
4593     .UL cmix
4594     weights are all relative.)\0
4595     Alternatively, one could measure the actual full scale luminance of
4596     the phosphors with a luminance probe and get the same relative
4597     values.
4598     .NH 2
4599     Relation to IESNA LM-63 and Luminaire Catalogs
4600     .LP
4601     Recently, the Illuminating Engineering Society of North America
4602     (IESNA) adopted MGF as the official standard for
4603     representing luminaire geometry and materials.
4604     The way this works in an IES luminaire data file is through the
4605     addition of a keyword called LUMINOUSGEOMETRY, which is given on a
4606     line in the header portion of a file (before the TILT specification)
4607     like so:
4608     .LP
4609     .B [LUMINOUSGEOMETRY]
4610     .I mgf_file
4611     .LP
4612     The given MGF file must exist relative to the directory containing
4613     the IES file (i.e. the same stipulations and restrictions on pathnames
4614     apply as for the MGF
4615     .UL i
4616     entity).
4617     Furthermore, the position of the MGF geometry must be
4618     such that the gross geometric specification of emitting surfaces
4619     in the IES file completely
4620     blocks or encloses the luminous portions of the MGF description.
4621     Specifically, any ray traced towards the MGF geometry must strike
4622     the IES gross geometry before it strikes any luminous surface in the
4623     MGF description.
4624     This provides a convenient way of preventing overcounting in the
4625     illumination calculation, while still allowing for accurate fixture
4626     appearance.
4627     .LP
4628     To give two examples, let us consider first a recessed can, followed
4629     by a hanging direct/indirect fluorescent fixture.
4630     .LP
4631     The most appropriate IES geometric specification for the emitting
4632     area of a can light would be a circular disk.
4633     Since the IES gross geometry gives only the diameter of the disk, the
4634     actual 3-dimensional placement is implicitly defined as having a
4635     center at the origin, with the radiating disk facing in the
4636     negative Z direction (nadir, downwards).
4637     The MGF geometry would then be placed such that any luminous portion
4638     was above this disk, and no portion of it would obstruct the IES
4639     geometry.
4640     The most sensible position therefore has the IES disk flush with the
4641     MGF can opening, as shown in Figure 3.
4642     .bp
4643     Replace this page with the second page from "figures.ps".
4644     .bp
4645     .LP
4646     In the case of a direct/indirect fluorescent fixture, light will
4647     exit both the top and the bottom sides, and the IES geometry must
4648     enclose the radiating portion of the fixture entirely.
4649     It is acceptable to have additional MGF geometry above the
4650     fixture so long as it does not radiate, which is what we must do if
4651     we wish to include the support rods, as shown in Figure 4.
4652     .LP
4653     Note that the origin is always in the exact center of the IES
4654     geometry.
4655     .LP
4656     Not all fixtures will fit the simple IES geometry specification so
4657     nicely.
4658     For odd-shaped fixtures, it may be necessary to use an IES geometry
4659     that does not match the radiating area terribly well in order that
4660     it completely block or enclose the required MGF specification.
4661     .LP
4662     The unit of length in the MGF file is always meters, regardless of
4663     the units specified in the enclosing IES file.
4664     However, any and all multipliers applied to the candlepower data in the
4665     IES file will also be applied to the emittance of surfaces in the
4666     MGF specification, so that one MGF file may serve similar
4667     luminaires that differ in their total output.
4668     .NH
4669     Credits
4670     .LP
4671     The MGF language grew out of a joint investigation into physical
4672     representations for rendering undertaken by the author
4673     (Greg Ward of LBL) and Holly Rushmeier of the National
4674     Institute of Standards and Technology.
4675     After deciding that a complete and robust specification was
4676     an extreme challenge, we shelved the project for another time.
4677     A few months later, the author spoke with Ian Ashdown and Robert
4678     Shakespeare, who are both members of the IES Computing Committee,
4679     about the need for extending the existing data standard to
4680     include luminaire geometry and near-field photometry.
4681     We then moved forward as a team towards a somewhat less ambitious
4682     approach to physical materials and geometry that had the advantage
4683     of simplicity and the possibility of support with a standard parser
4684     library.
4685     The author went to work over the next two months
4686     on the detailed design of the language
4687     and an ANSI-C parser, with regular feedback from the other three
4688     team members.
4689     Several months and several versions later, we arrived at release
4690     1.0, which is the occasion of this document's creation.
4691     .LP
4692     Funding for this work... would be nice.