ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/mgfdoc.tr
Revision: 1.17
Committed: Tue Mar 18 12:57:07 1997 UTC (27 years, 1 month ago) by greg
Content type: application/x-troff
Branch: MAIN
Changes since 1.16: +4 -3 lines
Log Message:
added fh entity and general cleanup

File Contents

# User Rev Content
1 greg 1.1 .\" SCCSid "$SunId$ LBL"
2     .nr PS 11
3     .ps 11
4     .nr VS 12
5     .vs 12
6     .nr PD .5v
7     .ds LF MGF
8 greg 1.13 .ds RF Version 1.1
9     .\" !Remember to update date on each modification!
10     .DA February 1996
11 greg 1.1 .TL
12     The Materials and Geometry Format
13     .AU
14     Greg Ward
15     .br
16     Lawrence Berkeley Laboratory
17     .NH
18     Introduction
19     .LP
20     The Materials and Geometry Format (referred to henceforth as MGF)
21     is a description language for 3-dimensional environments expressly
22     suited to visible light simulation and rendering.
23     The materials are physically-based and rely on standard and
24     well-accepted definitions of color, reflectance and transmittance
25     for good accuracy and reproducibility.
26     The geometry is based on boundary representation using simple
27     geometric primitives such as polygons, spheres and cones.
28     The file format itself is terse but human-readable ASCII text.
29     .NH 2
30     What makes MGF special?
31     .LP
32     There are three principal reasons to use MGF as an input language for
33     lighting simulation and physically-based rendering:
34     .RS
35     .IP 1.
36     It's the only existing format that describes materials physically.
37     .IP 2.
38     It is endorsed by the Illuminating Engineering Society of North
39     America (IESNA) as part of their LM-63-1995 standard for luminaire data.
40     .IP 3.
41     It's easy and fun to support since it comes with a standard parser
42     and sample scenes and objects at the web site,
43     "http://radsite.lbl.gov/mgf/HOME.html".
44     .RE
45     .LP
46 greg 1.13 The standard parser provides both immediate and long-term
47 greg 1.1 benefits, since it presents a programming interface that is more
48     stable even than the language itself.
49     Unlike AutoCAD DXF and other de facto standards, a change to the
50     language will not break existing programs.
51     This is because the parser gives the calling software only those
52     entities it can handle.
53     If the translator understands only polygons, it will be given only
54     polygons.
55     If a new geometric primitive is included in a later version of the
56     standard, the new parser that comes with it will still be able to
57     express this entity as polygons.
58     Thus, the urgency of modifying code to support a changing standard
59     is removed, and long-term stability is assured.
60     .LP
61     This notion of
62     .I extensibility
63     is a cornerstone of the format, and it goes well beyond the
64     extensibility of other languages because is guarantees that new
65     versions of the standard will not break existing programs, and the
66     new information will be used as much as possible.
67     Other languages either require that all translators stay up to date
68     with the latest standard, or allow forward compatibility by simply
69     .I ignoring
70     new entities.
71     In MGF, if NURBS are added at some point and the translator or
72     loader does not handle them directly, the new version of the parser
73     will automatically convert them to smoothed polygons without
74     changing a single line of the calling program.
75     It is merely necessary to link to the new library, and all the new
76     entities are supported\(dg.
77     .FS
78     \(dgIf an old version of the parser encounters new entities it does
79     not recognize, the default action is to ignore them, printing a warning
80     message.
81     This may be overridden to support custom entities, but such
82     practice is discouraged because it weakens the standard.
83     .FE
84     .NH 2
85     What does MGF look like?
86     .LP
87     MGF has a simple entity-per-line structure, with a similar
88     appearance to Wavefront's .OBJ format.
89     Each entity is specified by a short keyword, and
90     arguments are separated by white space (tabs and/or spaces).
91     A newline may be escaped with a backslash ('\\'), in which case it
92     counts as a space.
93     Lines and continued lines may have up to 4096 characters, including
94     newlines, tabs and spaces.
95     A comment is an ignored entity whose keyword is the pound sign ('#').
96     .LP
97     Here is an MGF file that describes a simple two-drawer file cabinet:
98     .DS
99     # Conversion from inches to meters
100     xf -s .0254
101     # Surface material
102     m burgundy_formica =
103     c
104     cxy .362 .283
105     rd .0402
106     c
107     rs .0284 .05
108     sides 1
109     # Cabinet vertices
110     v fc.xy =
111     p .05 0 0
112     v fc.xY =
113     p .05 18 0
114     v fc.XY =
115     p 35.95 18 0
116     v fc.Xy =
117     p 35.95 0 0
118     # Cabinet
119     prism fc.xy fc.xY fc.XY fc.Xy 24
120     # Drawer vertices
121     v fcd.Xz =
122     p 34 0 0
123     v fcd.XZ =
124     p 34 0 10
125     v fcd.xZ =
126     p 0 0 10
127     v fcd.xz =
128     p 0 0 0
129     # Two drawers
130     o drawer
131     xf -t 1 18.1 2 -a 2 -t 0 0 11
132     prism fcd.xz fcd.Xz fcd.XZ fcd.xZ .9
133     xf
134     o
135     # End of units conversion
136     xf
137     .DE
138     .NH 2
139     MGF's place in the world of standards
140     .LP
141     MGF was developed initially to support detailed geometric
142     description of light fixtures for the IESNA luminaire data standard,
143     publication LM-63\(dg.
144     .FS
145     \(dgTo obtain the latest version of this standard, write to:
146     Illuminating Engineering Society of North America,
147     345 East 47th St.,
148     New York, NY 10017.
149     .FE
150     Existing standards for geometric description were either too
151     cumbersome (e.g.
152     .I Radiance)
153     or did not include physical materials (e.g. IGES).
154     It was noted early on that a standard able to fully describe
155     luminaires would necessarily be
156     capable of describing other objects as well; indeed whole
157     environments could be defined this way.
158     Since the descriptions would be physical, they could serve as input
159     to both lighting simulation and rendering software.
160     A standard language for describing the appearance of physical
161     objects has been lacking for some time, and current efforts in this
162     direction (i.e. STEP) seem several years away from fruition.
163     (There are other languages for describing realistic scenes
164     that deserve mention here, such as VRML and the Manchester Scene
165     Description Language, but none give specific attention to physical
166     material properties and are thus unsuitable for lighting
167     simulation.)\0
168     .LP
169     In short, we saw this as an opportunity to offer the lighting and
170     rendering community a simple and easy-to-support standard for
171     describing environments in a physically valid way.
172     Our hope is that this will promote sharing color, material and object
173     libraries as well as complete scene descriptions.
174     Sharing libraries is of obvious benefit to users and software
175     developers alike.
176     Sharing scenes should also permit
177     comparisons between rendering systems and
178     intervalidation of lighting calculations.
179     As anyone who works in this field knows, modeling is the most
180     difficult step in creating any simulation or rendering, and there is
181     no excuse for this data being held prisoner by a proprietary data
182     format.
183     .NH
184     MGF Basics
185     .LP
186     The default coordinate system in MGF is right-handed with
187     distances given in meters, though this can be effectively changed
188     by specifying a global transformation.
189     The transformation context is affected by the
190     .UL xf
191     entity, and the whole of MGF can be understood in terms of entities
192     and contexts.
193     .NH 2
194     Entities and Contexts
195     .LP
196     An
197     .I entity
198     in MGF is any non-blank line, which must be one of a finite set of
199     command keywords followed by zero or more arguments.
200     (As mentioned previously, an entity may continue over multiple lines
201     by escaping the newline with a backslash.)\0
202     Table 1 gives a list of entities and their expected arguments.
203     Section 3 gives more detailed information on each entity.
204     .KF
205     .TS
206     expand, box;
207     l l l.
208     Keyword Arguments Interpretation
209     = = =
210     # [anything ...] a comment
211     o [name] begin/end object context
212     xf [xform] begin/end transformation context
213     i pathname [xform] include file (with transformation)
214     ies pathname [-m f][xform] include IES luminaire (with transformation)
215     _ _ _
216     c [id [= [template]]] get/set color context
217     cxy x y set CIE (x,y) chromaticity for current color
218     cspec l_min l_max v1 v2 ... set relative spectrum for current color
219     cct temperature set spectrum based on black body temperature
220     cmix w1 c1 w2 c2 ... mix named colors to make current color
221     _ _ _
222     m [id [= [template]]] get/set material context
223     sides {1|2} set number of sides for current material
224     rd rho_d set diffuse reflectance for current material
225     td tau_d set diffuse transmittance for current material
226     ed epsilon_d set diffuse emittance for current material
227     rs rho_s alpha_r set specular reflectance for current material
228     ts tau_s alpha_t set specular transmittance for current material
229     ir n_real n_imag set index of refraction for current material
230     _ _ _
231     v [id [= [template]]] get/set vertex context
232     p x y z set point position for current vertex
233     n dx dy dz set surface normal for current vertex
234     _ _ _
235     f v1 v2 v3 ... polygon using current material, spec. vertices
236 greg 1.16 fh v1 v2 v3 - ... face with explicit holes
237 greg 1.1 sph vc radius sphere
238     cyl v1 radius v2 truncated right cylinder (open-ended)
239     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
240     prism v1 v2 v3 ... length truncated right prism (closed solid)
241     ring vc rmin rmax circular ring with inner and outer radii
242     torus vc rmin rmax circular torus with inner and outer radii
243     .TE
244     .QP
245     .B "Table 1".
246     MGF entities and their arguments.
247     Arguments in brackets are optional.
248     Arguments in curly braces mean one of the given choices must
249     appear.
250     Ellipsis (...) mean that any number of arguments may be given.
251     .sp
252     .KE
253     .LP
254     A
255     .I context
256     describes the current state of the interpreter, and affects or is
257     affected by certain entities as they are read in.
258     MGF contexts can be divided into two types,
259     .I "hierarchical contexts"
260     and
261     .I "named contexts".
262     .LP
263     Hierarchical contexts are manipulated by a single entity and
264     have an associated "stack" onto which new
265     contexts are "pushed" using the entity.
266     The last context may be "popped" by giving the entity again with no
267     arguments.
268     The two hierarchical contexts in MGF are the current transformation,
269     manipulated with the
270     .UL xf
271     entity, and the current object, manipulated with the
272     .UL o
273     entity.
274     .KF
275     .TS
276     expand, allbox;
277     l c l l l.
278     Context Cntl. Entity Default Value Field Entities Affects
279     = = = = =
280     Object o - - -
281     Transform xf - - T{
282 greg 1.17 f, fh, sph, cyl, cone,
283 greg 1.1 ring, torus, prism
284     T}
285     Material m 2-sided black T{
286     sides, rd, td,
287 greg 1.14 ed, rs, ts, ir
288 greg 1.1 T} T{
289 greg 1.17 f, fh, sph, cyl, cone,
290 greg 1.1 ring, torus, prism
291     T}
292     Color c neutral grey T{
293     cxy, cspec, cct, cmix
294     T} T{
295     rd, td, ed, rs, ts
296     T}
297     Vertex v T{
298     (0,0,0),
299     no normal
300     T} p, n T{
301 greg 1.17 f, fh, sph, cyl, cone,
302 greg 1.1 ring, torus, prism
303     T}
304     .TE
305     .QP
306     .B "Table 2".
307     MGF contexts and their related entities and default values.
308     .sp
309     .KE
310     .LP
311     Named contexts in contrast hold sets of values that are swapped
312     in and out one at a time.
313     There are three named contexts in MGF, the current material, the
314     current color and the current vertex.
315     Each one may be associated with an identifier (any non-white
316     sequence of printing ASCII characters beginning with a letter),
317     and one of each is in effect at any given time.
318     Initially, these contexts are unnamed, and invoking an unnamed
319     context always returns to the original (default) values.
320     (See Table 2 for a list of contexts, their related
321     entities and defaults.)\0
322     .LP
323     It is easiest to think of a context as a "scratch space" where
324     values are written by some entities and read by others.
325     Naming a context allows us to reestablish the same scratch space
326     later, usually for reference but it can be altered as well.
327     Let us say we wanted to create a smooth blue plastic material with a
328     diffuse reflectance of 20% and a specular reflectance of 4%:
329     .DS
330     # Establish a new material context called "blue_plastic"
331     m blue_plastic =
332     # Reestablish a previous color context called "blue"
333     c blue
334     # Set the diffuse reflectance, which uses the above color
335     rd .20
336     # Get the unnamed color context (always starts out grey)
337     c
338     # Set the specular reflectance, which is uncolored
339     rs .04 0
340     # We're done, the current material context is now "blue_plastic"
341     .DE
342     Note that the above assumes that we have previously defined a color
343     context named "blue".
344     If we forgot to do that, the above description would generate an
345     "undefined" error.
346     The color context affects the material context indirectly because it
347     is read by the specular and diffuse reflectance entities, which are
348     in turn written to the current material.
349     It is not necessary to indent the entities that affect the material
350     definition, but it improves readability.
351     Note also that there is no explicit end to the material definition.
352     As long as a context remains in effect, its contents may be altered
353     by its field entities.
354     This will not affect previous uses of the context, however.
355     For example, a surface entity following the above definition will
356     have the specified color and reflectance, and later changes to the
357     material "blue_plastic" will have no effect on it.
358     .LP
359     Each of the three named contexts has an associated entity that
360     controls it.
361     The material context is controlled by the
362     .UL m
363     entity, the color context is controlled by the
364     .UL c
365     entity, and the vertex context is controlled by the
366     .UL v
367     entity.
368     There are exactly four forms for each entity.
369     The first form is the keyword by itself, which establishes
370     an unnamed context with predetermined default values.
371     This is a useful way to set values without worrying about saving
372     them for recall later.
373     The second form is to give the keyword with a previously defined
374     name.
375     This reestablishes a prior context for reuse.
376     The third form is to give the keyword with a name followed by an
377     equals sign.
378     (There must be a space between the name and the equals sign, since
379     it is a separate argument.)\0
380     This establishes a new context and assigns it the same default
381     values as the unnamed context.
382     The fourth and final form gives the keyword followed by a name then
383     an equals then the name of a previous context definition.
384     This establishes a new context for the first name, assigning the
385     values from the second named context rather than the usual defaults.
386     This is a convenient way create an alias or
387     to modify a context under a new name (i.e. "save as").
388     .NH 2
389     Hierarchical Contexts and Transformations
390     .LP
391     As mentioned in the last subsection, there are two hierarchical
392     contexts in MGF, the current object and the current transformation.
393     We will start by discussing the current object, since it is
394     the simpler of the two.
395     .NH 3
396     Objects
397     .LP
398     There is no particular need in lighting simulation or rendering to
399     name objects, but it may help the user
400     to know what object a particular surface is associated with.
401     The
402     .UL o
403     entity provides a convenient mechanism for associating names with
404     surfaces.
405     The basic use of this entity is as follows:
406     .DS
407     o object_name
408     [object entities...]
409     o subobject_name
410     [subobject entities...]
411     o
412     [more object entities and subobjects...]
413     o
414     .DE
415     The
416     .UL o
417     keyword by itself marks the end of an object context.
418     Any number of hierarchical context levels are supported, and there are no
419     rules governing the choice of object names except that they begin
420     with a letter and be made up of printing, non-white ASCII characters.
421     Indentation is not necessary of course, but it does improve
422     readability.
423     .NH 3
424     Transformations
425     .LP
426     MGF supports only rigid-body (i.e. non-distorting) transformations
427     with uniform scaling.
428     Unlike the other contexts, transformations have no associated
429     name, only arguments.
430     Thus, there is no way to reestablish a previous transformation other
431     than to give the same arguments over again.
432     Since the arguments are concise and self-explanatory, this was thought
433     sufficient.
434     The following transformation flags and
435     parameters are defined:
436 greg 1.2 .TS
437     center;
438 greg 1.1 l l.
439     -t dx dy dz translate objects along the given vector
440     -rx degrees rotate objects about the X-axis
441     -ry degrees rotate objects about the Y-axis
442     -rz degrees rotate objects about the Z-axis
443     -s scalefactor scale objects by the given factor
444     -mx mirror objects about the Y-Z plane
445     -my mirror objects about the X-Z plane
446     -mz mirror objects about the X-Y plane
447     -i N repeat the following arguments N times
448     -a N make an array of N geometric instances
449     .TE
450     Transform arguments have a cumulative effect.
451     That is, a rotation
452     about X of 20 degrees followed by a rotation about X of -50 degrees
453     results in a total rotation of -30 degrees.
454     However, if the two
455     rotations are separated by some translation vector, the cumulative
456     effect is quite different.
457     It is best to think of each argument as
458     acting on the included geometric objects, and each subsequent transformation
459     argument affects the objects relative to their new position/orientation.
460     .LP
461     For example, rotating an object about its center is most easily done
462     by translating
463     the object back to the origin, applying the desired rotation, and translating
464     it again back to its original position, like so:
465     .DS
466     # rotate an included object 20 degrees clockwise looking down
467     # an axis parallel to Y and passing through the point (15,0,-35)
468     xf -t -15 0 35 -ry -20 -t 15 0 -35
469     i object.mgf
470     xf
471     .DE
472     Note that the include entity,
473     .UL i,
474     permits a transformation to be given with it, so the above could
475     have been written more compactly as:
476     .DS
477     i object.mgf -t -15 0 35 -ry -20 -t 15 0 -35
478     .DE
479     .LP
480     Rotations are given in degrees counter-clockwise about a principal axis.
481     That is, with the thumb of the right hand pointing in the direction
482     of the axis, rotation follows the curl of the fingers.
483     .LP
484     The transform entity itself is cumulative, but in the reverse
485     order to its arguments.
486     That is, later transformations (i.e. enclosed transformations)
487     are prepended to existing (i.e. enclosing) ones.
488     A transform command
489     with no arguments is used to return to the previous condition.
490     It is
491     necessary that transforms and their end statements ("xf" by itself) be
492     balanced in a file, so that later or enclosing files are not affected.
493     .LP
494     Transformations apply only to geometric types, e.g. polygons, spheres, etc.
495     Vertices and the components that go into geometry are not directly affected.
496     This is to avoid confusion and the inadvertent multiple application of a
497     given transformation.
498     For example:
499     .DS
500     xf -t 5 0 0
501     v v1 =
502     p 0 10 0
503     n 0 0 1
504     xf -rx 180
505     # Transform now in effect is "-rx 180 -t 5 0 0"
506     ring v1 0 2
507     xf
508     xf
509     .DE
510     The final ring center is (5,-10,0) -- note that the vertex itself is
511     not affected by the transformation, only the geometry that calls on
512     it.
513     The normal orientation is (0,0,-1) due to the rotation about X,
514     which also reversed the sign of the central Y coordinate.
515     .NH 3
516     Arrays
517     .LP
518     The -a N transform specification causes the following transform
519     arguments to be repeated along with the contents of the included
520     objects N times.
521     The first instance of the geometry will be in its
522     initial location; the second instance will be repositioned according
523     to the named transformation; the third instance will be repositioned by
524     applying this transformation twice, and so on up to N-1 applications.
525     .LP
526     Multi-dimensional arrays may be specified with a single include
527     entity by giving multiple array commands separated by their
528     corresponding transforms.
529     A final transformation may be given
530     by preceding it with a -i 1 specification.
531     In other words, the
532     scope of an array command continues until the next -i or -a option.
533     .LP
534     The following MGF description places 60 spheres at a one unit spacing
535     in a 3x4x5 array, then moves the whole thing to an origin of
536     (15,30,45):
537     .DS
538     v v0 =
539     p 0 0 0
540     xf -a 3 -t 1 0 0 -a 4 -t 0 1 0 -a 5 -t 0 0 1 -i 1 -t 15 30 45
541     sph v0 0.1
542     xf
543     .DE
544     Note the "-i 1" in the specification, which marks the end of the
545     third array arguments before the final translation.
546     .NH 2
547     Detailed MGF Example
548     .LP
549     The following example of a simple room with a single door
550     and six file cabinets shows MGF in action, with copious comments to
551     help explain what's going on.
552 greg 1.2 .LP
553 greg 1.1 .DS
554     # "ceiling_tile" is a diffuse white surface with 75% reflectance:
555     # Create new named material context and clear it
556     m ceiling_tile =
557     # Specify one-sided material so we can see through from above
558     sides 1
559     # Set neutral color
560     c
561     # Set diffuse reflectance
562     rd .75
563     # "stainless_steel" is a mostly specular surface with 70% reflectance:
564     m stainless_steel =
565     sides 1
566     c
567     # Set specular reflectance to 50%, .08 roughness
568     rs .5 .08
569     # Other 20% reflectance is diffuse
570     rd .2
571    
572     # The following materials were measured with a spectrophotometer:
573     m beige_paint =
574     sides 1
575     # Set diffuse spectral reflectance
576     c
577     # Spectrum measured in 10 nm increments from 400 to 700 nm
578     cspec 400 700 35.29 44.87 47.25 47.03 46.87 47.00 47.09 \\\\
579     47.15 46.80 46.17 46.26 48.74 51.08 51.31 51.10 \\\\
580     51.11 50.52 50.36 51.72 53.61 53.95 52.08 49.49 \\\\
581     48.30 48.75 49.99 51.35 52.75 54.44 56.34 58.00
582     rd 0.5078
583     # Neutral (grey) specular component
584     c
585     rs 0.0099 0.08000
586     m mottled_carpet =
587     sides 1
588     c
589     cspec 400 700 11.23 11.28 11.39 11.49 11.61 11.73 11.88 \\\\
590     12.02 12.12 12.19 12.30 12.37 12.37 12.36 12.34 \\\\
591     12.28 12.22 12.29 12.45 12.59 12.70 12.77 12.82 \\\\
592     12.88 12.98 13.24 13.67 14.31 15.55 17.46 19.75
593     rd 0.1245
594     m reddish_cloth =
595     # 2-sided so we can observe it from behind
596     sides 2
597     c
598     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
599     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
600     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
601     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
602     rd 0.3210
603     m burgundy_formica =
604     sides 1
605     c
606     cspec 400 700 3.86 3.74 3.63 3.51 3.34 3.21 3.14 \\\\
607     3.09 3.08 3.14 3.13 2.91 2.72 2.74 2.72 \\\\
608     2.60 2.68 3.40 4.76 6.05 6.65 6.75 6.68 \\\\
609     6.63 6.56 6.51 6.46 6.41 6.36 6.34 6.34
610     rd 0.0402
611     c
612     rs 0.0284 0.05000
613     m speckled_grey_formica =
614     sides 1
615     c
616     cspec 400 700 30.95 44.77 51.15 52.60 53.00 53.37 53.68 \\\\
617     54.07 54.33 54.57 54.85 55.20 55.42 55.51 55.54 \\\\
618     55.46 55.33 55.30 55.52 55.81 55.91 55.92 56.00 \\\\
619     56.22 56.45 56.66 56.72 56.58 56.44 56.39 56.39
620     rd 0.5550
621     c
622     rs 0.0149 0.15000
623    
624     # 40' x 22' x 9' office space with no windows and one door
625    
626     # All measurements are in inches, so enclose with a metric conversion:
627     xf -s .0254
628    
629     # The room corner vertices:
630     v rc.xyz =
631     p 0 0 0
632     v rc.Xyz =
633     p 480 0 0
634     v rc.xYz =
635     p 0 264 0
636     v rc.xyZ =
637     p 0 0 108
638     v rc.XYz =
639     p 480 264 0
640     v rc.xYZ =
641     p 0 264 108
642     v rc.XyZ =
643     p 480 0 108
644     v rc.XYZ =
645     p 480 264 108
646    
647     # The floor:
648     # Push object name
649     o floor
650     # Get previously defined carpet material
651     m mottled_carpet
652     # Polygonal face using defined vertices
653     f rc.xyz rc.Xyz rc.XYz rc.xYz
654     # Pop object name
655     o
656    
657     # The ceiling:
658     o ceiling
659     m ceiling_tile
660     f rc.xyZ rc.xYZ rc.XYZ rc.XyZ
661     o
662    
663     # The door outline vertices:
664     v do.xz =
665     p 216 0 0
666     v do.Xz =
667     p 264 0 0
668     v do.xZ =
669     p 216 0 84
670     v do.XZ =
671     p 264 0 84
672    
673     # The walls:
674     o wall
675     m beige_paint
676     o x
677     f rc.xyz rc.xYz rc.xYZ rc.xyZ
678     o
679     o X
680     f rc.Xyz rc.XyZ rc.XYZ rc.XYz
681     o
682     o y
683     f rc.xyz rc.xyZ rc.XyZ rc.Xyz do.Xz do.XZ do.xZ do.xz
684     o
685     o Y
686     f rc.xYz rc.XYz rc.XYZ rc.xYZ
687     o
688     o
689    
690     # The door and jam vertices:
691     v djo.xz =
692     p 216 .5 0
693     v djo.xZ =
694     p 216 .5 84
695     v djo.XZ =
696     p 264 .5 84
697     v djo.Xz =
698     p 264 .5 0
699     v dji.Xz =
700     p 262 .5 0
701     v dji.XZ =
702     p 262 .5 82
703     v dji.xZ =
704     p 218 .5 82
705     v dji.xz =
706     p 218 .5 0
707     v door.xz =
708     p 218 0 0
709     v door.xZ =
710     p 218 0 82
711     v door.XZ =
712     p 262 0 82
713     v door.Xz =
714     p 262 0 0
715    
716     # The door, jam and knob
717     o door
718     m burgundy_formica
719     f door.xz door.xZ door.XZ door.Xz
720     o jam
721     m beige_paint
722     f djo.xz djo.xZ djo.XZ djo.Xz dji.Xz dji.XZ dji.xZ dji.xz
723     f djo.xz do.xz do.xZ djo.xZ
724     f djo.xZ do.xZ do.XZ djo.XZ
725     f djo.Xz djo.XZ do.XZ do.Xz
726     f dji.xz dji.xZ door.xZ door.xz
727     f dji.xZ dji.XZ door.XZ door.xZ
728     f dji.Xz door.Xz door.XZ dji.XZ
729     o
730     o knob
731     m stainless_steel
732     # Define vertices needed for curved geometry
733     v kb1 =
734     p 257 0 36
735     v kb2 =
736     p 257 .25 36
737     n 0 1 0
738     v kb3 =
739     p 257 2 36
740     # 1" diameter cylindrical base from kb1 to kb2
741     cyl kb1 1 kb2
742     # Ring at base of knob stem
743     ring kb2 .4 1
744     # Knob stem
745     cyl kb2 .4 kb3
746     # Spherical knob
747     sph kb3 .85
748     o
749     o
750    
751     # Six file cabinets (36" wide each)
752     # ("filecab.inc" was given as an earlier example in Section 1.2)
753     o filecab.x
754     # include a file as an array of three 36" apart
755     i filecab.inc -t -36 0 0 -rz -90 -t 1 54 0 -a 3 -t 0 36 0
756     o
757     o filecab.X
758     # the other three cabinets
759     i filecab.inc -rz 90 -t 479 54 0 -a 3 -t 0 36 0
760     o
761    
762     # End of transform from inches to meters:
763     xf
764    
765     # The 10 recessed fluorescent ceiling fixtures
766     ies hlrs2gna.ies -t 1.2192 2.1336 2.74 -a 5 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
767     .DE
768     .bp
769     .NH
770     MGF Entity Reference
771     .LP
772     There are currently 28 entities in the MGF specification.
773     For ease of reference we have broken these into five categories:
774     .IP 1.
775     General
776 greg 1.2 .TS
777 greg 1.1 lw(.75i) lw(1.75i) lw(3i).
778     # [anything ...] a comment
779     o [name] begin/end object context
780     xf [xform] begin/end transformation context
781     i pathname [xform] include file (with transformation)
782     ies pathname [-m f][xform] include IES luminaire (with transformation)
783     .TE
784     .IP 2.
785     Color
786 greg 1.2 .TS
787 greg 1.1 lw(.75i) lw(1.75i) lw(3i).
788     c [id [= [template]]] get/set color context
789     cxy x y set CIE (x,y) chromaticity for current color
790     cspec l_min l_max v1 v2 ... set relative spectrum for current color
791     cct temperature set spectrum based on black body temperature
792     cmix w1 c1 w2 c2 ... mix named colors to make current color
793     .TE
794     .IP 3.
795     Material
796     .TS
797     lw(.75i) lw(1.75i) lw(3i).
798     m [id [= [template]]] get/set material context
799     sides {1|2} set number of sides for current material
800     rd rho_d set diffuse reflectance for current material
801     td tau_d set diffuse transmittance for current material
802     ed epsilon_d set diffuse emittance for current material
803     rs rho_s alpha_r set specular reflectance for current material
804     ts tau_s alpha_t set specular transmittance for current material
805     ir n_real n_imag set index of refraction for current material
806     .TE
807     .IP 4.
808     Vertex
809     .TS
810     lw(.75i) lw(1.75i) lw(3i).
811     v [id [= [template]]] get/set vertex context
812     p x y z set point position for current vertex
813     n dx dy dz set surface normal for current vertex
814     .TE
815     .IP 5.
816     Geometry
817     .TS
818     lw(.75i) lw(1.75i) lw(3i).
819     f v1 v2 v3 ... polygon using current material, spec. vertices
820 greg 1.17 fh v1 v2 v3 - ... face with explicit holes
821 greg 1.1 sph vc radius sphere
822     cyl v1 radius v2 truncated right cylinder (open-ended)
823     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
824     prism v1 v2 v3 ... length truncated right prism (closed solid)
825     ring vc rmin rmax circular ring with inner and outer radii
826     torus vc rmin rmax circular torus with inner and outer radii
827     .TE
828     .ds LH General Entities
829     .ds RH #
830     .bp
831     .SH
832     NAME
833     .LP
834     # - a comment
835     .SH
836     SYNOPSIS
837     .LP
838     .B #
839     [
840     .I anything
841     ]
842     .SH
843     DESCRIPTION
844     .LP
845     A comment is a bit of text explanation.
846     Since it is an entity like any other (except that it has no effect),
847     there must be at least one space between the keyword (which is a
848     pound sign) and the "arguments," and the end of line may be escaped
849     as usual with the backslash character ('\\').
850     .LP
851     A comment may actually be used to hold auxiliary information such as
852     view parameters, which may be interpreted by some destination program.
853     Care should be taken under such circumstances that the user does not
854     inadvertently mung or mimic this information in other comments, and
855     it is therefore advisable to use an additional set of identifying
856     characters to distinguish such data.
857     .SH
858     EXAMPLE
859     .DS
860     # The following include file is in inches, so convert to meters
861     i cubgeom.inc -s .0254
862     # Stuff we don't want to see at the moment:
863     # i person.mgf -t 3 2 0
864     # ies hlrs3gna.ies -rz 90 -t 1.524 1.8288 2.74 \\\\
865     -a 6 -t 1.8288 0 0 -a 2 -t 0 3.048 0
866     .DE
867     .ds RH O
868     .bp
869     .SH
870     NAME
871     .LP
872     o - begin or end object context
873     .SH
874     SYNOPSIS
875     .LP
876     .B o
877     [
878     .I name
879     ]
880     .SH
881     DESCRIPTION
882     .LP
883     If
884     .I name
885     is given, we push a new object context onto the stack, which is to
886     say that we begin a new subobject by this name\(dg.
887     .FS
888     \(dgA name is any sequence of printing, non-white ASCII characters
889     beginning with a letter.
890     .FE
891     If the
892     .UL o
893     keyword is given by itself, then we pop the last object context off
894     the stack, which means that we leave the current subobject.
895     .LP
896     All geometry between the start of an object context and its matching
897     end statement is associated with the given name.
898     This may be used in modeling software to help identify objects and
899     subobjects, or it may be ignored altogether.
900     .LP
901     Object begin and end statements should be balanced in a file, and
902     care should be taken not to overlap transform
903     .UL (xf)
904     contexts with object contexts, especially when arrays are involved.
905     This is because the standard parser will assign object contexts to
906     instanced geometry, which can get confused with other object
907     contexts if a clear enclosure is not maintained.
908     .SH
909     EXAMPLE
910     .DS
911     o body
912     o torso
913     i torso.mgf
914     o
915     o arm
916     o left
917     i leftarm.mgf
918     o
919     o right
920     i leftarm.mgf -mx
921     o
922     o
923     o
924     .DE
925     .SH
926     SEE ALSO
927     .LP
928     .UL xf
929     .ds RH XF
930     .bp
931     .SH
932     NAME
933     .LP
934     xf - begin or end transformation context
935     .SH
936     SYNOPSIS
937     .LP
938     .B xf
939     [
940     .I transform
941     ]
942     .SH
943     DESCRIPTION
944     .LP
945     If a set of
946     .I transform
947     arguments are given, we push a new transformation context onto the
948     stack.
949     If the
950     .UL xf
951     keyword is given by itself, then we pop the last transformation
952     context off the stack.
953     The total transformation in effect at any given time is
954     computed by prepending each set subcontext arguments onto those of
955     its enclosing context.
956     This and other details about transformation specifications
957     are explained in some detail in section 2.2.2.
958     .LP
959     The following transformation flags and
960     parameters are defined:
961     .TS
962     center;
963     l l.
964     -t dx dy dz translate objects along the given vector
965     -rx degrees rotate objects about the X-axis
966     -ry degrees rotate objects about the Y-axis
967     -rz degrees rotate objects about the Z-axis
968     -s scalefactor scale objects by the given factor
969     -mx mirror objects about the Y-Z plane
970     -my mirror objects about the X-Z plane
971     -mz mirror objects about the X-Y plane
972     -i N repeat the following arguments N times
973     -a N make an array of N geometric instances
974     .TE
975     .SH
976     EXAMPLE
977     .DS
978     # Create 3x5 array of evenly-spaced spheres (grid size = 3)
979     v vc =
980     p 0 0 0
981     xf -t 1 1 10 -a 3 -t 3 0 0 -a 5 -t 0 3 0
982     sph vc .5
983     xf
984     .DE
985     .SH
986     SEE ALSO
987     .LP
988     .UL i,
989     .UL ies,
990     .UL o
991     .ds RH I
992     .bp
993     .SH
994     NAME
995     .LP
996     i - include MGF data file
997     .SH
998     SYNOPSIS
999     .LP
1000     .B i
1001     .I pathname
1002     [
1003     .I transform
1004     ]
1005     .SH
1006     DESCRIPTION
1007     .LP
1008     Include the information contained in the file
1009     .I pathname.
1010     If a
1011     .I transform
1012     specification is given, then it will be applied as though the
1013     include statement were enclosed by beginning and ending
1014     .UL xf
1015     entities with this transformation.
1016     .LP
1017     The
1018     .I pathname
1019     will be interpreted relative to the enclosing MGF file.
1020     That is, if the file containing the include statement is in some
1021     parent or subdirectory, then the given pathname is appended to this
1022     directory.
1023     It is illegal to specify a
1024     .I pathname
1025     relative to the root directory, and the MGF standard requires that
1026     all filenames adhere to the ISO-9660 8.3 name format for maximum
1027     portability between systems.
1028     The directory separator is defined to be slash ('/'), and drive
1029     specifications (such as "c:") are not allowed.
1030     All pathnames should be given in lower case, and will be converted to
1031     upper case on systems that require it.
1032     (That way, there are no accidental name collisions.)\0
1033     .LP
1034     The suggested suffix for MGF-adherent files is ".mgf".
1035     Files that are not in metric units but are in MGF may be given any
1036     suffix, but we suggest using ".inc" as a convention.
1037     .SH
1038     EXAMPLE
1039     .DS
1040     # Define vertices for 62x30" partition
1041     i pv62x30.inc
1042     # Insert 2 62x30" partitions
1043     o cpart1
1044     i partn.inc -t 75 130.5 0
1045     o
1046     o cpart3
1047     i partn.inc -t 186 130.5 0
1048     o
1049     # Define vertices for 62x36" partition
1050     i pv62x36.inc
1051     # Insert 62x36" partition
1052     o cpart2
1053     i partn.inc -t 105 130.5 0
1054     o
1055     .DE
1056     .SH
1057     SEE ALSO
1058     .LP
1059     .UL ies,
1060     .UL o,
1061     .UL xf
1062     .ds RH IES
1063     .bp
1064     .SH
1065     NAME
1066     .LP
1067     ies - include IESNA luminaire file
1068     .SH
1069     SYNOPSIS
1070     .LP
1071     .B ies
1072     .I pathname
1073     [
1074     .B \-m
1075     .I multiplier
1076     ]
1077     [
1078     .I transform
1079     ]
1080     .SH
1081     DESCRIPTION
1082     .LP
1083     Load the IES standard luminaire information contained in the file
1084     .I pathname.
1085     If a
1086     .I multiplier
1087     is given, all candela values will be multiplied by this factor.
1088     (This option must appear first if present.)\0
1089     If a
1090     .I transform
1091     specification is given, then it will be applied as though the
1092     statement were enclosed by beginning and ending
1093     .UL xf
1094     entities with this transformation.
1095     .LP
1096     The
1097     .I pathname
1098     will be interpreted relative to the enclosing MGF file, and all
1099     restrictions discussed under the
1100     .UL i
1101     entity also apply to the IES file name.
1102     The suggested suffix is ".ies", but this has not been followed
1103     consistently by lighting manufacturers.
1104     .SH
1105     EXAMPLE
1106     .DS
1107     # Insert 10 2x4' fluorescent troffers in two groups
1108     ies cf9pr240.ies -t 3.6576 2.1336 2.74 -a 3 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
1109     ies cf9pr240.ies -rz 90 -t 1.2192 1.8288 2.74 \\\\
1110     -a 2 -t 9.7536 0 0 -a 2 -t 0 3.048 0
1111     .DE
1112     .SH
1113     SEE ALSO
1114     .LP
1115     .UL i,
1116     .UL o,
1117     .UL xf
1118     .ds LH Color Entities
1119     .ds RH C
1120     .bp
1121     .SH
1122     NAME
1123     .LP
1124     c - get or set the current color context
1125     .SH
1126     SYNOPSIS
1127     .LP
1128     .B c
1129     [
1130     .I id
1131     [
1132     .B =
1133     [
1134     .I template
1135     ]
1136     ]
1137     ]
1138     .SH
1139     DESCRIPTION
1140     .LP
1141     If the
1142     .UL c
1143     keyword is given by itself, then it establishes the unnamed color
1144     context, which is neutral (i.e. equal-energy) grey.
1145     This context may be modified, but the changes will not be saved.
1146     .LP
1147     If the keyword is followed by an identifier
1148     .I id,
1149     then it reestablishes a previous context.
1150     If the specified context was never defined, an error will result.
1151     .LP
1152     If the entity is given with an identifier
1153     followed by an equals sign ('='), then a new context is established,
1154     and cleared to the default neutral grey.
1155     (Note that the equals sign must be separated from other
1156     arguments by white space to be properly recognized.)\0
1157     If the equals sign is followed by a second identifier
1158     .I template,
1159     then this previously defined color will be used as a source of
1160     default values rather than grey.
1161     This is most useful for establishing a color alias.
1162     .SH
1163     EXAMPLE
1164     .DS
1165     # Define the color "red32"
1166     c red32 =
1167     cxy .42 .15
1168     # Make "cabinet_color" an alias for "red32"
1169     c cabinet_color = red32
1170    
1171     # Later in another part of the description...
1172    
1173     # Get our cabinet color
1174     c cabinet_color
1175     # Get the geometry
1176     i cabgeom.mgf
1177     .DE
1178     .SH
1179     SEE ALSO
1180     .LP
1181     .UL cct,
1182     .UL cmix,
1183     .UL cspec,
1184     .UL cxy,
1185     .UL m
1186     .ds RH CXY
1187     .bp
1188     .SH
1189     NAME
1190     .LP
1191     cxy - set the CIE (x,y) chromaticity for the current color
1192     .SH
1193     SYNOPSIS
1194     .LP
1195     .B cxy
1196     .I "x y"
1197     .SH
1198     DESCRIPTION
1199     .LP
1200     This entity sets the current color using (x,y) chromaticity
1201     coordinates for the 1931 CIE standard 2 degree observer.
1202     Legal values for
1203     .I x
1204     and
1205     .I y
1206     are greater than zero and sum to less than one, and more
1207     specifically they must fit within the curve of the visible spectrum.
1208     The
1209     .I x
1210     coordinate roughly corresponds to the red part of the spectrum and
1211     the
1212     .I y
1213     coordinate corresponds to the green.
1214     The CIE z coordinate is implicit, since it is equal to (1-x-y).
1215     .LP
1216     All colors in MGF are absolute, thus colorimeter measurements should
1217     be conducted the same for surfaces as for light sources.
1218     Applying a standard illuminant calculation is redundant and
1219     introduces inaccuracies, and should therefore be avoided if
1220     possible.
1221     .LP
1222     Conversion between CIE colors and those more commonly used in
1223     computer graphics are described in the application notes section
1224     6.1.1.
1225     .SH
1226     EXAMPLE
1227     .DS
1228     # Set unnamed color context
1229     c
1230     # Set CIE chromaticity to a bluish hue
1231     cxy .15 .2
1232     # Apply color to diffuse reflectance of 15%
1233     rd .15
1234     .DE
1235     .SH
1236     SEE ALSO
1237     .LP
1238     .UL c,
1239     .UL cct,
1240     .UL cmix,
1241     .UL cspec
1242     .ds RH CSPEC
1243     .bp
1244     .SH
1245     NAME
1246     .LP
1247     cspec - set the relative spectrum for the current color
1248     .SH
1249     SYNOPSIS
1250     .LP
1251     .B cspec
1252     .I "l_min l_max o1 o2 ... oN"
1253     .SH
1254     DESCRIPTION
1255     .LP
1256     Assign a relative spectrum measured between
1257     .I l_min
1258     and
1259     .I l_max
1260     nanometers at evenly spaced intervals.
1261     The first value,
1262     .I o1
1263     corresponds to the measurement at
1264     .I l_min,
1265     and the last value,
1266     .I oN
1267     corresponds to the measurement at
1268     .I l_max.
1269     Values in between are separated by
1270     .I "(l_max-l_min)/(N-1)"
1271     nanometers.
1272 greg 1.6 All values should be non-negative unless defining a component for
1273     complementary color mixing, and the spectrum outside of the
1274 greg 1.1 specified range is assumed to be zero.
1275     (The visible range is 380 to 780 nm.)\0
1276     The actual units and scale of the measurements do not matter,
1277     since the total will be
1278     normalized according to whatever the color is modifying
1279     (e.g. photometric reflectance or emittance).
1280     .SH
1281     EXAMPLE
1282     .DS
1283     # Color measured at 10 nm increments from 400 to 700
1284     m reddish_cloth =
1285     c
1286     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
1287     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
1288     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
1289     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
1290     rd 0.3210
1291     .DE
1292     .SH
1293     SEE ALSO
1294     .LP
1295     .UL c,
1296     .UL cct,
1297     .UL cmix,
1298     .UL cxy
1299     .ds RH CCT
1300     .bp
1301     .SH
1302     NAME
1303     .LP
1304     cct - set the current color to a black body spectrum
1305     .SH
1306     SYNOPSIS
1307     .LP
1308     .B cct
1309     .I temperature
1310     .SH
1311     DESCRIPTION
1312     .LP
1313     The
1314     .UL cct
1315     entity sets the current color to the spectrum of an ideal
1316     black body radiating at
1317     .I temperature
1318     degrees Kelvin.
1319     This is often the most convenient way to set the color of an
1320     incandescent light source, but it is not recommended for
1321     fluorescent lamps or other materials that do not fit a
1322     black body spectrum.
1323     .SH
1324     EXAMPLE
1325     .DS
1326     # Define an incandescent source material at 3000 degrees K
1327     m incand3000k =
1328     c
1329     cct 3000
1330     ed 1500
1331     .DE
1332     .SH
1333     SEE ALSO
1334     .LP
1335     .UL c,
1336     .UL cmix,
1337     .UL cspec,
1338     .UL cxy
1339     .ds RH CMIX
1340     .bp
1341     .SH
1342     NAME
1343     .LP
1344     cmix - mix two or more named colors to make the current color
1345     .SH
1346     SYNOPSIS
1347     .LP
1348     .B cmix
1349     .I "w1 c1 w2 c2 ..."
1350     .SH
1351     DESCRIPTION
1352     .LP
1353     The
1354     .UL cmix
1355     entity sums together two or more named colors using specified
1356     weighting coefficients, which correspond to the relative
1357     photometric brightness of each.
1358     As in all color specifications, the result is normalized so the
1359     absolute scale of the weights does not matter, only their relative
1360     values.
1361     .LP
1362     If any of the colors is a spectral quantity (i.e. from a
1363     .UL cspec
1364     or
1365     .UL cct
1366     entity), then all the colors are first converted to spectral
1367     quantities.
1368     This is done with an approximation for CIE (x,y) chromaticities,
1369     which may be problematic depending on their values.
1370     In general, it is safest to add together colors that are either
1371     all spectral quantities or all CIE quantities.
1372     .SH
1373     EXAMPLE
1374     .DS
1375     # Define RGB primaries for a standard color monitor
1376     c R =
1377     cxy 0.640 0.330
1378     c G =
1379     cxy 0.290 0.600
1380     c B =
1381     cxy 0.150 0.060
1382     # Mix them together in appropriate amounts for white
1383     c white =
1384     cmix 0.265 R 0.670 G 0.065 B
1385     .DE
1386     .SH
1387     SEE ALSO
1388     .LP
1389     .UL c,
1390     .UL cct,
1391     .UL cspec,
1392     .UL cxy
1393     .ds LH Material Entities
1394     .ds RH M
1395     .bp
1396     .SH
1397     NAME
1398     .LP
1399     m - get or set the current material context
1400     .SH
1401     SYNOPSIS
1402     .LP
1403     .B m
1404     [
1405     .I id
1406     [
1407     .B =
1408     [
1409     .I template
1410     ]
1411     ]
1412     ]
1413     .SH
1414     DESCRIPTION
1415     .LP
1416     If the
1417     .UL m
1418     keyword is given by itself, then it establishes
1419     the unnamed material context, which is a perfect two-sided black absorber.
1420     This context may be modified, but the changes will not be saved.
1421     .LP
1422     If the keyword is followed by an identifier
1423     .I id,
1424     then it reestablishes a previous context.
1425     If the specified context was never defined, an error will result.
1426     .LP
1427     If the entity is given with an identifier
1428     followed by an equals sign ('='), then a new context is established,
1429     and cleared to the default material.
1430     (Note that the equals sign must be separated from other
1431     arguments by white space to be properly recognized.)\0
1432     If the equals sign is followed by a second identifier
1433     .I template,
1434     then this previously defined material will be used as a source of
1435     default values instead.
1436     This may be used to establish a material alias, or to modify an
1437     existing material and give it a new name.
1438     .LP
1439     The sum of the diffuse and specular reflectances and transmittances
1440     must not be greater than one (with no negative values, obviously).
1441     These values are assumed to be measured at normal incidence.
1442     If an index of refraction is given, this may modify the balance between
1443     diffuse and specular reflectance at other incident angles.
1444     If the
1445     material is one-sided (see
1446     .UL sides
1447     entity), then it may be a dielectric interface.
1448     In this case, the specular transmittance given is that which would be
1449     measured at normal incidence for a pane of the material 5 mm thick.
1450     This is important for figuring the actual transmittance for non-planar
1451     geometries assuming a uniformly absorbing medium.
1452     (Diffuse transmittance will not be affected by thickness.)\0
1453     If the index of
1454     refraction has an imaginary part, then the surface is a metal and this
1455     implies other properties as well.
1456     The default index of refraction is that of a vacuum, i.e. (1,0).
1457     .SH
1458     EXAMPLE
1459     .DS
1460     # Define a blue enamel paint
1461     m blue_enamel =
1462     c
1463     cxy 0.2771 0.2975
1464     rd 0.5011
1465     c
1466     rs 0.0100 0.0350
1467     # Assign blue_enamel to be the color of the south wall
1468     m swall_mat = blue_enamel
1469     # ...
1470     # South wall face
1471     m swall_mat
1472     f sv1 sv2 sv3 sv4
1473     .DE
1474     .SH
1475     SEE ALSO
1476     .LP
1477     .UL ed,
1478     .UL ir,
1479     .UL rd,
1480     .UL rs,
1481     .UL sides,
1482     .UL td,
1483     .UL ts
1484     .ds RH SIDES
1485     .bp
1486     .SH
1487     NAME
1488     .LP
1489     sides - set the number of sides for the current material
1490     .SH
1491     SYNOPSIS
1492     .LP
1493     .B sides
1494     {
1495     .B 1
1496     |
1497     .B 2
1498     }
1499     .SH
1500     DESCRIPTION
1501     .LP
1502     The
1503     .UL sides
1504     entity is used to set the number of sides for the current material.
1505     If a surface is two-sided, then it will appear
1506     identical when viewed from either the front or the back.
1507     If a surface is one-sided,
1508     then it appears invisible when viewed from the back side.
1509     This means
1510     that a transmitting object will affect the light coming in through the
1511     front surface and ignore the characteristics of the back surface,
1512     unless the index of refraction is set.
1513     If the index of refraction is set, then the object will act as a
1514     solid piece of dielectric material.
1515     In either case, the transmission properties of the exiting surface
1516     should be the same as the incident surface for the model to be
1517     physically valid.
1518     .LP
1519     The default number of sides is two.
1520     .SH
1521     EXAMPLE
1522     .DS
1523     # Describe a blue crystal ball
1524     m blue_crystal =
1525     ir 1.650000 0
1526     # Solid dielectrics must use one-sided materials
1527     sides 1
1528     c
1529     rs 0.0602 0
1530     c
1531     cxy 0.3127 0.2881
1532     ts 0.6425 0
1533     v sc =
1534     p 10 15 1.5
1535     sph sc .02
1536     .DE
1537     .SH
1538     SEE ALSO
1539     .LP
1540     .UL ed,
1541     .UL ir,
1542     .UL m,
1543     .UL rd,
1544     .UL rs,
1545     .UL td,
1546     .UL ts
1547     .ds RH RD
1548     .bp
1549     .SH
1550     NAME
1551     .LP
1552     rd - set the diffuse reflectance for the current material
1553     .SH
1554     SYNOPSIS
1555     .LP
1556     .B rd
1557     .I rho_d
1558     .SH
1559     DESCRIPTION
1560     .LP
1561     Set the diffuse reflectance for the current material to
1562     .I rho_d
1563     using the current color to determine the spectral characteristics.
1564     This is the fraction of visible light that is reflected from a
1565     surface equally in all directions according to Lambert's law, and is
1566     often called the "Lambertian component."
1567     Photometric reflectance is measured according to v(lambda)
1568     response function of the 1931 CIE standard 2
1569     degree observer, and assumes an equal-energy white light source.
1570     The value must be between zero and one, and may be further
1571     restricted by the luminosity of the selected color.
1572     (I.e. it is impossible to have a violet material with a photometric
1573     reflectance close to one since the eye is less sensitive in this part
1574     of the spectrum.)\0
1575     .LP
1576     The default diffuse reflectance is zero.
1577     .SH
1578     EXAMPLE
1579     .DS
1580     # An off-white paint with 70% reflectance
1581     m flat_white70 =
1582     c
1583     cxy .3632 .3420
1584     rd .70
1585     .DE
1586     .SH
1587     SEE ALSO
1588     .LP
1589     .UL c,
1590     .UL ed,
1591     .UL ir,
1592     .UL m,
1593     .UL rs,
1594     .UL sides,
1595     .UL td,
1596     .UL ts
1597     .ds RH TD
1598     .bp
1599     .SH
1600     NAME
1601     .LP
1602     td - set the diffuse transmittance for the current material
1603     .SH
1604     SYNOPSIS
1605     .LP
1606     .B td
1607     .I tau_d
1608     .SH
1609     DESCRIPTION
1610     .LP
1611     Set the diffuse transmittance for the current material to
1612     .I tau_d
1613     using the current color to determine the spectral characteristics.
1614     This is the fraction of visible light that is transmitted through a
1615     surface equally in all (transmitted) directions.
1616     Like reflectance, transmittance is measured according to the
1617     standard v(lambda) curve, and assumes an equal-energy white light source.
1618     It is probably not possible to create a material with a diffuse
1619     transmittance above 50%, since well-diffused light will be reflected
1620     as well.
1621     .LP
1622     The default diffuse transmittance is zero.
1623     .SH
1624     EXAMPLE
1625     .DS
1626     # Model a perfect spherical diffuser, i.e. light hitting \
1627     either side will be scattered equally in all directions
1628     m wonderland_diffuser =
1629     c
1630     td .5
1631     rd .5
1632     .DE
1633     .SH
1634     SEE ALSO
1635     .LP
1636     .UL c,
1637     .UL ed,
1638     .UL ir,
1639     .UL m,
1640     .UL rd,
1641     .UL rs,
1642     .UL sides,
1643     .UL ts
1644     .ds RH ED
1645     .bp
1646     .SH
1647     NAME
1648     .LP
1649     ed - set the diffuse emittance for the current material
1650     .SH
1651     SYNOPSIS
1652     .LP
1653     .B ed
1654     .I epsilon_d
1655     .SH
1656     DESCRIPTION
1657     .LP
1658     Set the diffuse emittance for the current material to
1659     .I epsilon_d
1660     lumens per square meter using the current color to determine the
1661     spectral characteristics.
1662     Note that this is emittance rather than exitance, and therefore
1663     does not include reflected or transmitted light, which is a function
1664     of the other material settings and the illuminated environment.
1665     .LP
1666     The total lumen output of a convex emitting object
1667     is the radiating area of that object multiplied by its emittance.
1668     Therefore, one can compute the appropriate
1669     .I epsilon_d
1670     value for an emitter by dividing the total lumen output by the
1671     radiating area (in square meters).
1672     .LP
1673     The default emittance is zero.
1674     .SH
1675     EXAMPLE
1676     .DS
1677     # A 100-watt incandescent bulb (1600 lumens) modeled as a sphere
1678     m
1679     c
1680 greg 1.14 cct 3000
1681 greg 1.1 ed 87712
1682     v cent =
1683     p 0 0 0
1684     sph cent .0381
1685     .DE
1686     .SH
1687     SEE ALSO
1688     .LP
1689     .UL c,
1690     .UL ir,
1691     .UL m,
1692     .UL rd,
1693     .UL rs,
1694     .UL sides,
1695     .UL td,
1696     .UL ts
1697     .ds RH RS
1698     .bp
1699     .SH
1700     NAME
1701     .LP
1702     rs - set the specular reflectance for the current material
1703     .SH
1704     SYNOPSIS
1705     .LP
1706     .B rs
1707     .I "rho_s alpha_r"
1708     .SH
1709     DESCRIPTION
1710     .LP
1711     Set the specular reflectance for the current material to
1712     .I rho_s
1713     using the current color to determine the spectral characteristics.
1714     The surface roughness parameter is set to
1715     .I alpha_r,
1716     which is the RMS height of surface variations over the
1717     autocorrelation distance (equivalent to RMS facet slope).
1718     A roughness value of zero means a perfectly smooth surface, and
1719     values greater than 0.2 are unusual.
1720     (See application notes section 6.1.2 for a comparison between the
1721     roughness parameter and Phong specular power.)\0
1722     .LP
1723     The default specular reflectance is zero.
1724     .SH
1725     EXAMPLE
1726     .DS
1727     # Define a slightly rough brass metallic surface
1728     m rough_brass =
1729     c
1730     cxy .3820 .4035
1731     # 30% specular, 9% diffuse
1732     rs .30 .08
1733     rd .09
1734     .DE
1735     .SH
1736     SEE ALSO
1737     .LP
1738     .UL c,
1739     .UL ed,
1740     .UL ir,
1741     .UL m,
1742     .UL rd,
1743     .UL sides,
1744     .UL td,
1745     .UL ts
1746     .ds RH TS
1747     .bp
1748     .SH
1749     NAME
1750     .LP
1751     ts - set the specular transmittance for the current material
1752     .SH
1753     SYNOPSIS
1754     .LP
1755     .B ts
1756     .I "tau_s alpha_t"
1757     .SH
1758     DESCRIPTION
1759     .LP
1760     Set the specular transmittance for the current material to
1761     .I tau_s
1762     using the current color to determine the spectral characteristics.
1763     The effective surface roughness is set to
1764     .I alpha_t.
1765     Rays will be transmitted with the same distribution as they would
1766     have been reflected with if this roughness value were given to the
1767     .UL rs
1768     entity.
1769     .LP
1770     The default specular transmittance is zero.
1771     .SH
1772     EXAMPLE
1773     .DS
1774     # Define a green glass material (58% transmittance)
1775     m glass =
1776     sides 2
1777     ir 1.52 0
1778     c
1779     rs 0.0725 0
1780     c
1781     cxy .23 .38
1782     ts 0.5815 0
1783     # Define an uncolored translucent plastic (40% transmittance)
1784     m translucent =
1785     sides 2
1786     ir 1.4 0
1787     c
1788     rs .045 0
1789     ts .40 .05
1790     .DE
1791     .SH
1792     SEE ALSO
1793     .LP
1794     .UL c,
1795     .UL ed,
1796     .UL ir,
1797     .UL m,
1798     .UL rd,
1799     .UL rs,
1800     .UL sides,
1801     .UL td
1802     .ds RH IR
1803     .bp
1804     .SH
1805     NAME
1806     .LP
1807     ir - set the complex index of refraction for the current material
1808     .SH
1809     SYNOPSIS
1810     .LP
1811     .B ir
1812     .I "n_real n_imag"
1813     .SH
1814     DESCRIPTION
1815     .LP
1816     Set the index of refraction for the current material to
1817     .I (n_real,n_imag).
1818     If the material is a dielectric (as opposed to metallic), then
1819     .I n_imag
1820     should be zero.
1821     For solid dielectric objects, the material should be made one-sided.
1822     If it is being used for thin objects, then a two-sided
1823     material is appropriate.
1824     (See the
1825     .UL sides
1826     entity.)\0
1827     .LP
1828     The default index of refraction is that of a vacuum, (1,0).
1829     .SH
1830     EXAMPLE
1831     .DS
1832     # Define polished aluminum material
1833     m polished_aluminum =
1834     # Complex index of refraction (from physics table)
1835     ir .770058 6.08351
1836     c
1837     rs .75 0
1838     .DE
1839     .SH
1840     SEE ALSO
1841     .LP
1842     .UL c,
1843     .UL ed,
1844     .UL m,
1845     .UL rd,
1846     .UL rs,
1847     .UL sides,
1848     .UL td,
1849     .UL ts
1850     .ds LH Vertex Entities
1851     .ds RH V
1852     .bp
1853     .SH
1854     NAME
1855     .LP
1856     v - get or set the current vertex context
1857     .SH
1858     SYNOPSIS
1859     .LP
1860     .B v
1861     [
1862     .I id
1863     [
1864     .B =
1865     [
1866     .I template
1867     ]
1868     ]
1869     ]
1870     .SH
1871     DESCRIPTION
1872     .LP
1873     If the
1874     .UL v
1875     keyword is given by itself, then it establishes
1876     the unnamed vertex context, which is the origin with no normal.
1877     This context may be modified, but the changes will not be saved.
1878     (The unnamed vertex is never used except as a source of default
1879     values since all geometric entities call their vertices by name.)\0
1880     .LP
1881     If the keyword is followed by an identifier
1882     .I id,
1883     then it reestablishes a previous context.
1884     If the specified context was never defined, an error will result.
1885     .LP
1886     If the entity is given with an identifier
1887     followed by an equals sign ('='), then a new context is established,
1888     and cleared to the default vertex (the origin).
1889     (Note that the equals sign must be separated from other
1890     arguments by white space to be properly recognized.)\0
1891     If the equals sign is followed by a second identifier
1892     .I template,
1893     then this previously defined vertex will be used as a source of
1894     default values instead.
1895     This may be used to establish a vertex alias, or to modify an
1896     existing vertex and give it a new name.
1897     .LP
1898     A non-zero vertex normal must be given for
1899     certain entities, specifically
1900     .UL ring
1901     and
1902     .UL torus
1903     require a normal direction.
1904     An
1905     .UL f
1906     entity will interpolate vertex normals if given, and
1907     use the polygon plane normal otherwise.
1908     See the
1909     .UL prism
1910     entry for an explanation of how it interprets and uses vertex
1911     normals.
1912     The other entities ignore vertex normals if present.
1913     .LP
1914     The actual position and normal direction for a vertex is determined
1915     at the time of use by a geometric entity.
1916     Specifically, the transformation in effect at the time the vertex is
1917     defined is irrelevant.
1918     The only transformation that matters is the one that is applied to
1919     the geometry itself.
1920     This prevents double-transformation of vertices and allows one set
1921     of vertices to be used for multiple purposes, e.g. the front and
1922     back sides of a drawer.
1923     .SH
1924     EXAMPLE
1925     .DS
1926     # Make a capped cylinder
1927     v end1 =
1928     p 0 0 0
1929     n 0 0 -1
1930     v end2 =
1931     p 0 0 1
1932     cyl end1 1.2 end2
1933     # Forgot normal for end2
1934     v end2
1935     n 0 0 1
1936     ring end1 0 1.2
1937     ring end2 0 1.2
1938     .DE
1939     .SH
1940     SEE ALSO
1941     .LP
1942     .UL cone,
1943     .UL cyl,
1944     .UL f,
1945     .UL n,
1946     .UL p,
1947     .UL prism,
1948     .UL ring,
1949     .UL sph,
1950     .UL torus
1951     .ds RH P
1952     .bp
1953     .SH
1954     NAME
1955     .LP
1956     p - set the point location for the current vertex
1957     .SH
1958     SYNOPSIS
1959     .LP
1960     .B p
1961     .I "px py pz"
1962     .SH
1963     DESCRIPTION
1964     .LP
1965     Set the 3-dimensional position for the current vertex to
1966     .I (px,py,pz).
1967     The actual position of the vertex will be determined by the
1968     transformation in effect at the time the vertex is applied to a
1969     geometric surface entity.
1970     The transform current when the position is set is irrelevant.
1971     .LP
1972     The default vertex position is the origin, (0,0,0).
1973     .SH
1974     EXAMPLE
1975     .DS
1976     # Make a small circle of 6 spheres
1977     v scent =
1978     p 1 0 0
1979     xf -a 6 -rz 60
1980     sph scent .05
1981     xf
1982     .DE
1983     .SH
1984     SEE ALSO
1985     .LP
1986     .UL cone,
1987     .UL cyl,
1988     .UL f,
1989     .UL n,
1990     .UL prism,
1991     .UL ring,
1992     .UL sph,
1993     .UL torus,
1994     .UL v
1995     .ds RH N
1996     .bp
1997     .SH
1998     NAME
1999     .LP
2000     n - set the surface normal direction for the current vertex
2001     .SH
2002     SYNOPSIS
2003     .LP
2004     .B n
2005     .I "dx dy dz"
2006     .SH
2007     DESCRIPTION
2008     .LP
2009     Set the 3-dimensional surface normal for the current vertex to the
2010     normalized vector along
2011     .I (dx,dy,dz).
2012     If this vector is zero, then the surface normal is effectively
2013     unset.
2014     The actual surface normal orientation of the vertex will be determined
2015     by the transformation in effect at the time the vertex is applied to a
2016     geometric surface entity.
2017     The current transform when the normal is set is irrelevant.
2018     .LP
2019     The default vertex normal is the zero vector (i.e. no normal).
2020     .SH
2021     EXAMPLE
2022     .DS
2023     # Make a chain of 10 interlocking doughnuts
2024     v tcent =
2025     p 0 0 0
2026     n 0 1 0
2027     xf -a 10 -rx 90 -t .2 0 0
2028     torus tcent .1 .2
2029     xf
2030     .DE
2031     .SH
2032     SEE ALSO
2033     .LP
2034     .UL f,
2035     .UL p,
2036     .UL prism,
2037     .UL ring,
2038     .UL torus,
2039     .UL v
2040     .ds LH Geometric Entities
2041     .ds RH F
2042     .bp
2043     .SH
2044     NAME
2045     .LP
2046     f - create an N-sided polygonal face
2047     .SH
2048     SYNOPSIS
2049     .LP
2050     .B f
2051     .I "v1 v2 ... vN"
2052     .SH
2053     DESCRIPTION
2054     .LP
2055     Create a polygonal face made of the current material
2056     by connecting the named vertices in order, and connecting the last
2057     vertex to the first.
2058     There must be at least three vertices, and if any vertex is undefined,
2059     an error will result.
2060     .LP
2061     The surface orientation is determined by the right-hand rule; when
2062     the curl of the fingers follows the given order of the vertices, the
2063     surface normal points in the thumb direction.
2064     Face vertices should be coplanar, though this is difficult to guarantee
2065     in a 3-dimensional specification.
2066     .LP
2067     If any vertices have associated surface normals, they will be used
2068     instead of the average plane normal, though it is safest to specify
2069     either all normals or no normals, and to stick with triangles
2070     when normals are used.
2071     Also, specified normals should point in the general direction of the
2072     surface for best results.
2073     .LP
2074 greg 1.16 There is no explicit representation of holes in this entity, but see
2075     the
2076     .UL fh
2077     entity for an alternative specification.
2078     .LP
2079     A hole may be represented implicitly in a face entity
2080     by connecting vertices to form "seams."
2081     For
2082 greg 1.1 example, a wall with a window in it might look as shown in Figure 1.
2083     In many systems, the wall itself would be represented with the first
2084     list of vertices, (v1,v2,v3,v4) and the hole associated with that
2085 greg 1.16 wall as a second set of vertices (v5,v6,v7,v8).
2086     Using the face entity, we must
2087 greg 1.1 give the whole thing as a single polygon, connecting the vertices so
2088     as to create a "seam," as shown in Figure 2.
2089 greg 1.16 This could be written as "f v1 v2 v3 v4 v5 v6 v7 v8 v5 v4".
2090 greg 1.1 .LP
2091     It is very important that the order of the hole be opposite to the
2092     order of the outer perimeter, otherwise the polygon will be
2093     "twisted" on top of itself. Note also that the seam was traversed
2094     in both directions, once going from v4 to v5, and again returning
2095     from v5 to v4. This is a necessary condition for a proper seam.
2096     .LP
2097     The choice of vertices to make into a seam is somewhat arbitrary, but
2098     some rendering systems may not give sane results if you cross over a
2099     hole with part of your seam. If we had chosen to create the seam
2100     between v2 and v5 in the above example instead of v4 and v5, the seam
2101     would cross our hole and may not render correctly\(dg.
2102     .FS
2103     \(dgFor systems that
2104     are sensitive to this, it is probably safest for their MGF
2105     loader/translator to re-expresses seams in terms of holes again, which can
2106     be done easily so long as vertices are shared in the fashion shown.
2107     .FE
2108     .bp
2109     Replace this page with the first page from "figures.ps".
2110     .bp
2111     .SH
2112     EXAMPLE
2113     .DS
2114     # Make a pyramid
2115     v apex =
2116     p 1 1 1
2117     v base0 =
2118     p 0 0 0
2119     v base1 =
2120     p 0 2 0
2121     v base2 =
2122     p 2 2 0
2123     v base3 =
2124     p 2 0 0
2125     # Bottom
2126     f base0 base1 base2 base3
2127     # Sides
2128     f base0 apex base1
2129     f base1 apex base2
2130     f base2 apex base3
2131     f base3 apex base0
2132     .DE
2133     .SH
2134     SEE ALSO
2135     .LP
2136     .UL cone,
2137     .UL cyl,
2138 greg 1.16 .UL fh,
2139     .UL m,
2140     .UL prism,
2141     .UL ring,
2142     .UL sph,
2143     .UL torus,
2144     .UL v
2145     .ds RH FH
2146     .bp
2147     .SH
2148     NAME
2149     .LP
2150     fh - create a polygonal face with explicit holes
2151     .SH
2152     SYNOPSIS
2153     .LP
2154     .B fh
2155     .I "p1 p2 ... - h1.1 h1.2 ... - h2.1 h2.2 ..."
2156     .SH
2157     DESCRIPTION
2158     .LP
2159     Create a polygonal face with optional holes made of the current material.
2160     The first contour is the outer perimeter, with vertices given in
2161     counter-clockwise order as seen from the front side (the same as the
2162     .UL f
2163     entity).
2164     A hole is indicated by a hyphen ('-') followed by the hole's
2165     vertices, given in clockwise order as seen from the front side.
2166     Multiple hole contours are separated by additional hyphens.
2167     There must be at least three vertices for each contour, and the
2168     last vertex is implicitly connected to the first.
2169     If any vertex is undefined, an error will result.
2170     .LP
2171     If any vertices have associated surface normals, they will be used
2172     instead of the average plane normal, though it is safest to specify
2173     either all normals or no normals, and to stick with triangles
2174     when normals are used.
2175     Also, specified normals should point in the general direction of the
2176     surface for best results.
2177     .SH
2178     EXAMPLE
2179     .DS
2180     # Make a wall with a window using an explicit hole.
2181     # (See Figures 1 and 2.)
2182     fh v1 v2 v3 v4 - v5 v6 v7 v8
2183     .DE
2184     .SH
2185     SEE ALSO
2186     .LP
2187     .UL cone,
2188     .UL cyl,
2189     .UL f,
2190 greg 1.1 .UL m,
2191     .UL prism,
2192     .UL ring,
2193     .UL sph,
2194     .UL torus,
2195     .UL v
2196     .ds RH SPH
2197     .bp
2198     .SH
2199     NAME
2200     .LP
2201     sph - create a sphere
2202     .SH
2203     SYNOPSIS
2204     .LP
2205     .B sph
2206     .I "vc rad"
2207     .SH
2208     DESCRIPTION
2209     .LP
2210     Create a sphere made of the current material with its center at the
2211     named vertex
2212     .I vc
2213     and a radius of
2214     .I rad.
2215     If the vertex is undefined an error will result.
2216     .LP
2217     The surface normal is usually directed outward, but will be directed
2218     inward if the given radius is negative.
2219     (This typically matters only for one-sided materials.)\0
2220     A zero radius is illegal.
2221     .SH
2222     EXAMPLE
2223     .DS
2224     # Create a thick glass sphere with a hollow inside
2225     m glass =
2226     sides 1
2227     ir 1.52 0
2228     c
2229     rs .06 0
2230     ts .88 0
2231     v cent =
2232     p 0 0 1.1
2233     # The outer shell
2234     sph cent .1
2235     # The inner bubble
2236     sph cent -.08
2237     .DE
2238     .SH
2239     SEE ALSO
2240     .LP
2241     .UL cone,
2242     .UL cyl,
2243     .UL f,
2244     .UL m,
2245     .UL prism,
2246     .UL ring,
2247     .UL torus,
2248     .UL v
2249     .ds RH CYL
2250     .bp
2251     .SH
2252     NAME
2253     .LP
2254     cyl - create an open-ended, truncated right cylinder
2255     .SH
2256     SYNOPSIS
2257     .LP
2258     .B cyl
2259     .I "v1 rad v2"
2260     .SH
2261     DESCRIPTION
2262     .LP
2263     Create a truncated right cylinder of radius
2264     .I rad
2265     using the current material, starting at the named vertex
2266     .I v1
2267     and continuing to
2268     .I v2.
2269     The ends will be open, but may be capped using the
2270     .UL ring
2271     entity if desired.
2272     .LP
2273     The surface normal will usually be directed outward, but may be
2274     directed inward by giving a negative value for
2275     .I rad.
2276     A zero radius is illegal, and
2277     .I v1
2278     cannot equal
2279     .I v2.
2280     .SH
2281     EXAMPLE
2282     .DS
2283     # A stylus with one rounded and one pointed end
2284     o stylus
2285     v vtip0 =
2286     p 0 0 0
2287     v vtip1 =
2288     p 0 0 .005
2289     v vend =
2290     p 0 0 .05
2291 greg 1.5 cyl vtip1 .0015 vend
2292 greg 1.1 sph vend .0015
2293     cone vtip0 0 vtip1 .0015
2294     o
2295     .DE
2296     .SH
2297     SEE ALSO
2298     .LP
2299     .UL cone,
2300     .UL f,
2301     .UL m,
2302     .UL prism,
2303     .UL ring,
2304     .UL sph,
2305     .UL torus,
2306     .UL v
2307     .ds RH CONE
2308     .bp
2309     .SH
2310     NAME
2311     .LP
2312     cone - create an open-ended, truncated right cone
2313     .SH
2314     SYNOPSIS
2315     .LP
2316     .B cone
2317     .I "v1 rad1 v2 rad2"
2318     .SH
2319     DESCRIPTION
2320     .LP
2321     Create a truncated right cone using the current material.
2322     The starting radius is
2323     .I rad1
2324     at
2325     .I v1
2326     and the ending radius is
2327     is
2328     .I rad2
2329     at
2330     .I v2.
2331     The ends will be open, but may be capped using the
2332     .UL ring
2333     entity if desired.
2334     .LP
2335     The surface normal will usually be directed outward, but may be
2336     directed inward by giving negative values for both radii.
2337     (It is illegal for the signs of the two radii to disagree.)\0
2338     One but not both radii may be zero, indicating that the cone comes
2339     to a point.
2340     .LP
2341     Although it is not strictly forbidden to have equal cone radii, the
2342     .UL cyl
2343     entity should be used in such cases.
2344     Likewise, the
2345     .UL ring
2346     entity must be used if
2347     .I v1
2348     and
2349     .I v2
2350     are equal.
2351     .SH
2352     EXAMPLE
2353     .DS
2354     # A parasol
2355     o parasol
2356     v v1 =
2357     p 0 0 0
2358     v v2 =
2359     p 0 0 .75
2360     v v3 =
2361     p 0 0 .7
2362     m handle_mat
2363     cyl v1 .002 v2
2364     m parasol_paper
2365     cyl v2 0 v3 .33
2366     o
2367     .DE
2368     .SH
2369     SEE ALSO
2370     .LP
2371     .UL cyl,
2372     .UL f,
2373     .UL m,
2374     .UL prism,
2375     .UL ring,
2376     .UL sph,
2377     .UL torus,
2378     .UL v
2379     .ds RH PRISM
2380     .bp
2381     .SH
2382     NAME
2383     .LP
2384     prism - create a closed right prism
2385     .SH
2386     SYNOPSIS
2387     .LP
2388     .B prism
2389     .I "v1 v2 ... vN length"
2390     .SH
2391     DESCRIPTION
2392     .LP
2393     Create a closed right prism using the current material.
2394     One end face will be enclosed by the named vertices, and the
2395     opposite end face will be a mirror image at a distance
2396     .I length
2397     from the original.
2398     The edges will be extruded into N quadrilaterals connecting
2399     the two end faces.
2400     .LP
2401     The order of vertices determines the original face orientation
2402     according to the right-hand rule as explained for the
2403     .UL f
2404     entity.
2405     Normally, the prism is extruded in the direction opposite to the
2406     original surface normal, resulting in faces that all point outward.
2407     If the specified
2408     .I length
2409     is negative, the prism will be extruded above the original face
2410     and all surface normals will point inward.
2411     .LP
2412     If the vertices have associated normals, they are applied to the
2413     side faces only, and should generally point in the appropriate
2414     direction (i.e. in or out depending on whether
2415     .I length
2416     is negative or positive).
2417     .SH
2418     EXAMPLE
2419     .DS
2420     # Make a unit cube starting at the origin and \\\\
2421     extending to the positive octant
2422     v cv0 =
2423     p 0 0 0
2424     v cv1 =
2425     p 0 1 0
2426     v cv2 =
2427     p 1 1 0
2428     v cv3 =
2429     p 1 0 0
2430     # Right hand rule has original face looking in -Z direction
2431     prism cv0 cv1 cv2 cv3 1
2432     .DE
2433     .SH
2434     SEE ALSO
2435     .LP
2436     .UL cyl,
2437     .UL cone,
2438     .UL f,
2439     .UL m,
2440     .UL ring,
2441     .UL sph,
2442     .UL torus,
2443     .UL v
2444     .ds RH RING
2445     .bp
2446     .SH
2447     NAME
2448     .LP
2449     ring - create a circular ring with inner and outer radii
2450     .SH
2451     SYNOPSIS
2452     .LP
2453 greg 1.7 .B ring
2454 greg 1.1 .I "vc rmin rmax"
2455     .SH
2456     DESCRIPTION
2457     .LP
2458     Create a circular face of the current material centered on the named
2459     vertex
2460     .I vc
2461     with an inner radius of
2462     .I rmin
2463     and an outer radius of
2464     .I rmax.
2465     The surface orientation is determined by the normal vector
2466     associated with
2467     .I vc.
2468     If this vertex is undefined or has no normal, an error will result.
2469     The minimum radius may be equal to but not less than zero, and the
2470     maximum radius must be strictly greater than the minimum.
2471     .SH
2472     EXAMPLE
2473     .DS
2474     # The proverbial brass ring
2475     o brass_ring
2476     m brass
2477     v end1 =
2478     p 0 -.005 0
2479     n 0 -1 0
2480     v end2 =
2481     p 0 .005 0
2482     n 0 1 0
2483     ring end1 .02 .03
2484     cyl end1 .03 end2
2485     ring end2 .02 .03
2486     cyl end2 -.02 end1
2487     o
2488     .DE
2489     .SH
2490     SEE ALSO
2491     .LP
2492     .UL cyl,
2493     .UL cone,
2494     .UL f,
2495     .UL m,
2496     .UL prism,
2497     .UL sph,
2498     .UL torus,
2499     .UL v
2500     .ds RH TORUS
2501     .bp
2502     .SH
2503     NAME
2504     .LP
2505     torus - create a regular torus
2506     .SH
2507     SYNOPSIS
2508     .LP
2509     .B torus
2510     .I "vc rmin rmax"
2511     .SH
2512     DESCRIPTION
2513     .LP
2514     Create a torus of the current material centered on the named vertex
2515     .I vc
2516     with an inner radius of
2517     .I rmin
2518     and an outer radius of
2519     .I rmax.
2520     The plane of the torus will be perpendicular to the normal vector
2521     associated with
2522     .I vc.
2523     If this vertex is undefined or has no normal, an error will result.
2524     .LP
2525     If a torus with an inward facing surface normal is desired,
2526     .I rmin
2527     and
2528     .I rmax
2529     may be negative.
2530     The minimum radius may be zero, but may not be negative when
2531     .I rmax
2532     is positive or vice versa.
2533     The magnitude or
2534     .I rmax
2535     must always be strictly greater than that of
2536     .I rmin.
2537     .SH
2538     EXAMPLE
2539     .DS
2540     # The proverbial brass ring -- easy grip version
2541     o brass_ring
2542     m brass
2543     v center =
2544     p 0 0 0
2545     n 0 1 0
2546     torus center .02 .03
2547     o
2548     .DE
2549     .SH
2550     SEE ALSO
2551     .LP
2552     .UL cyl,
2553     .UL cone,
2554     .UL f,
2555     .UL m,
2556     .UL prism,
2557     .UL ring,
2558     .UL sph,
2559     .UL v
2560     .ds RH
2561     .ds LH
2562     .bp
2563     .NH
2564     MGF Translators
2565     .LP
2566 greg 1.13 Initially, there are six translators for MGF data, and
2567     three of these are distributed with the MGF parser itself,
2568     .I mgfilt,
2569     .I mgf2inv
2570 greg 1.12 and
2571 greg 1.13 .I 3ds2mgf.
2572 greg 1.1 Two of the other translators,
2573     .I mgf2rad
2574     and
2575     .I rad2mgf
2576     convert between MGF and the Radiance scene description language,
2577     and are distributed for free with the rest of the Radiance
2578     package\(dg.
2579     .FS
2580     \(dgRadiance is available by anonymous ftp from hobbes.lbl.gov and
2581     nestor.epfl.ch, or by WWW from
2582     "http://radsite.lbl.gov/radiance/HOME.html"
2583     .FE
2584 greg 1.13 The sixth translator,
2585 greg 1.1 .I mgf2meta,
2586     converts to a 2-dimensional line plot, and is also
2587     distributed with Radiance.
2588     .LP
2589     Mgfilt is a simple but useful utility that takes MGF on its input
2590     and produces MGF on its output.
2591     It uses the parser to convert entities that are not wanted or
2592     understood, and produces only the requested ones.
2593     This is useful for seeing what exactly a program must understand
2594     when it supports a given set of entities, and may serve as a
2595     substitute for linking to the parser library for programmers who
2596     wish to interpret the ASCII input directly but without all the
2597     unwanted entities.
2598     In future releases of MGF, this utility will also be handy for
2599     taking new entities and producing older versions of MGF for
2600     translators that have not yet been updated properly.
2601 greg 1.12 .LP
2602     Mgf2inv converts from MGF to Inventor or VRML format.
2603     Some information is lost, because these formats do not support
2604     physical light sources or materials.
2605 greg 1.13 .LP
2606     3ds2mgf converts from 3D Studio binary format to MGF.
2607     Care must be taken to correct for errors in the material descriptions,
2608     since 3D Studio is completely non-physical.
2609 greg 1.1 .ds LH Translators
2610     .ds RH MGFILT
2611     .bp
2612     .SH
2613     NAME
2614     .LP
2615     mgfilt - get usable MGF entities from input
2616     .SH
2617     SYNOPSIS
2618     .LP
2619     .B mgfilt
2620     .B version
2621     [
2622     .B input ..
2623     ]
2624     .br
2625     or
2626     .br
2627     .B mgfilt
2628     .B "e1,e2,.."
2629     [
2630     .B input ..
2631     ]
2632     .SH
2633     DESCRIPTION
2634     .LP
2635     .I Mgfilt
2636     takes one or more MGF input files and converts all the entities to
2637     the types listed.
2638     In the first form, a single integer is given for the
2639     .I version
2640     of MGF that is to be produced.
2641     Since MGF is in its first major release, this is not yet a useful
2642     form, but it will be when the second major release comes out.
2643 greg 1.9 This has the necessary side-effect of expanding all included files.
2644     (See the
2645     .UL i
2646     entity.)\0
2647 greg 1.1 .LP
2648     In the second form,
2649     .I mgfilt
2650     produces only the entities listed in the first argument, which must
2651     be comma-separated.
2652     The listed entity order is not important, but all entities given
2653     must be defined in the current version of MGF.
2654     Unknown entities will be summarily discarded on the input, and a
2655     warning message will be printed to the standard error.
2656     .SH
2657     EXAMPLES
2658     .LP
2659     To take an MGF version 3 file and send it to a version 2
2660     translator:
2661     .IP
2662     mgfilt 2 input.mgf | mgf2rad > input.rad
2663     .LP
2664     To take an MGF file and produce only flat polygonal faces
2665     with no materials:
2666     .IP
2667     mgfilt f,v,p,xf input.mgf > flatpoly.mgf
2668     .SH
2669     SEE ALSO
2670     .LP
2671 greg 1.12 i, mgf2inv, mgf2rad, rad2mgf
2672     .ds RH MGF2INV
2673     .bp
2674     .SH
2675     NAME
2676     .LP
2677     mgf2inv - convert from MGF to Inventor or VRML format
2678     .SH
2679     SYNOPSIS
2680     .LP
2681     .B mgf2inv
2682     [
2683     .B "-1|-2|-vrml"
2684     ]
2685     [
2686     .B input ..
2687     ]
2688     .SH
2689     DESCRIPTION
2690     .LP
2691     .I Mgf2inv
2692     takes one or more MGF input files and converts it to
2693     Inventor or VRML format.
2694     If the
2695     .I \-1
2696     option is used, then Inventor 1.0 ASCII output is produced.
2697     If the
2698     .I \-2
2699     option is used, then Inventor 2.0 ASCII output is produced.
2700     (This is the default.)\0
2701     If the
2702     .I \-vrml
2703     option is used, then VRML 1.0 ASCII output is produced.
2704     .LP
2705     This converter does not work properly for light sources, since
2706     the output formats do not support IES-type luminaires with recorded
2707     distributions.
2708     Also, some material information may be lost because Inventor lacks
2709     a physically valid reflectance model.
2710     .SH
2711     EXAMPLES
2712     .LP
2713     To take an MGF file and convert it to VRML format:
2714     .IP
2715     mgf2inv -vrml myscene.mgf > myscene.iv
2716     .SH
2717     SEE ALSO
2718     .LP
2719 greg 1.13 mgf2rad(1), mgfilt(1), 3ds2mgf(1), rad2mgf(1)
2720     .ds RH 3DS2MGF
2721     .bp
2722     .SH
2723     NAME
2724     .LP
2725     3ds2mgf - convert 3D Studio binary file to Materials and Geometry Format
2726     .SH
2727     SYNOPSIS
2728     .LP
2729     .B 3ds2mgf
2730     .B input
2731     [
2732     .B output
2733     ]
2734     [
2735     .B -lMatlib
2736     ][
2737     .B -xObjname
2738     ][
2739     .B -sAngle
2740     ][
2741     .B -aAnimfile
2742     ][
2743     .B -fN
2744     ]
2745     .SH
2746     DESCRIPTION
2747     .LP
2748     .I 3ds2mgf
2749     converts a 3D Studio binary scene description
2750     to the Materials and Geometry Format (MGF).
2751     If no output file name is given, the input root name
2752     will be taken as the output root, and an "mgf" extension
2753     will be added.
2754     This file will contain any light sources and materials, and an include
2755     statement for a similarly named file ending in "inc", which will contain
2756     the MGF geometry of all the translated 3DS meshes.
2757     .LP
2758     The MGF material names and properties
2759     for the surfaces will be those assigned in 3D Studio,
2760     unless they are named in one or more MGF material libraries given in a
2761     .I -l
2762     option.
2763     .LP
2764     The
2765     .I -x
2766     option may be used to exclude a named object from the output.
2767     .LP
2768     The
2769     .I -s
2770     option may be used to adjust automatic mesh smoothing such that adjacent
2771     triangle faces with less than the given angle between them (in degrees)
2772     will be smoothed.
2773     A value of zero turns smoothing off.
2774     The default value is 60 degrees.
2775     .LP
2776     The
2777     .I -a
2778     option may be used to specify a 3D Studio animation file, and together with the
2779     .I -f
2780     option,
2781     .I 3ds2mgf
2782     will generate a scene description for the specified frame.
2783     .LP
2784     Note that there are no spaces between the options and their arguments.
2785     .SH
2786     LIMITATIONS
2787     .LP
2788     Obviously, since 3D Studio has no notion of physical materials, the
2789     translation to MGF material descriptions is very ad hoc, and it will
2790     usually be necessary to edit the materials and light sources in
2791     the output file or replace materials with proper entries from a material
2792     library using the
2793     .I -l
2794     option.
2795     .LP
2796     With smoothing turned on (i.e., a non-zero value for the
2797     .I -s
2798     option), vertices in the MGF output will not be linked in a proper
2799     mesh for each object.
2800     This is due to the way the automatic smoothing code was originally
2801     written, and is too difficult to repair.
2802     If a good mesh is needed, then smoothing must be turned off.
2803     .SH
2804     EXAMPLES
2805     .LP
2806     To convert a 3D Studio robot model to MGF without smoothing.
2807     (Output will be put into "robot.mgf" and "robot.inc".)
2808     .IP
2809     3ds2mgf robot.3ds -s0
2810     .LP
2811     To convert a DC10 jet model to MGF using a hand-created material library:
2812     .IP
2813     3ds2mgf dc10.3ds -ldc10mat.mgf
2814     .SH
2815     AUTHORS
2816     .LP
2817     Steve Anger, Jeff Bowermaster and Greg Ward
2818     .br
2819     Extended from 3ds2pov 1.8.
2820     .SH
2821     SEE ALSO
2822     .LP
2823     mgf2inv(1), mgf2meta(1), mgf2rad(1)
2824 greg 1.1 .ds RH MGF2RAD
2825     .bp
2826     .SH
2827     NAME
2828     .LP
2829     mgf2rad - convert Materials and Geometry Format file to RADIANCE description
2830     .SH
2831     SYNOPSIS
2832     .LP
2833     .B mgf2rad
2834     [
2835     .B "\-m matfile"
2836     ][
2837     .B "\-e mult"
2838     ][
2839     .B "\-g dist"
2840     ]
2841     [
2842     .B input ..
2843     ]
2844     .SH
2845     DESCRIPTION
2846     .LP
2847     .I Mgf2rad
2848     converts one or more Materials and Geometry Format (MGF)
2849     files to a RADIANCE scene description.
2850     By definition, all output dimensions are in meters.
2851     The material names and properties
2852     for the surfaces will be those assigned in MGF.
2853     Any materials not defined in MGF will result in an error during
2854     translation.
2855     Light sources are described inline as IES luminaire files, and
2856     .I mgf2rad
2857     calls the program
2858     .I ies2rad(1)
2859     to translate these files.
2860     If an IES file in turn contains an MGF description of the local
2861     fixture geometry, this may result in a recursive call to
2862     .I mgf2rad,
2863     which is normal and should be transparent.
2864     The only side-effect of this additional translation is the
2865     appearance of other RADIANCE scene and data files produced
2866     automatically by
2867     .I ies2rad.
2868     .LP
2869     The
2870     .I \-m
2871     option may be used to put all the translated materials into a separate
2872     RADIANCE file.
2873     This is not always advisable, as any given material name may be
2874     reused at different points in the MGF description, and writing them
2875     to a separate file loses the contextual association between
2876     materials and surfaces.
2877     As long as unique material names are used throughout the MGF
2878     description and material properties are not redefined, there
2879     will be no problem.
2880     Note that this is the only way to get all the translated materials
2881     into a single file, since no output is produced for unreferenced
2882     materials; i.e. translating just the MGF materials does not work.
2883     .LP
2884     The
2885     .I \-e
2886     option may be used to multiply all the emission values by the
2887     given
2888     .I mult
2889     factor.
2890     The
2891     .I \-g
2892     option may be used to establish a glow distance (in meters)
2893     for all emitting surfaces.
2894     These two options are employed principally by
2895     .I ies2rad,
2896     and are not generally useful to most users.
2897     .SH
2898     EXAMPLES
2899     .LP
2900     To translate two MGF files into one RADIANCE materials file and
2901     one geometry file:
2902     .IP
2903     mgf2rad -m materials.rad building1.mgf building2.mgf > building1+2.rad
2904     .LP
2905     To create an octree directly from two MGF files and one RADIANCE
2906     file:
2907     .IP
2908     oconv '\\!mgf2rad materials.mgf scene.mgf' source.rad > scene.oct
2909     .SH
2910     FILES
2911     .LP
2912     tmesh.cal Used to smooth polygonal geometry
2913     .br
2914     *.rad RADIANCE source descriptions created by ies2rad
2915     .br
2916     *.dat RADIANCE source data created by ies2rad
2917     .br
2918     source.cal Used for IES source coordinates
2919     .SH
2920     AUTHOR
2921     .LP
2922     Greg Ward
2923     .SH
2924     SEE ALSO
2925     .LP
2926     ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)
2927 greg 1.3 .ds RH RAD2MGF
2928 greg 1.1 .bp
2929     .SH
2930     NAME
2931     .LP
2932     rad2mgf - convert RADIANCE scene description to Materials and Geometry Format
2933     .SH
2934     SYNOPSIS
2935     .LP
2936     .B rad2mgf
2937     [
2938     .B \-dU
2939     ]
2940     [
2941     .B input ..
2942     ]
2943     .SH
2944     DESCRIPTION
2945     .LP
2946     .I Rad2mgf
2947     converts one or more RADIANCE scene files
2948     to the Materials and Geometry Format (MGF).
2949     Input units are specified with the
2950     .I \-mU
2951     option, where
2952     .I U
2953     is one of 'm' (meters), 'c' (centimeters), 'f' (feet) or 'i'
2954     (inches).
2955     The assumed unit is meters, which is the required output unit for
2956     MGF (thus the need to know).
2957     If the input dimensions are in none of these units, then the user
2958     should apply
2959     .I xform(1)
2960     with the
2961     .I \-s
2962     option to bring the units into line prior to translation.
2963     .LP
2964     The MGF material names and properties
2965     for the surfaces will be those assigned in RADIANCE.
2966     If a referenced material has not been defined, then its name will
2967     be invoked in the MGF output without definition, and the description
2968     will be incomplete.
2969     .SH
2970     LIMITATIONS
2971     .LP
2972     Although MGF supports all of the geometric types and the most
2973     common material types used in RADIANCE, there is currently no
2974     support for advanced BRDF materials, patterns, textures or mixtures.
2975     Also, the special types "source" and "antimatter" are not supported,
2976     and all light source materials are converted to simple diffuse emitters
2977     (except "illum" materials, which are converted to their alternates).
2978     These primitives are reproduced as comments in the output and
2979     must be replaced manually if necessary.
2980     .LP
2981     The RADIANCE "instance" type is treated specially.
2982     .I Rad2mgf
2983     converts each instance to an MGF include statement, using the corresponding
2984     transformation and a file name derived from the octree name.
2985     (The original octree suffix is replaced by ".mgf".)\0
2986     For this to work, the user must separately create the referenced
2987     MGF files from the original RADIANCE descriptions.
2988     The description file names can usually be determined using the
2989     .I getinfo(1)
2990     command run on the octrees in question.
2991     .SH
2992     EXAMPLES
2993     .LP
2994     To convert three RADIANCE files (in feet) to one MGF file:
2995     .IP
2996     mgf2rad -df file1.rad file2.rad file3.rad > scene.mgf
2997     .LP
2998     To translate a RADIANCE materials file to MGF:
2999     .IP
3000     mgf2rad materials.rad > materials.mgf
3001     .SH
3002     AUTHOR
3003     .LP
3004     Greg Ward
3005     .SH
3006     SEE ALSO
3007     .LP
3008     getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)
3009     .ds RH MGF2META
3010     .bp
3011     .SH
3012     NAME
3013     .LP
3014     mgf2meta - convert Materials and Geometry Format file to Metafile graphics
3015     .SH
3016     SYNOPSIS
3017     .LP
3018     .B mgf2meta
3019     [
3020     .B "-t threshold"
3021     ]
3022     .B "{x|y|z} xmin xmax ymin ymax zmin zmax"
3023     [
3024     .B input ..
3025     ]
3026     .SH
3027     DESCRIPTION
3028     .LP
3029     .I Mgf2meta
3030     converts one or more Materials and Geometry Format (MGF)
3031     files to a 2-D orthographic projection along the selected axis in the
3032     .I metafile(1)
3033     graphics format.
3034     All geometry is clipped to the specified bounding box, and the
3035     resulting orientation is as follows:
3036     .sp .5
3037     .nf
3038     Projection Orientation
3039     ======= ========
3040     x Y-axis right, Z-axis up
3041     y Z-axis right, X-axis up
3042     z X-axis right, Z-axis up
3043     .fi
3044     .LP
3045     If multiple input files are given, the first file prints in black,
3046     the second prints in red, the third in green and the fourth in blue.
3047     If more than four input files are given, they cycle through the
3048     colors again in three other line types: dashed, dotted and
3049     dot-dashed.
3050     .LP
3051     The
3052     .I \-t
3053     option may be used to randomly throw out line segments that are
3054     shorter than the given
3055     .I threshold
3056     (given as a fraction of the plot width).
3057     Segments are included with a
3058     probability equal to the square of the line length over the square
3059     of the threshold.
3060     This can greatly reduce the number of lines in the drawing (and
3061     therefore improve the drawing speed) with only a modest loss in
3062     quality.
3063     A typical value for this parameter is 0.005.
3064     .LP
3065     All MGF material information is ignored on the input.
3066     .SH
3067     EXAMPLES
3068     .LP
3069     To project two MGF files along the Z-axis and display them under
3070     X11:
3071     .IP
3072     mgf2meta z 0 10 0 15 0 9 building1.mgf building2.mgf | x11meta
3073     .LP
3074     To convert a RADIANCE scene to a line drawing in RADIANCE picture
3075     format:
3076     .IP
3077     rad2mgf scene.rad | mgf2meta x `getbbox -h scene.rad` | meta2tga |
3078     ra_t8 -r > scene.pic
3079     .SH
3080     AUTHOR
3081     .LP
3082     Greg Ward
3083     .SH
3084     SEE ALSO
3085     .LP
3086     getbbox(1), meta2tga(1), metafile(5), mgf2rad(1), pflip(1),
3087     protate(1), psmeta(1), ra_t8(1), rad2mgf(1), t4014(1), x11meta(1)
3088     .ds RH
3089     .ds LH
3090     .bp
3091     .NH
3092     MGF Parser Library
3093     .LP
3094     The principal motivation for creating a standard parser library for
3095     MGF is to make it easy for software developers to offer some base
3096     level of compliance.
3097     The key to making MGF easy to support in fact is the parser, which
3098     has the ability to express higher order entities in terms of
3099     lower order ones.
3100     For example, tori are part of the MGF specification, but if a given
3101     program or translator does not support them, the parser will convert
3102     them to cones.
3103     If cones are not supported either, it will convert them further into
3104     smoothed polygons.
3105     If smoothing (vertex normal information) is not supported, it will
3106     be ignored and the program will just get flat polygons.
3107     This is done in such a way that future versions of the standard may
3108     include new entities that old software does not even have to know
3109     about, and they will be converted appropriately.
3110     Forward compatibility is thus built right into the parser loading
3111     mechanism itself -- the programmer simply links to the new code and
3112     the new standard is supported without any further changes.
3113     .SH
3114     Language
3115     .LP
3116     The provided MGF parser is written in ANSI-C.
3117     This language was chosen for reasons of portability and efficiency.
3118     Almost all systems support some form of ANSI-compatible C, and many
3119     languages can cross-link to C libraries without modification.
3120     Backward compatibility to Kernighan and Ritchie C is achieved by
3121     compiling with the -DNOPROTO flag.
3122     .LP
3123     All of the data structures and prototypes needed for the library
3124     are in the header file "parser.h".
3125     This file is the best resource for the parser and is updated with
3126     each MGF release.
3127     .SH
3128     Mechanism
3129     .LP
3130     The parser works by a simple callback mechanism to routines that
3131     actually interpret the individual entities.
3132     Some of these routines will belong to the calling program, and some
3133     will be entity support routines included in the library itself.
3134     There is a global array of function pointers, called
3135     .I mg_ehand.
3136     It is defined thus:
3137     .DS
3138     extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv);
3139     .DE
3140     Before parsing begins, this dispatch table is initialized to point to the
3141     routines that will handle each supported entity.
3142     Every entity handler has the same basic prototype, which is the
3143     same as the
3144     .I main
3145     function, i.e:
3146     .DS
3147     extern int \f2handler\f1(int argc, char **argv);
3148     .DE
3149     The first argument is the number of words in the MGF entity
3150     (counting the entity itself) and the second argument is an array of
3151     nul-terminated strings with the entity and its arguments.
3152     The function should return zero or one of the error
3153     codes defined in "parser.h".
3154     A non-zero return value causes the parser to abort, returning the
3155     error up through its call stack to the entry function, usually
3156     .I mg_load.
3157     .LP
3158     A special function pointer for undefined entities is
3159     defined as follows:
3160     .DS
3161     extern int (*mg_uhand)(int argc, char **argv);
3162     .DE
3163     By default, this points to the library function
3164     .I mg_defuhand,
3165     which prints an error message on the first unknown entity and keeps a
3166     count from then on, which is stored in the global unsigned integer
3167     .I mg_nunknown.
3168     If the
3169     .I mg_uhand
3170     pointer is assigned a value of NULL instead, parsing will abort at the
3171     first unrecognized entity.
3172     The reason this is not the default action is that ignoring unknown entities
3173     offers a certain base level of forward compatibility.
3174     Ignoring things one does not understand is not the best approach, but it
3175     is usually better than quitting with an error message if the input is
3176     in fact valid, but is a later version of the standard.
3177     The real solution is to update the interpreter by linking to a new version
3178     of the parser, or use a new version of the
3179     .I mgfilt
3180     command to convert the new MGF input to an older standard.
3181     .LP
3182     The
3183     .I mg_uhand
3184     pointer may also be used to customize the language for a particular
3185     application by adding entities, though this is discouraged because it
3186     tends to weaken the standard.
3187     .LP
3188     The skeletal framework for an MGF loader or translator is to assign
3189     function pointers to the
3190     .I mg_ehand
3191     array, call the parser initialization function
3192     .I mg_init,
3193     then call the file loader function
3194     .I mg_load
3195     once for each input file.
3196     This will in turn make calls back to the functions assigned to
3197     .I mg_ehand.
3198     To give a simple example, let us look at a
3199     translator that understands only flat polygonal faces, putting out
3200     vertex locations immediately after each "face" keyword:
3201     .DS
3202     #include <stdio.h>
3203     #include "parser.h"
3204    
3205     int
3206     myfaceh(ac, av) /* face handling routine */
3207     int ac;
3208     char **av;
3209     {
3210     C_VERTEX *vp; /* vertex structure pointer */
3211     FVECT vert; /* vertex point location */
3212     int i;
3213    
3214     if (ac < 4) /* check # arguments */
3215     return(MG_EARGC);
3216 greg 1.2 printf("face\\\\n"); /* begin face output */
3217 greg 1.1 for (i = 1; i < ac; i++) {
3218     if ((vp = c_getvert(av[i])) == NULL) /* vertex from name */
3219     return(MG_EUNDEF);
3220     xf_xfmpoint(vert, vp->p); /* apply transform */
3221 greg 1.2 printf("%15.9f %15.9f %15.9f\\\\n",
3222 greg 1.1 vert[0], vert[1], vert[2]); /* output vertex */
3223     }
3224 greg 1.2 printf(";\\\\n"); /* end of face output */
3225 greg 1.1 return(MG_OK); /* normal exit */
3226     }
3227    
3228     main(argc, argv) /* translate MGF file(s) */
3229     int argc;
3230     char **argv;
3231     {
3232     int i;
3233     /* initialize dispatch table */
3234     mg_ehand[MG_E_FACE] = myfaceh; /* ours */
3235     mg_ehand[MG_E_VERTEX] = c_hvertex; /* parser lib */
3236     mg_ehand[MG_E_POINT] = c_hvertex; /* parser lib */
3237     mg_ehand[MG_E_XF] = xf_handler; /* parser lib */
3238     mg_init(); /* initialize parser */
3239     for (i = 1; i < argc; i++) /* load each file argument */
3240     if (mg_load(argv[i]) != MG_OK) /* and check for error */
3241     exit(1);
3242     exit(0); /* all done! */
3243     }
3244     .DE
3245     Hopefully, this example demonstrates just how easy it is to
3246     write an MGF translator.
3247     Of course, translators get more complicated the more entity
3248     types they support, but the point is that one does not
3249     .I have
3250     to support every entity -- the parser handles what the translator
3251     does not.
3252     Also, the library includes many general entity handlers,
3253     further reducing the burden on the programmer.
3254     This same principle means that it is not necessary to modify an
3255     existing program to accommodate a new version of MGF -- one need only
3256     link to the new parser library to comply with the new standard.
3257     .SH
3258     Division of Labor
3259     .LP
3260     As seen in the previous example, there are two parser routines that
3261     are normally called directly in an MGF translator or loader program.
3262     The first is
3263     .I mg_init,
3264     which takes no arguments but relies on the program having
3265     initialized those parts of the global
3266     .I mg_ehand
3267     array it cares about.
3268     The second routine is
3269     .I mg_load,
3270     which is called once on each input file.
3271     (A third routine,
3272     .I mg_clear,
3273     may be called to free the parser data structures after each file or
3274     after all files, if the program plans to continue rather than
3275     exit.)\0
3276     .LP
3277     The rest of the routines in a translator or loader program are
3278     called indirectly through the
3279     .I mg_ehand
3280     dispatch table, and they are the ones that do the real work of
3281     supporting the MGF entities.
3282     In addition to converting or discarding entities that the calling
3283     program does not know or care about, the parser library includes a
3284     set of context handlers that greatly simplify the translation
3285     process.
3286     There are three handlers for each of the three named contexts and
3287     their constituents, and two handlers for the two hierarchical
3288     context entities.
3289     To use these handlers, one simply sets the appropriate positions in the
3290     .I mg_ehand
3291     dispatch table to point to these functions.
3292     Additional functions and global data structures provide convenient
3293     access to the relevant contexts, and all of these are detailed in
3294     the following manual pages.
3295     .ds LH Basic Parser Routines
3296     .ds RH MG_INIT
3297     .bp
3298     .SH
3299     NAME
3300     .LP
3301     mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers
3302     .SH
3303     SYNOPSIS
3304     .LP
3305     #include "parser.h"
3306     .LP
3307     .B void
3308     mg_init(
3309     .B void
3310     )
3311     .LP
3312     .B int
3313     mg_defuhand(
3314     .B int
3315     argc,
3316     .B char
3317     **argv )
3318     .LP
3319     .B "extern int"
3320     (*mg_ehand[MG_NENTITIES])(
3321     .B int
3322     argc,
3323     .B char
3324     **argv )
3325     .LP
3326     .B "extern int"
3327     (*mg_uhand)(
3328     .B int
3329     argc,
3330     .B char
3331     **argv )
3332     .LP
3333     .B "extern unsigned"
3334     mg_nunknown
3335     .SH
3336     DESCRIPTION
3337     .LP
3338     The parser dispatch table,
3339     .I mg_ehand
3340     is initially set to all NULL pointers, and it
3341     is the duty of the calling program to assign entity handler functions to
3342     each of the supported entity positions in the array.
3343     The entities are given in the include file "parser.h" as the
3344     following:
3345     .DS
3346     #define MG_E_COMMENT 0 /* # */
3347     #define MG_E_COLOR 1 /* c */
3348     #define MG_E_CCT 2 /* cct */
3349     #define MG_E_CONE 3 /* cone */
3350     #define MG_E_CMIX 4 /* cmix */
3351     #define MG_E_CSPEC 5 /* cspec */
3352     #define MG_E_CXY 6 /* cxy */
3353 greg 1.4 #define MG_E_CYL 7 /* cyl */
3354 greg 1.1 #define MG_E_ED 8 /* ed */
3355     #define MG_E_FACE 9 /* f */
3356     #define MG_E_INCLUDE 10 /* i */
3357     #define MG_E_IES 11 /* ies */
3358 greg 1.2 #define MG_E_IR 12 /* ir */
3359 greg 1.1 #define MG_E_MATERIAL 13 /* m */
3360     #define MG_E_NORMAL 14 /* n */
3361     #define MG_E_OBJECT 15 /* o */
3362     #define MG_E_POINT 16 /* p */
3363     #define MG_E_PRISM 17 /* prism */
3364     #define MG_E_RD 18 /* rd */
3365     #define MG_E_RING 19 /* ring */
3366     #define MG_E_RS 20 /* rs */
3367     #define MG_E_SIDES 21 /* sides */
3368     #define MG_E_SPH 22 /* sph */
3369     #define MG_E_TD 23 /* td */
3370     #define MG_E_TORUS 24 /* torus */
3371     #define MG_E_TS 25 /* ts */
3372     #define MG_E_VERTEX 26 /* v */
3373     #define MG_E_XF 27 /* xf */
3374    
3375     #define MG_NENTITIES 28 /* total # entities */
3376     .DE
3377     .LP
3378     Once the
3379     .I mg_ehand
3380     array has been set by the program, the
3381     .I mg_init
3382     routine must be called to complete the initialization process.
3383     This should be done once and only once per invocation, before any other
3384     parser routines are called.
3385     .LP
3386     The
3387     .I mg_uhand
3388     variable points to the current handler for unknown entities
3389     encountered on the input.
3390     Its default value points to the
3391     .I mg_defuhand
3392     function, which simply increments the global variable
3393     .I mg_nunknown,
3394     printing a warning message on the standard error on the first
3395     offense.
3396     (This message may be avoided by incrementing
3397     .I mg_nunknown
3398     before processing begins.)\0
3399     If
3400     .I mg_uhand
3401     is assigned a value of NULL, then an unknown entity will return an
3402     .I MG_EUNK
3403     error, which will cause the parser to abort.
3404     (See the
3405     .I mg_load
3406     page for a list of errors.)\0
3407     If the
3408     .I mg_uhand
3409     pointer is assigned to another function, that function will receive
3410     any unknown entities and their arguments, and the parsing will
3411     abort if the new function returns a non-zero error value.
3412     This offers a convenient way to customize the language by adding
3413     non-standard entities.
3414     .SH
3415     DIAGNOSTICS
3416     .LP
3417     If an inconsistent set of entities has been set for support, the
3418     .I mg_init
3419     routine will print an informative message to standard error and abort
3420     the calling program with a call to
3421     .I exit.
3422     This is normally unacceptable behavior for a library routine, but since
3423     such an error indicates a fault with the calling program itself,
3424     recovery is impossible.
3425     .SH
3426     SEE ALSO
3427     .LP
3428     mg_load, mg_handle
3429     .ds RH MG_LOAD
3430     .bp
3431     .SH
3432     NAME
3433     .LP
3434     mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures
3435     .SH
3436     SYNOPSIS
3437     .LP
3438     #include "parser.h"
3439     .LP
3440     .B int
3441     mg_load(
3442     .B char
3443     *filename )
3444     .LP
3445     .B void
3446     mg_clear(
3447     .B void
3448     )
3449     .LP
3450     .B extern
3451     MG_FCTXT *mg_file
3452     .LP
3453     .B "extern char"
3454     *mg_err[MG_NERRS]
3455     .SH
3456     DESCRIPTION
3457     .LP
3458     The
3459     .I mg_load
3460     function loads the named file, or standard input if
3461     .I filename
3462     is the NULL pointer.
3463     Calls back to the appropriate MGF handler routines are made through the
3464     .I mg_ehand
3465     dispatch table.
3466     .LP
3467     The global
3468     .I mg_file
3469     variable points to the current file context structure, which
3470     may be useful for the interpretation of certain entities, such as
3471     .UL ies,
3472     which must know the directory path of the enclosing file.
3473     This structure is of the defined type
3474     .I MG_FCTXT,
3475     given in "parser.h" as:
3476     .DS
3477     typedef struct mg_fctxt {
3478     char fname[96]; /* file name */
3479     FILE *fp; /* stream pointer */
3480     int fid; /* unique file context id */
3481     char inpline[4096]; /* input line */
3482     int lineno; /* line number */
3483     struct mg_fctxt *prev; /* previous context */
3484     } MG_FCTXT;
3485     .DE
3486     .SH
3487     DIAGNOSTICS
3488     .LP
3489     If an error is encountered during parsing,
3490     .I mg_load
3491     will print an appropriate error message to the standard error stream
3492     and return one of the non-zero values from "parser.h" listed below:
3493     .DS
3494     #define MG_OK 0 /* normal return value */
3495     #define MG_EUNK 1 /* unknown entity */
3496     #define MG_EARGC 2 /* wrong number of arguments */
3497     #define MG_ETYPE 3 /* argument type error */
3498 greg 1.14 #define MG_EILL 4 /* illegal argument value */
3499 greg 1.1 #define MG_EUNDEF 5 /* undefined reference */
3500     #define MG_ENOFILE 6 /* cannot open input file */
3501     #define MG_EINCL 7 /* error in included file */
3502     #define MG_EMEM 8 /* out of memory */
3503     #define MG_ESEEK 9 /* file seek error */
3504     #define MG_EBADMAT 10 /* bad material specification */
3505 greg 1.8 #define MG_ELINE 11 /* input line too long */
3506 greg 1.10 #define MG_ECNTXT 12 /* unmatched context close */
3507 greg 1.1
3508 greg 1.14 #define MG_NERRS 13
3509 greg 1.1 .DE
3510     If it is inappropriate to send output to standard error, the calling
3511     program should use the routines listed under
3512     .I mg_open
3513     for better control over the parsing process.
3514     .LP
3515     The
3516     .I mg_err
3517     array contains error messages corresponding to each of the values
3518     listed above in the native country's language.
3519     .SH
3520     SEE ALSO
3521     .LP
3522 greg 1.4 mg_fgetpos, mg_handle, mg_init, mg_open
3523 greg 1.1 .ds RH MG_OPEN
3524     .bp
3525     .SH
3526     NAME
3527     .LP
3528     mg_open, mg_read, mg_parse, mg_close - MGF file loading subroutines
3529     .SH
3530     SYNOPSIS
3531     .LP
3532     #include "parser.h"
3533     .LP
3534     .B int
3535     mg_open( MG_FCTXT *fcp,
3536     .B char
3537     *filename )
3538     .LP
3539     .B int
3540     mg_read(
3541     .B void
3542     )
3543     .LP
3544     .B int
3545     mg_parse(
3546     .B void
3547     )
3548     .LP
3549     .B void
3550     mg_close(
3551     .B void
3552     )
3553     .SH
3554     DESCRIPTION
3555     .LP
3556     Most loaders and translators will call the
3557     .I mg_load
3558     routine to handle the above operations, but some programs or
3559     entity handlers require tighter control over the loading process.
3560     .LP
3561     The
3562     .I mg_open
3563     routine takes an uninitialized
3564     .I MG_FCTXT
3565     structure and a file name as its arguments.
3566     If
3567     .I filename
3568     is the NULL pointer, the standard input is "opened."
3569     The
3570     .I fcp
3571     structure will be set by
3572     .I mg_open
3573     prior to its return, and the global
3574     .I mg_file
3575     pointer will be assigned to point to it.
3576     This variable must not be destroyed until after the file is closed
3577     with a call to
3578     .I mg_close.
3579     (See the
3580     .I mg_load
3581     page for a definition of
3582     .I mg_file
3583     and the
3584     .I MG_FCTXT
3585     type.)\0
3586     .LP
3587     The
3588     .I mg_read
3589     function reads the next input line from the current file,
3590     returning the number of characters in the line, or zero if the
3591     end of file is reached or there is a file error.
3592 greg 1.11 If the value returned equals MG_MAXLINE-1,
3593 greg 1.8 then the input line was too long, and you
3594     should return an MG_ELINE error.
3595 greg 1.11 The function keeps track of the
3596 greg 1.1 line number in the current file context
3597     .I mg_file,
3598     which also contains the line that was read.
3599     .LP
3600     The
3601     .I mg_parse
3602     function breaks the current line in the
3603     .I mg_file
3604     structure into words and calls the appropriate handler routine, if
3605     any.
3606     Blank lines and unsupported entities cause a quick return.
3607     .LP
3608     The
3609     .I mg_close
3610     routine closes the current input file (unless it is the standard
3611     input) and returns to the previous file context (if any).
3612     .SH
3613     DIAGNOSTICS
3614     .LP
3615     The
3616     .I mg_open
3617     function returns
3618     .I MG_OK
3619     (0) normally, or
3620     .I MG_ENOFILE
3621     if the open fails for some reason.
3622     .LP
3623     The
3624     .I mg_parse
3625     function returns
3626     .I MG_OK
3627     if the current line was successfully interpreted, or one of the
3628     defined error values if there is a problem.
3629     (See the
3630     .I mg_load
3631     page for the defined error values.)\0
3632     .SH
3633     SEE ALSO
3634     .LP
3635     mg_fgetpos, mg_handle, mg_init, mg_load
3636     .ds RH MG_FGETPOS
3637     .bp
3638     .SH
3639     NAME
3640     .LP
3641     mg_fgetpos, mg_fgoto - get current file position and seek to pointer
3642     .SH
3643     SYNOPSIS
3644     .LP
3645     #include "parser.h"
3646     .LP
3647     .B void
3648     mg_fgetpos( MG_FPOS *pos )
3649     .LP
3650     .B int
3651     mg_fgoto( MG_FPOS *pos )
3652     .SH
3653     DESCRIPTION
3654     .LP
3655     The
3656     .I mg_fgetpos
3657     gets the current MGF file position and loads it into the passed
3658     .I MG_FPOS
3659     structure,
3660     .I pos.
3661     .LP
3662     The
3663     .I mg_fgoto
3664     function seeks to the position
3665     .I pos,
3666     taken from a previous call to
3667     .I mg_fgetpos.
3668     .SH
3669     DIAGNOSTICS
3670     .LP
3671     If
3672     .I mg_fgoto
3673     is passed an illegal pointer or one that does not correspond to the
3674     current
3675     .I mg_file
3676     context, it will return the
3677     .I MG_ESEEK
3678     error value.
3679     Normally, it returns
3680     .I MG_OK
3681     (0).
3682     .SH
3683     SEE ALSO
3684     .LP
3685     mg_load, mg_open
3686     .ds RH MG_HANDLE
3687     .bp
3688     .SH
3689     NAME
3690     .LP
3691     mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance and control
3692     .SH
3693     SYNOPSIS
3694     .LP
3695     .B int
3696     mg_handle(
3697     .B int
3698     en,
3699     .B int
3700     ac,
3701     .B char
3702     *av )
3703     .LP
3704     .B int
3705     mg_entity(
3706     .B char
3707     *name )
3708     .LP
3709     .B "extern char"
3710     mg_ename[MG_NENTITIES][MG_MAXELEN]
3711     .LP
3712     .B "extern int"
3713     mg_nqcdivs
3714     .SH
3715     DESCRIPTION
3716     .LP
3717     The
3718     .I mg_handle
3719     routine may be used to pass entities back to the parser
3720     to be redirected through the
3721     .I mg_ehand
3722     dispatch table.
3723     This method is recommended rather than calling through
3724     .I mg_ehand
3725     directly, since the parser sometimes has its own support routines
3726     that it needs to call for specific entities.
3727     The first argument,
3728     .I en,
3729     is the corresponding entity number, or -1 if
3730     .I mg_handle
3731     should figure it out from the first
3732     .I av
3733     argument.
3734     .LP
3735     The
3736     .I mg_entity
3737     function gets an entity number from its name, using a hash
3738     table on the
3739     .I mg_ename
3740     list.
3741     .LP
3742     The
3743     .I mg_ename
3744     table contains the string names corresponding to each MGF entity in
3745     the designated order.
3746     (See the
3747     .I mg_init
3748     page for the list of MGF entities.)\0
3749     .LP
3750     The global integer variable
3751     .I mg_nqcdivs
3752     tells the parser how many subdivisions to use per quarter circle (90
3753     degrees) when tesselating curved geometry.
3754     The default value is 5, and it may be reset at any time by the
3755     calling program.
3756     .SH
3757     DIAGNOSTICS
3758     .LP
3759     The
3760     .I mg_handle
3761     function returns
3762     .I MG_OK
3763     if the entity is handled correctly, or one of the predefined error
3764     values if there is a problem.
3765     (See the
3766     .I mg_load
3767     page for a list of error values.)\0
3768     .LP
3769     The
3770     .I mg_entity
3771     function returns -1 if the passed name does not appear in the
3772     .I mg_ename
3773     list.
3774     .SH
3775     SEE ALSO
3776     .LP
3777     mg_init, mg_load, mg_open
3778     .ds RH ISINT, ISFLT, ISNAME
3779     .bp
3780     .SH
3781     NAME
3782     .LP
3783     isint, isflt, isname - determine if string fits integer or real format,
3784     or is legal identifier
3785     .SH
3786     SYNOPSIS
3787     .LP
3788     .B int
3789     isint(
3790     .B char
3791     *str )
3792     .LP
3793     .B int
3794     isflt(
3795     .B char
3796     *str )
3797     .LP
3798     .B int
3799     isname(
3800     .B char
3801     *str )
3802     .SH
3803     DESCRIPTION
3804     .LP
3805     The
3806     .I isint
3807     function checks to see if the passed string
3808     .I str
3809     matches a decimal integer format (positive or negative),
3810     and returns 1 or 0 based on whether it does or does not.
3811     .LP
3812     The
3813     .I isflt
3814     function checks to see if the passed string
3815     .I str
3816     matches a floating point format (positive or negative with optional
3817     exponent), and returns 1 or 0 based on whether it does or does not.
3818     .LP
3819     The
3820     .I isname
3821     function checks to see if the passed string
3822     .I str
3823     is a legal identifier name.
3824     In MGF, a legal identifier must begin with a letter and contain only
3825     visible ASCII characters (those between decimal 33 and 127 inclusive).
3826     The one caveat to this is that names may begin with one or more
3827     underscores ('_'), but this is a trick employed by the parser to
3828     maintain a separate name space from the user, and is not legal usage
3829     otherwise.
3830     .LP
3831     Note that a string that matches an integer format is also a valid
3832     floating point value.
3833     Conversely, a string that is not a floating point number cannot be a
3834     valid integer.
3835     .LP
3836     These routines are useful for checking arguments passed to entity
3837     handlers that certain types in certain positions.
3838     If an invalid argument is passed, the handler should return an
3839     .I MG_ETYPE
3840     error.
3841     .SH
3842     SEE ALSO
3843     .LP
3844     mg_init, mg_load
3845     .ds LH Entity Support Routines
3846     .ds RH C_HVERTEX
3847     .bp
3848     .SH
3849     NAME
3850     .LP
3851     c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support
3852     .SH
3853     SYNOPSIS
3854     .LP
3855     #include "parser.h"
3856     .LP
3857     .B int
3858     c_hvertex(
3859     .B int
3860     argc,
3861     .B char
3862     **argv )
3863     .LP
3864     C_VERTEX *c_getvert(
3865     .B char
3866     *name )
3867     .LP
3868     .B "extern char"
3869     *c_vname
3870     .LP
3871     .B extern
3872     C_VERTEX *c_cvertex
3873     .SH
3874     DESCRIPTION
3875     .LP
3876     The
3877     .I c_hvertex
3878     function handles the MGF vertex entities,
3879     .UL v,
3880     .UL p
3881     and
3882     .UL n.
3883     If either
3884     .UL p
3885     or
3886     .UL n
3887     is supported, then
3888     .UL v
3889     must be also.
3890     The assignments are normally made to the
3891     .I mg_ehand
3892     array prior to parser initialization, like so:
3893     .DS
3894     mg_ehand[MG_E_VERTEX] = c_hvertex; /* support "v" entity */
3895     mg_ehand[MG_E_POINT] = c_hvertex; /* support "p" entity */
3896     mg_ehand[MG_E_NORMAL] = c_hvertex; /* support "n" entity */
3897     /* other entity handler assignments... */
3898     mg_init(); /* initialize parser */
3899     .DE
3900     If vertex normals are not understood by any of the program-supported
3901     entities, then the
3902     .I MG_E_NORMAL
3903     entry may be left with its original NULL assignment.
3904     .LP
3905     The
3906     .I c_getvert
3907     call takes the name of a defined vertex and returns a pointer to its
3908     .I C_VERTEX
3909     structure, defined in "parser.h" as:
3910     .DS
3911     typedef FLOAT FVECT[3]; /* a 3-d real vector */
3912    
3913     typedef struct {
3914     int clock; /* incremented each change -- resettable */
3915     FVECT p, n; /* point and normal */
3916     } C_VERTEX; /* vertex context */
3917     .DE
3918     The
3919     .I clock
3920     member will be incremented each time the value gets changed by a
3921     .UL p
3922     or
3923     .UL n
3924     entity, and may be reset by the controlling program if desired.
3925     This is a convenient way to keep track of whether or not a vertex has
3926     changed since its last use.
3927     To link identical vertices, one must also check that the current
3928     transform has not changed, which is uniquely identified by the
3929     global
3930     .I xf_context->xid
3931 greg 1.14 variable, but only if one is using the parser library's transform
3932 greg 1.1 handler.
3933     (See the
3934     .I xf_handler
3935     page.)\0
3936     .LP
3937     It is possible but not recommended to alter the contents of the
3938     vertex structure returned by
3939     .I c_getvert.
3940     Normally it is read during the
3941     interpretation of entities using named vertices.
3942     .LP
3943     The name of the current vertex is given by the global
3944     .I c_cvname
3945     variable, which is set to NULL if the unnamed vertex is current.
3946     The current vertex value is pointed to by the global variable
3947     .I c_cvertex,
3948     which should never be NULL.
3949     .SH
3950     DIAGNOSTICS
3951     .LP
3952     The
3953     .I c_hvertex
3954     function returns
3955     .I MG_OK
3956     (0) if the vertex is handled correctly, or one of the predefined
3957     error values if there is a problem.
3958     (See the
3959     .I mg_load
3960     page for a list of errors.)\0
3961     .LP
3962     The
3963     .I c_getvert
3964     function returns NULL if the specified vertex name is undefined, at
3965     which point the calling function should return an
3966     .I MG_EUNDEF
3967     error.
3968     .SH
3969     SEE ALSO
3970     .LP
3971     c_hcolor, c_hmaterial, mg_init, mg_load, xf_handler
3972     .ds RH C_HCOLOR
3973     .bp
3974     .SH
3975     NAME
3976     .LP
3977     c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey -
3978     color entity support
3979     .SH
3980     SYNOPSIS
3981     .LP
3982     #include "parser.h"
3983     .LP
3984     .B int
3985     c_hcolor(
3986     .B int
3987     argc,
3988     .B char
3989     **argv )
3990     .LP
3991     C_COLOR *c_getcolor(
3992     .B char
3993     *name )
3994     .LP
3995     .B "extern char"
3996     *c_ccname
3997     .LP
3998     .B extern
3999     C_COLOR *c_ccolor
4000     .LP
4001     .B void
4002     c_ccvt( C_COLOR *cvp,
4003     .B int
4004     cflags )
4005     .LP
4006     .B int
4007     c_isgrey( C_COLOR *cvp )
4008     .SH
4009     DESCRIPTION
4010     .LP
4011     The
4012     .I c_hcolor
4013     function supports the MGF entities,
4014     .UL c,
4015     .UL cxy,
4016     .UL cspec,
4017     .UL cct
4018     and
4019     .UL cmix.
4020     It is an error to support any of the color field entities without
4021     supporting the
4022     .UL c
4023     entity itself.
4024     The assignments are normally made to the
4025     .I mg_ehand
4026     array prior to parser initialization, like so:
4027     .DS
4028     mg_ehand[MG_E_COLOR] = c_hcolor; /* support "c" entity */
4029     mg_ehand[MG_E_CXY] = c_hcolor; /* support "cxy" entity */
4030     mg_ehand[MG_E_CSPEC] = c_hcolor; /* support "cspec" entity */
4031     mg_ehand[MG_E_CCT] = c_hcolor; /* support "cct" entity */
4032     mg_ehand[MG_E_CMIX] = c_hcolor; /* support "cmix" entity */
4033     /* other entity handler assignments... */
4034     mg_init(); /* initialize parser */
4035     .DE
4036     If the loader/translator has no use for spectral data, the entries for
4037     .UL cspec
4038     and
4039     .UL cct
4040     may be left with their original NULL assignments and these entities will
4041     be re-expressed appropriately as tristimulus values.
4042     .LP
4043     The
4044     .I c_getcolor
4045     function takes the name of a defined color and returns a pointer to its
4046     .I C_COLOR
4047     structure, defined in "parser.h" as:
4048     .DS
4049     #define C_CMINWL 380 /* minimum wavelength */
4050     #define C_CMAXWL 780 /* maximum wavelength */
4051     #define C_CNSS 41 /* number of spectral samples */
4052     #define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1))
4053     #define C_CMAXV 10000 /* nominal maximum sample value */
4054     #define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */
4055    
4056     typedef struct {
4057     int clock; /* incremented each change */
4058     short flags; /* what's been set */
4059     short ssamp[C_CNSS]; /* spectral samples, min wl to max */
4060     long ssum; /* straight sum of spectral values */
4061     float cx, cy; /* xy chromaticity value */
4062     float eff; /* efficacy (lumens/watt) */
4063     } C_COLOR; /* color context */
4064     .DE
4065     The
4066     .I clock
4067     member will be incremented each time the value gets changed by a
4068     color field entity, and may be reset by the calling program if
4069     desired.
4070     This is a convenient way to keep track of whether or not a color has
4071     changed since its last use.
4072     The
4073     .I flags
4074     member indicates which color representations have been assigned,
4075     and is an inclusive OR of one or more of the following:
4076     .DS
4077     #define C_CSSPEC 01 /* flag if spectrum is set */
4078     #define C_CDSPEC 02 /* flag if defined w/ spectrum */
4079     #define C_CSXY 04 /* flag if xy is set */
4080     #define C_CDXY 010 /* flag if defined w/ xy */
4081     #define C_CSEFF 020 /* flag if efficacy set */
4082     .DE
4083     .LP
4084     It is possible but not recommended to alter the contents of the
4085     color structure returned by
4086     .I c_getcolor.
4087     Normally, this routine is never called directly, since there are no
4088     entities that access colors by name other than
4089     .UL c.
4090     .LP
4091     The global variable
4092     .I c_ccname
4093     points to the name of the current color, or NULL if it is unnamed.
4094     The variable
4095     .I c_ccolor
4096     points to the current color value, which should never be NULL.
4097     .LP
4098     The
4099     .I c_ccvt
4100     routine takes a
4101     .I C_COLOR
4102     structure and a set of desired flag settings and computes the
4103     missing color representation(s).
4104     .LP
4105     The
4106     .I c_isgrey
4107     function returns 1 if the passed color is very close to neutral
4108     grey, or 0 otherwise.
4109     .SH
4110     DIAGNOSTICS
4111     .LP
4112     The
4113     .I c_hcolor
4114     function returns
4115     .I MG_OK
4116     (0) if the color is handled correctly, or one of the predefined
4117     error values if there is a problem.
4118     (See the
4119     .I mg_load
4120     page for a list of errors.)\0
4121     .LP
4122     The
4123     .I c_getcolor
4124     function returns NULL if the specified color name is undefined, at
4125     which point the calling function should return an
4126     .I MG_EUNDEF
4127     error.
4128     .SH
4129     SEE ALSO
4130     .LP
4131     c_hmaterial, c_hvertex, mg_init, mg_load
4132     .ds RH C_HMATERIAL
4133     .bp
4134     .SH
4135     NAME
4136     .LP
4137     c_hmaterial, c_getmaterial, c_cmname, c_cmaterial -
4138     material entity support
4139     .SH
4140     SYNOPSIS
4141     .LP
4142     #include "parser.h"
4143     .LP
4144     .B int
4145     c_hmaterial(
4146     .B int
4147     argc,
4148     .B char
4149     **argv )
4150     .LP
4151     C_MATERIAL *c_getmaterial(
4152     .B char
4153     *name )
4154     .LP
4155     .B "extern char"
4156     *c_cmname
4157     .LP
4158     .B extern
4159     C_MATERIAL *c_cmaterial
4160     .SH
4161     DESCRIPTION
4162     .LP
4163     The
4164     .I c_hmaterial
4165     function supports the MGF entities,
4166     .UL m,
4167     .UL ed,
4168     .UL ir,
4169     .UL rd,
4170     .UL rs,
4171     .UL sides,
4172     .UL td,
4173     and
4174     .UL ts.
4175     It is an error to support any of the material field entities without
4176     supporting the
4177     .UL m
4178     entity itself.
4179     The assignments are normally made to the
4180     .I mg_ehand
4181     array prior to parser initialization, like so:
4182     .DS
4183     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* support "m" entity */
4184     mg_ehand[MG_E_ED] = c_hmaterial; /* support "ed" entity */
4185     mg_ehand[MG_E_IR] = c_hmaterial; /* support "ir" entity */
4186     mg_ehand[MG_E_RD] = c_hmaterial; /* support "rd" entity */
4187     mg_ehand[MG_E_RS] = c_hmaterial; /* support "rs" entity */
4188     mg_ehand[MG_E_SIDES] = c_hmaterial; /* support "sides" entity */
4189     mg_ehand[MG_E_TD] = c_hmaterial; /* support "td" entity */
4190     mg_ehand[MG_E_TS] = c_hmaterial; /* support "ts" entity */
4191     /* other entity handler assignments... */
4192     mg_init(); /* initialize parser */
4193     .DE
4194     Any of the above entities besides
4195     .UL m
4196     may be unsupported, but the parser will not attempt to include their
4197     effect into other members, e.g. an unsupported
4198     .UL rs
4199     component will not be added back into the
4200     .UL rd
4201     member.
4202     It is therefore safer to support all of the relevant material
4203     entities and make final approximations from the complete
4204     .I C_MATERIAL
4205     structure.
4206     .LP
4207     The
4208     .I c_getmaterial
4209     function takes the name of a defined material and returns a pointer to its
4210     .I C_MATERIAL
4211     structure, defined in "parser.h" as:
4212     .DS
4213     #define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */
4214    
4215     typedef struct {
4216     int clock; /* incremented each change -- resettable */
4217     int sided; /* 1 if surface is 1-sided, 0 for 2-sided */
4218     float nr, ni; /* index of refraction, real and imaginary */
4219     float rd; /* diffuse reflectance */
4220     C_COLOR rd_c; /* diffuse reflectance color */
4221     float td; /* diffuse transmittance */
4222     C_COLOR td_c; /* diffuse transmittance color */
4223     float ed; /* diffuse emittance */
4224     C_COLOR ed_c; /* diffuse emittance color */
4225     float rs; /* specular reflectance */
4226     C_COLOR rs_c; /* specular reflectance color */
4227     float rs_a; /* specular reflectance roughness */
4228     float ts; /* specular transmittance */
4229     C_COLOR ts_c; /* specular transmittance color */
4230     float ts_a; /* specular transmittance roughness */
4231     } C_MATERIAL; /* material context */
4232     .DE
4233     The
4234     .I clock
4235     member will be incremented each time the value gets changed by a
4236     material field entity, and may be reset by the calling program if
4237     desired.
4238     This is a convenient way to keep track of whether or not a material has
4239     changed since its last use.
4240     .LP
4241     All reflectance and transmittance values correspond to normal
4242     incidence, and may vary as a function of angle depending on the
4243     index of refraction.
4244     A solid object is normally represented with a one-sided material.
4245     A two-sided material is most appropriate for thin surfaces, though
4246     it may be used also when the surface normal orientations in a model
4247     are unreliable.
4248     .LP
4249     If a transparent or translucent surface is one-sided, then the
4250     absorption will change as a function of distance through the
4251     material, and a single value for diffuse or specular transmittance is
4252     ambiguous.
4253     We therefore define a standard thickness,
4254     .I C_1SIDEDTHICK,
4255     which is the object thickness to which the given values correspond,
4256     so that one may compute the isotropic absorptance of the material.
4257     .LP
4258     It is possible but not recommended to alter the contents of the
4259     material structure returned by
4260     .I c_getmaterial.
4261     Normally, this routine is never called directly, since there are no
4262     entities that access materials by name other than
4263     .UL m.
4264     .LP
4265     The global variable
4266     .I c_cmname
4267     points to the name of the current material, or NULL if it is unnamed.
4268     The variable
4269     .I c_cmaterial
4270     points to the current material value, which should never be NULL.
4271     .SH
4272     DIAGNOSTICS
4273     .LP
4274     The
4275     .I c_hmaterial
4276     function returns
4277     .I MG_OK
4278     (0) if the color is handled correctly, or one of the predefined
4279     error values if there is a problem.
4280     (See the
4281     .I mg_load
4282     page for a list of errors.)\0
4283     .LP
4284     The
4285     .I c_getmaterial
4286     function returns NULL if the specified material name is undefined, at
4287     which point the calling function should return an
4288     .I MG_EUNDEF
4289     error.
4290     .SH
4291     SEE ALSO
4292     .LP
4293     c_hcolor, c_hvertex, mg_init, mg_load
4294     .ds RH OBJ_HANDLER
4295     .bp
4296     .SH
4297     NAME
4298     .LP
4299     obj_handler, obj_clear, obj_nnames, obj_name - object name support
4300     .SH
4301     SYNOPSIS
4302     .LP
4303     .B int
4304     obj_handler(
4305     .B int
4306     argc,
4307     .B char
4308     **argv )
4309     .LP
4310     .B void
4311     obj_clear(
4312     .B void
4313     )
4314     .LP
4315     .B "extern int"
4316     obj_nnames
4317     .LP
4318     .B "extern char"
4319     **obj_name
4320     .SH
4321     DESCRIPTION
4322     .LP
4323     The
4324     .I obj_handler
4325     routine should be assigned to the
4326     .I MG_E_OBJECT
4327     entry of the parser's
4328     .I mg_ehand
4329     array prior to calling
4330     .I mg_load
4331     if the loader/translator wishes to support hierarchical object
4332     names.
4333     .LP
4334     The
4335     .I obj_clear
4336     function may be used to clear the object name stack and free any
4337     associated memory, but this is usually not necessary since
4338     .UL o
4339     begin and end entities are normally balanced in the input.
4340     .LP
4341     The global
4342     .I obj_nnames
4343     variable indicates the number of names currently in the object
4344     stack, and the
4345     .I obj_name
4346     list contains the name strings in the same order as they were
4347     encountered on the input.
4348     (I.e. the most recently pushed name is last.)\0
4349     .SH
4350     DIAGNOSTICS
4351     .LP
4352     The
4353     .I obj_handler
4354     function returns
4355     .I MG_OK
4356     (0) if the color is handled correctly, or one of the predefined
4357     error values if there is a problem.
4358     (See the
4359     .I mg_load
4360     page for a list of errors.)\0
4361     .SH
4362     SEE ALSO
4363     .LP
4364     mg_init, mg_load, xf_handler
4365     .ds RH XF_HANDLER
4366     .bp
4367     .SH
4368     NAME
4369     .LP
4370     xf_handler, xf_clear, xf_context, xf_argend - transformation support
4371     .SH
4372     SYNOPSIS
4373     .LP
4374     .B int
4375     xf_handler(
4376     .B int
4377     argc,
4378     .B char
4379     **argv )
4380     .LP
4381     .B void
4382     xf_clear(
4383     .B void
4384     )
4385     .LP
4386     .B extern
4387     XF_SPEC *xf_context
4388     .LP
4389     .B "extern char"
4390     **xf_argend
4391     .SH
4392     DESCRIPTION
4393     .LP
4394     The
4395     .I xf_handler
4396     routine should be assigned to the
4397     .I MG_E_XF
4398     entry of the parser's
4399     .I mg_ehand
4400     array prior to calling
4401     .I mg_load
4402     if the loader/translator wishes to support hierarchical
4403     transformations.
4404     (Note that all MGF geometric entities require this support.)\0
4405     .LP
4406     The
4407     .I xf_clear
4408     function may be used to clear the transform stack and free any
4409     associated memory, but this is usually not necessary since
4410     .UL xf
4411     begin and end entities are normally balanced in the input.
4412     .LP
4413     The global
4414     .I xf_context
4415     variable points to the current transformation context, which is of
4416     the type
4417     .I XF_SPEC,
4418     described in "parser.h":
4419     .DS
4420     typedef struct xf_spec {
4421     long xid; /* unique transform id */
4422     short xac; /* context argument count */
4423     short rev; /* boolean true if vertices reversed */
4424     XF xf; /* cumulative transformation */
4425     struct xf_array *xarr; /* transformation array pointer */
4426     struct xf_spec *prev; /* previous transformation context */
4427     } XF_SPEC; /* followed by argument buffer */
4428     .DE
4429     The
4430     .I xid
4431     member is a identifier associated with this transformation,
4432     which should be the same for identical transformations, as an aid to
4433     vertex sharing.
4434     (See also the
4435     .I c_hvertex
4436     page.)\0
4437     The
4438     .I xac
4439     member indicates the total number of transform arguments, and is
4440     used to indicate the position of the first argument relative to the
4441     last one pointed to by the global
4442     .I xf_argend
4443     variable.
4444     .LP
4445     The first transform argument starts at
4446     .I xf_argv,
4447     which is a macro defined in "parser.h" as:
4448     .DS
4449     #define xf_argv (xf_argend - xf_context->xac)
4450     .DE
4451     Note that accessing this macro will result in a segmentation violation
4452     if the current context is NULL, so one should first test the second macro
4453     .I xf_argc
4454     against zero.
4455     This macro is defined as:
4456     .DS
4457     #define xf_argc (xf_context==NULL ? 0 : xf_context->xac)
4458     .DE
4459     .LP
4460     Normally, neither of these macros will be used, since there are
4461     routines for transforming points, vectors and scalars directly based
4462     on the current transformation context.
4463     (See the
4464     .I xf_xfmpoint
4465     page for details.)\0
4466     .LP
4467     The
4468     .I rev
4469     member of the
4470     .I XF_SPEC
4471     structure indicates whether or not this transform reverses the order
4472     of polygon vertices.
4473     This member will be 1 if the transformation mirrors about an odd
4474     number of coordinate axes, thus inverting faces.
4475     The usual thing to do in this circumstance is to interpret the
4476     vertex arguments in the reverse order, so as to bring the face back
4477     to its original orientation in the new position.
4478     .LP
4479     The
4480     .I xf
4481     member contains the transformation scalefactor (in xf.sca)
4482     and 4x4 homogeneous matrix (in xf.xfm), but these will usually not
4483     be accessed directly.
4484     Likewise, the
4485     .I xarr
4486     and
4487     .I prev
4488     members point to data that should not be needed by the calling
4489     program.
4490     .SH
4491     DIAGNOSTICS
4492     .LP
4493     The
4494     .I xf_handler
4495     function returns
4496     .I MG_OK
4497     (0) if the color is handled correctly, or one of the predefined
4498     error values if there is a problem.
4499     (See the
4500     .I mg_load
4501     page for a list of errors.)\0
4502     .SH
4503     SEE ALSO
4504     .LP
4505     mg_init, mg_load, obj_handler, xf_xfmpoint
4506     .ds RH XF_XFMPOINT
4507     .bp
4508     .SH
4509     NAME
4510     .LP
4511 greg 1.3 xf_xfmpoint, xf_xfmvect, xf_rotvect, xf_scale - apply current
4512 greg 1.1 transformation
4513     .SH
4514     SYNOPSIS
4515     .LP
4516     .B void
4517     xf_xfmpoint( FVECT pnew, FVECT pold )
4518     .LP
4519     .B void
4520     xf_xfmvect( FVECT vnew, FVECT vold )
4521     .LP
4522     .B void
4523     xf_rotvect( FVECT nnew, FVECT nold )
4524     .LP
4525     .B double
4526     xf_scale(
4527     .B double
4528     sold )
4529     .SH
4530     DESCRIPTION
4531     .LP
4532     The
4533     .I xf_xfmpoint
4534     routine applies the current transformation defined by
4535     .I xf_context
4536     to the point
4537     .I pold,
4538     scaling, rotating and moving it to its proper location, which is put in
4539     .I pnew.
4540 greg 1.2 (As for
4541     .I xf_xfmvect
4542     and
4543     .I xf_rotvect,
4544     the two arguments may point to the same vector.)\0
4545 greg 1.1 .LP
4546     The
4547     .I xf_xfmvect
4548     routine applies the current transformation to the vector
4549     .I vold,
4550     scaling and rotating it to its proper location, which is put in
4551     .I vnew.
4552     The only difference between
4553     .I xf_xfmpoint
4554     and
4555     .I xf_xfmvect
4556     is that in the latter, the final translation is not applied.
4557     .LP
4558     The
4559     .I xf_rotvect
4560     routine rotates the vector
4561     .I nold
4562     using the current transformation, and stores the result in
4563     .I nnew.
4564     No translation or scaling is applied, which is the appropriate
4565     action for surface normal vectors for example.
4566     .LP
4567     The
4568     .I xf_scale
4569     function takes a scalar argument
4570     .I sold
4571     and applies the current scale factor, returning the result.
4572     .SH
4573     SEE ALSO
4574     .LP
4575     xf_handler
4576     .ds LH
4577     .ds RH
4578     .bp
4579     .NH
4580     Application Notes
4581     .NH 2
4582     Relation to Standard Practices in Computer Graphics
4583     .LP
4584     For those coming from a computer graphics background, some of the
4585     choices in the material model may seem strange or even capricious.
4586     Why not simply stick with RGB colors and a Phong specular component
4587     like everyone else?
4588     What is the point in choosing the number of sides to a material?
4589     .LP
4590     In the real world, a surface can have only one side,
4591     defining the interface between one volume and another.
4592     Many object-space rendering packages (e.g. z-buffer algorithms) take
4593     advantage of this fact by culling back-facing polygons and thus saving
4594     as much as 50% of the preprocessing time.
4595     However, many models rely on an
4596     approximation whereby a single surface is used to represent a very thin
4597     volume, such as a pane of glass, and this also can provide significant
4598     calculational savings in an image-space algorithm (such as
4599     ray-tracing).
4600     Also, many models are created in such a way that the front vs. back
4601     information is lost or confused, so that the back side of one or
4602     more surfaces may have to serve as the front side during rendering.
4603     (AutoCAD is one easily identified culprit in this department.)\0
4604     Since both types of surface models are useful and any
4605     rendering algorithm may ultimately be applied, MGF provides a way
4606     to specify sidedness rather than picking one interpretation or the other.
4607     .LP
4608     The problem with RGB is that there is no accepted standard, and even
4609     if we were to set one it would either be impossible to realize (i.e.
4610     impossible to create phosphors with the chosen colors) or it would
4611     have a gamut that excludes many saturated colors.
4612     The CIE color system was very carefully conceived and developed,
4613     and is the standard to which all photometric measurements adhere.
4614     It is therefore the logical choice in any standard format, though it
4615     has been too often ignored by the computer graphics community.
4616     .LP
4617     Regarding Phong shading, this was never a physical model and making it
4618     behave basic laws of reciprocity and energy balance is difficult.
4619     More to the point, specular power has almost nothing to do with
4620     surface microstructure, and is difficult to set properly
4621     even if every physical characteristic of a material has
4622     been carefully measured.
4623     This is the ultimate indictment of any physical model -- that it
4624     is incapable of reproducing any measurement whatsoever.
4625     .LP
4626     Admittedly, the compliment of diffuse and specular component plus
4627     surface roughness and index of refraction used in MGF is less than a
4628     perfect model, but it is serviceable for most materials and
4629     relatively simple to incorporate into a rendering algorithm.
4630     In the long term, MGF shall probably include full spectral
4631     scattering functions, though the sheer quantity of data involved
4632     makes this burdensome from both the measurement side and the
4633     simulation side.
4634     .NH 3
4635     Converting between Phong Specular Power and Gaussian Roughness
4636     .LP
4637     So-called specular reflection and transmission are modeled using a
4638     Gaussian distribution of surface facets.
4639     The roughness parameters to the
4640     .UL rs
4641     and
4642     .UL ts
4643     entities specify
4644     the root-mean-squared (RMS) surface facet slope, which varies from 0
4645     for a perfectly smooth surface to around .2 for a fairly rough one.
4646     The effect this will have on the reflected component distribution is
4647     well-defined, but predicting the behavior of the transmitted
4648     component requires further assumptions.
4649     We assume that the surface
4650     scatters light passing through it just as much as it scatters
4651     reflected light.
4652     This assumption is approximately correct for a
4653     two-sided transparent material with an index of refraction of 1.5
4654     (like glass) and both sides having the given RMS facet slope.
4655     .LP
4656     Oftentimes, one is translating from a Phong exponent on the cosine
4657     of the half-vector-to-normal angle to the more physical but less
4658     familiar Gaussian model of MGF.
4659     The hardest part is translating the specular power to a roughness value.
4660     For this, we recommend the following approximation:
4661     .IP
4662 greg 1.15 roughness = sqrt(2/specular_power)
4663 greg 1.1 .LP
4664     It is not a perfect correlation, but it is about as close as one can get.
4665     .NH 3
4666     Converting between RGB and CIE Colors
4667     .LP
4668     Unlike most graphics languages, MGF does not use an RGB color model,
4669     simply because there is no recognized definition for this model.
4670     It is based on computer monitor phosphors, which vary from one
4671     CRT to the next.
4672     (There is an RGB standard defined in the TV
4673     industry, but this has a rather poor correlation to most computer
4674     monitors and it is impossible to express many real-world colors
4675     within its limited gamut.)\0
4676     .LP
4677     MGF uses two alternative, well-defined standards, spectral power
4678     distributions and the 1931 CIE 2 degree standard observer.
4679     With the CIE standard, any viewable
4680     color may be exactly represented as an (x,y) chromaticity value.
4681     Unfortunately, the interaction between
4682     colors (i.e. colored light sources and interreflections) cannot be
4683     specified exactly with any finite coordinate set, including CIE
4684     chromaticities.
4685     So, MGF offers the ability to give reflectance,
4686     transmittance or emittance as a function of wavelength over the visible
4687     spectrum.
4688     This function is still discretized, but at a user-selectable
4689     resolution.
4690     Furthermore, spectral colors may be mixed, providing (nearly)
4691     arbitrary basis functions, which can produce more accurate results in
4692     some cases and are merely a convenience for translation in others.
4693     .LP
4694     Conversion back and forth between CIE chromaticity coordinates and spectral
4695     samples is provided within the MGF parser.
4696     Unfortunately, conversion
4697     to and from RGB values depends on a particular RGB definition, and as we
4698     have said, there is no recognized standard.
4699     We therefore recommend that
4700     you decide yourself what chromaticity values to use for each RGB primary,
4701     and adopt the following code to convert between CIE and RGB coordinates.
4702     .LP
4703     .nf
4704     #ifdef NTSC
4705     #define CIE_x_r 0.670 /* standard NTSC primaries */
4706     #define CIE_y_r 0.330
4707     #define CIE_x_g 0.210
4708     #define CIE_y_g 0.710
4709     #define CIE_x_b 0.140
4710     #define CIE_y_b 0.080
4711     #define CIE_x_w 0.3333 /* monitor white point */
4712     #define CIE_y_w 0.3333
4713     #else
4714     #define CIE_x_r 0.640 /* nominal CRT primaries */
4715     #define CIE_y_r 0.330
4716     #define CIE_x_g 0.290
4717     #define CIE_y_g 0.600
4718     #define CIE_x_b 0.150
4719     #define CIE_y_b 0.060
4720     #define CIE_x_w 0.3333 /* monitor white point */
4721     #define CIE_y_w 0.3333
4722     #endif
4723    
4724 greg 1.4 #define CIE_D ( CIE_x_r*(CIE_y_g - CIE_y_b) + \\
4725     CIE_x_g*(CIE_y_b - CIE_y_r) + \\
4726 greg 1.1 CIE_x_b*(CIE_y_r - CIE_y_g) )
4727 greg 1.4 #define CIE_C_rD ( (1./CIE_y_w) * \\
4728     ( CIE_x_w*(CIE_y_g - CIE_y_b) - \\
4729     CIE_y_w*(CIE_x_g - CIE_x_b) + \\
4730 greg 1.1 CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g ) )
4731 greg 1.4 #define CIE_C_gD ( (1./CIE_y_w) * \\
4732     ( CIE_x_w*(CIE_y_b - CIE_y_r) - \\
4733     CIE_y_w*(CIE_x_b - CIE_x_r) - \\
4734 greg 1.1 CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r ) )
4735 greg 1.4 #define CIE_C_bD ( (1./CIE_y_w) * \\
4736     ( CIE_x_w*(CIE_y_r - CIE_y_g) - \\
4737     CIE_y_w*(CIE_x_r - CIE_x_g) + \\
4738 greg 1.1 CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r ) )
4739    
4740     #define CIE_rf (CIE_y_r*CIE_C_rD/CIE_D)
4741     #define CIE_gf (CIE_y_g*CIE_C_gD/CIE_D)
4742     #define CIE_bf (CIE_y_b*CIE_C_bD/CIE_D)
4743    
4744     float xyz2rgbmat[3][3] = { /* XYZ to RGB */
4745     {(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g)/CIE_C_rD,
4746     (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b)/CIE_C_rD,
4747     (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g)/CIE_C_rD},
4748     {(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b)/CIE_C_gD,
4749     (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r)/CIE_C_gD,
4750     (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b)/CIE_C_gD},
4751     {(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r)/CIE_C_bD,
4752     (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g)/CIE_C_bD,
4753     (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r)/CIE_C_bD}
4754     };
4755    
4756     float rgb2xyzmat[3][3] = { /* RGB to XYZ */
4757     {CIE_x_r*CIE_C_rD/CIE_D,CIE_x_g*CIE_C_gD/CIE_D,CIE_x_b*CIE_C_bD/CIE_D},
4758     {CIE_y_r*CIE_C_rD/CIE_D,CIE_y_g*CIE_C_gD/CIE_D,CIE_y_b*CIE_C_bD/CIE_D},
4759     {(1.-CIE_x_r-CIE_y_r)*CIE_C_rD/CIE_D,
4760     (1.-CIE_x_g-CIE_y_g)*CIE_C_gD/CIE_D,
4761     (1.-CIE_x_b-CIE_y_b)*CIE_C_bD/CIE_D}
4762     };
4763    
4764    
4765     cie_rgb(rgbcolor, ciecolor) /* convert CIE to RGB */
4766     register float *rgbcolor, *ciecolor;
4767     {
4768     register int i;
4769    
4770     for (i = 0; i < 3; i++) {
4771     rgbcolor[i] = xyz2rgbmat[i][0]*ciecolor[0] +
4772     xyz2rgbmat[i][1]*ciecolor[1] +
4773     xyz2rgbmat[i][2]*ciecolor[2] ;
4774     if (rgbcolor[i] < 0.0) /* watch for negative values */
4775     rgbcolor[i] = 0.0;
4776     }
4777     }
4778    
4779    
4780     rgb_cie(ciecolor, rgbcolor) /* convert RGB to CIE */
4781     register float *ciecolor, *rgbcolor;
4782     {
4783     register int i;
4784    
4785     for (i = 0; i < 3; i++)
4786     ciecolor[i] = rgb2xyzmat[i][0]*rgbcolor[0] +
4787     rgb2xyzmat[i][1]*rgbcolor[1] +
4788     rgb2xyzmat[i][2]*rgbcolor[2] ;
4789     }
4790     .fi
4791     .LP
4792     An alternative to adopting the above code is to use the MGF "cmix"
4793     entity to convert from RGB directly by naming the three primaries in
4794     terms of their chromaticities, e.g:
4795     .DS
4796     c R =
4797     cxy 0.640 0.330
4798     c G =
4799     cxy 0.290 0.600
4800     c B =
4801     cxy 0.150 0.060
4802     .DE
4803     .LP
4804     Then, converting from RGB to MGF colors is as simple as multiplying each
4805     component by its relative luminance in a cmix statement, for instance:
4806     .DS
4807     c white =
4808     cmix 0.265 R 0.670 G 0.065 B
4809     .DE
4810     .LP
4811     For the chosen RGB standard, the above specification would result a pure
4812     white.
4813     The reason the coefficients are not all 1 as you might expect is
4814     that cmix uses relative luminance as the standard for its weights.
4815     Since
4816     blue is less luminous for the same energy than red, which is in turn
4817     less luminous than green, the weights cannot be the same to achieve an
4818     even spectral balance.
4819     Unfortunately, computing these relative weights
4820     is not straightforward, though it is given in the above macros as CIE_rf,
4821     CIE_gf and CIE_bf.
4822     (The common factors in these macros may of course
4823     be removed since
4824     .UL cmix
4825     weights are all relative.)\0
4826     Alternatively, one could measure the actual full scale luminance of
4827     the phosphors with a luminance probe and get the same relative
4828     values.
4829     .NH 2
4830     Relation to IESNA LM-63 and Luminaire Catalogs
4831     .LP
4832     Recently, the Illuminating Engineering Society of North America
4833     (IESNA) adopted MGF as the official standard for
4834     representing luminaire geometry and materials.
4835     The way this works in an IES luminaire data file is through the
4836     addition of a keyword called LUMINOUSGEOMETRY, which is given on a
4837     line in the header portion of a file (before the TILT specification)
4838     like so:
4839     .LP
4840     .B [LUMINOUSGEOMETRY]
4841     .I mgf_file
4842     .LP
4843     The given MGF file must exist relative to the directory containing
4844     the IES file (i.e. the same stipulations and restrictions on pathnames
4845     apply as for the MGF
4846     .UL i
4847     entity).
4848     Furthermore, the position of the MGF geometry must be
4849     such that the gross geometric specification of emitting surfaces
4850     in the IES file completely
4851     blocks or encloses the luminous portions of the MGF description.
4852     Specifically, any ray traced towards the MGF geometry must strike
4853     the IES gross geometry before it strikes any luminous surface in the
4854     MGF description.
4855     This provides a convenient way of preventing overcounting in the
4856     illumination calculation, while still allowing for accurate fixture
4857     appearance.
4858     .LP
4859     To give two examples, let us consider first a recessed can, followed
4860     by a hanging direct/indirect fluorescent fixture.
4861     .LP
4862     The most appropriate IES geometric specification for the emitting
4863     area of a can light would be a circular disk.
4864     Since the IES gross geometry gives only the diameter of the disk, the
4865     actual 3-dimensional placement is implicitly defined as having a
4866     center at the origin, with the radiating disk facing in the
4867     negative Z direction (nadir, downwards).
4868     The MGF geometry would then be placed such that any luminous portion
4869     was above this disk, and no portion of it would obstruct the IES
4870     geometry.
4871     The most sensible position therefore has the IES disk flush with the
4872     MGF can opening, as shown in Figure 3.
4873     .bp
4874     Replace this page with the second page from "figures.ps".
4875     .bp
4876     .LP
4877     In the case of a direct/indirect fluorescent fixture, light will
4878     exit both the top and the bottom sides, and the IES geometry must
4879     enclose the radiating portion of the fixture entirely.
4880     It is acceptable to have additional MGF geometry above the
4881     fixture so long as it does not radiate, which is what we must do if
4882     we wish to include the support rods, as shown in Figure 4.
4883     .LP
4884     Note that the origin is always in the exact center of the IES
4885     geometry.
4886     .LP
4887     Not all fixtures will fit the simple IES geometry specification so
4888     nicely.
4889     For odd-shaped fixtures, it may be necessary to use an IES geometry
4890     that does not match the radiating area terribly well in order that
4891     it completely block or enclose the required MGF specification.
4892     .LP
4893     The unit of length in the MGF file is always meters, regardless of
4894     the units specified in the enclosing IES file.
4895     However, any and all multipliers applied to the candlepower data in the
4896     IES file will also be applied to the emittance of surfaces in the
4897     MGF specification, so that one MGF file may serve similar
4898     luminaires that differ in their total output.
4899     .NH
4900     Credits
4901     .LP
4902     The MGF language grew out of a joint investigation into physical
4903     representations for rendering undertaken by the author
4904     (Greg Ward of LBL) and Holly Rushmeier of the National
4905     Institute of Standards and Technology.
4906     After deciding that a complete and robust specification was
4907     an extreme challenge, we shelved the project for another time.
4908     A few months later, the author spoke with Ian Ashdown and Robert
4909     Shakespeare, who are both members of the IES Computing Committee,
4910     about the need for extending the existing data standard to
4911     include luminaire geometry and near-field photometry.
4912     We then moved forward as a team towards a somewhat less ambitious
4913     approach to physical materials and geometry that had the advantage
4914     of simplicity and the possibility of support with a standard parser
4915     library.
4916     The author went to work over the next two months
4917     on the detailed design of the language
4918     and an ANSI-C parser, with regular feedback from the other three
4919     team members.
4920     Several months and several versions later, we arrived at release
4921     1.0, which is the occasion of this document's creation.
4922     .LP
4923     Funding for this work... would be nice.