ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/mgfdoc.tr
Revision: 1.1
Committed: Fri May 12 14:26:12 1995 UTC (29 years ago) by greg
Content type: application/x-troff
Branch: MAIN
Log Message:
Initial revision

File Contents

# User Rev Content
1 greg 1.1 .\" SCCSid "$SunId$ LBL"
2     .nr PS 11
3     .ps 11
4     .nr VS 12
5     .vs 12
6     .nr PD .5v
7     .ds LF MGF
8     .ds RF Version 1.0
9     .DA May 1995
10     .TL
11     The Materials and Geometry Format
12     .AU
13     Greg Ward
14     .br
15     Lawrence Berkeley Laboratory
16     .NH
17     Introduction
18     .LP
19     The Materials and Geometry Format (referred to henceforth as MGF)
20     is a description language for 3-dimensional environments expressly
21     suited to visible light simulation and rendering.
22     The materials are physically-based and rely on standard and
23     well-accepted definitions of color, reflectance and transmittance
24     for good accuracy and reproducibility.
25     The geometry is based on boundary representation using simple
26     geometric primitives such as polygons, spheres and cones.
27     The file format itself is terse but human-readable ASCII text.
28     .NH 2
29     What makes MGF special?
30     .LP
31     There are three principal reasons to use MGF as an input language for
32     lighting simulation and physically-based rendering:
33     .RS
34     .IP 1.
35     It's the only existing format that describes materials physically.
36     .IP 2.
37     It is endorsed by the Illuminating Engineering Society of North
38     America (IESNA) as part of their LM-63-1995 standard for luminaire data.
39     .IP 3.
40     It's easy and fun to support since it comes with a standard parser
41     and sample scenes and objects at the web site,
42     "http://radsite.lbl.gov/mgf/HOME.html".
43     .RE
44     .LP
45     The standard parser provides both immediate and a long-term
46     benefits, since it presents a programming interface that is more
47     stable even than the language itself.
48     Unlike AutoCAD DXF and other de facto standards, a change to the
49     language will not break existing programs.
50     This is because the parser gives the calling software only those
51     entities it can handle.
52     If the translator understands only polygons, it will be given only
53     polygons.
54     If a new geometric primitive is included in a later version of the
55     standard, the new parser that comes with it will still be able to
56     express this entity as polygons.
57     Thus, the urgency of modifying code to support a changing standard
58     is removed, and long-term stability is assured.
59     .LP
60     This notion of
61     .I extensibility
62     is a cornerstone of the format, and it goes well beyond the
63     extensibility of other languages because is guarantees that new
64     versions of the standard will not break existing programs, and the
65     new information will be used as much as possible.
66     Other languages either require that all translators stay up to date
67     with the latest standard, or allow forward compatibility by simply
68     .I ignoring
69     new entities.
70     In MGF, if NURBS are added at some point and the translator or
71     loader does not handle them directly, the new version of the parser
72     will automatically convert them to smoothed polygons without
73     changing a single line of the calling program.
74     It is merely necessary to link to the new library, and all the new
75     entities are supported\(dg.
76     .FS
77     \(dgIf an old version of the parser encounters new entities it does
78     not recognize, the default action is to ignore them, printing a warning
79     message.
80     This may be overridden to support custom entities, but such
81     practice is discouraged because it weakens the standard.
82     .FE
83     .NH 2
84     What does MGF look like?
85     .LP
86     MGF has a simple entity-per-line structure, with a similar
87     appearance to Wavefront's .OBJ format.
88     Each entity is specified by a short keyword, and
89     arguments are separated by white space (tabs and/or spaces).
90     A newline may be escaped with a backslash ('\\'), in which case it
91     counts as a space.
92     Lines and continued lines may have up to 4096 characters, including
93     newlines, tabs and spaces.
94     A comment is an ignored entity whose keyword is the pound sign ('#').
95     .LP
96     Here is an MGF file that describes a simple two-drawer file cabinet:
97     .DS
98     # Conversion from inches to meters
99     xf -s .0254
100     # Surface material
101     m burgundy_formica =
102     c
103     cxy .362 .283
104     rd .0402
105     c
106     rs .0284 .05
107     sides 1
108     # Cabinet vertices
109     v fc.xy =
110     p .05 0 0
111     v fc.xY =
112     p .05 18 0
113     v fc.XY =
114     p 35.95 18 0
115     v fc.Xy =
116     p 35.95 0 0
117     # Cabinet
118     prism fc.xy fc.xY fc.XY fc.Xy 24
119     # Drawer vertices
120     v fcd.Xz =
121     p 34 0 0
122     v fcd.XZ =
123     p 34 0 10
124     v fcd.xZ =
125     p 0 0 10
126     v fcd.xz =
127     p 0 0 0
128     # Two drawers
129     o drawer
130     xf -t 1 18.1 2 -a 2 -t 0 0 11
131     prism fcd.xz fcd.Xz fcd.XZ fcd.xZ .9
132     xf
133     o
134     # End of units conversion
135     xf
136     .DE
137     .NH 2
138     MGF's place in the world of standards
139     .LP
140     MGF was developed initially to support detailed geometric
141     description of light fixtures for the IESNA luminaire data standard,
142     publication LM-63\(dg.
143     .FS
144     \(dgTo obtain the latest version of this standard, write to:
145     Illuminating Engineering Society of North America,
146     345 East 47th St.,
147     New York, NY 10017.
148     .FE
149     Existing standards for geometric description were either too
150     cumbersome (e.g.
151     .I Radiance)
152     or did not include physical materials (e.g. IGES).
153     It was noted early on that a standard able to fully describe
154     luminaires would necessarily be
155     capable of describing other objects as well; indeed whole
156     environments could be defined this way.
157     Since the descriptions would be physical, they could serve as input
158     to both lighting simulation and rendering software.
159     A standard language for describing the appearance of physical
160     objects has been lacking for some time, and current efforts in this
161     direction (i.e. STEP) seem several years away from fruition.
162     (There are other languages for describing realistic scenes
163     that deserve mention here, such as VRML and the Manchester Scene
164     Description Language, but none give specific attention to physical
165     material properties and are thus unsuitable for lighting
166     simulation.)\0
167     .LP
168     In short, we saw this as an opportunity to offer the lighting and
169     rendering community a simple and easy-to-support standard for
170     describing environments in a physically valid way.
171     Our hope is that this will promote sharing color, material and object
172     libraries as well as complete scene descriptions.
173     Sharing libraries is of obvious benefit to users and software
174     developers alike.
175     Sharing scenes should also permit
176     comparisons between rendering systems and
177     intervalidation of lighting calculations.
178     As anyone who works in this field knows, modeling is the most
179     difficult step in creating any simulation or rendering, and there is
180     no excuse for this data being held prisoner by a proprietary data
181     format.
182     .NH
183     MGF Basics
184     .LP
185     The default coordinate system in MGF is right-handed with
186     distances given in meters, though this can be effectively changed
187     by specifying a global transformation.
188     The transformation context is affected by the
189     .UL xf
190     entity, and the whole of MGF can be understood in terms of entities
191     and contexts.
192     .NH 2
193     Entities and Contexts
194     .LP
195     An
196     .I entity
197     in MGF is any non-blank line, which must be one of a finite set of
198     command keywords followed by zero or more arguments.
199     (As mentioned previously, an entity may continue over multiple lines
200     by escaping the newline with a backslash.)\0
201     Table 1 gives a list of entities and their expected arguments.
202     Section 3 gives more detailed information on each entity.
203     .KF
204     .TS
205     expand, box;
206     l l l.
207     Keyword Arguments Interpretation
208     = = =
209     # [anything ...] a comment
210     o [name] begin/end object context
211     xf [xform] begin/end transformation context
212     i pathname [xform] include file (with transformation)
213     ies pathname [-m f][xform] include IES luminaire (with transformation)
214     _ _ _
215     c [id [= [template]]] get/set color context
216     cxy x y set CIE (x,y) chromaticity for current color
217     cspec l_min l_max v1 v2 ... set relative spectrum for current color
218     cct temperature set spectrum based on black body temperature
219     cmix w1 c1 w2 c2 ... mix named colors to make current color
220     _ _ _
221     m [id [= [template]]] get/set material context
222     sides {1|2} set number of sides for current material
223     rd rho_d set diffuse reflectance for current material
224     td tau_d set diffuse transmittance for current material
225     ed epsilon_d set diffuse emittance for current material
226     rs rho_s alpha_r set specular reflectance for current material
227     ts tau_s alpha_t set specular transmittance for current material
228     ir n_real n_imag set index of refraction for current material
229     _ _ _
230     v [id [= [template]]] get/set vertex context
231     p x y z set point position for current vertex
232     n dx dy dz set surface normal for current vertex
233     _ _ _
234     f v1 v2 v3 ... polygon using current material, spec. vertices
235     sph vc radius sphere
236     cyl v1 radius v2 truncated right cylinder (open-ended)
237     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
238     prism v1 v2 v3 ... length truncated right prism (closed solid)
239     ring vc rmin rmax circular ring with inner and outer radii
240     torus vc rmin rmax circular torus with inner and outer radii
241     .TE
242     .QP
243     .B "Table 1".
244     MGF entities and their arguments.
245     Arguments in brackets are optional.
246     Arguments in curly braces mean one of the given choices must
247     appear.
248     Ellipsis (...) mean that any number of arguments may be given.
249     .sp
250     .KE
251     .LP
252     A
253     .I context
254     describes the current state of the interpreter, and affects or is
255     affected by certain entities as they are read in.
256     MGF contexts can be divided into two types,
257     .I "hierarchical contexts"
258     and
259     .I "named contexts".
260     .LP
261     Hierarchical contexts are manipulated by a single entity and
262     have an associated "stack" onto which new
263     contexts are "pushed" using the entity.
264     The last context may be "popped" by giving the entity again with no
265     arguments.
266     The two hierarchical contexts in MGF are the current transformation,
267     manipulated with the
268     .UL xf
269     entity, and the current object, manipulated with the
270     .UL o
271     entity.
272     .KF
273     .TS
274     expand, allbox;
275     l c l l l.
276     Context Cntl. Entity Default Value Field Entities Affects
277     = = = = =
278     Object o - - -
279     Transform xf - - T{
280     f, sph, cyl, cone,
281     ring, torus, prism
282     T}
283     Material m 2-sided black T{
284     sides, rd, td,
285     ed, rs, ts
286     T} T{
287     f, sph, cyl, cone,
288     ring, torus, prism
289     T}
290     Color c neutral grey T{
291     cxy, cspec, cct, cmix
292     T} T{
293     rd, td, ed, rs, ts
294     T}
295     Vertex v T{
296     (0,0,0),
297     no normal
298     T} p, n T{
299     f, sph, cyl, cone,
300     ring, torus, prism
301     T}
302     .TE
303     .QP
304     .B "Table 2".
305     MGF contexts and their related entities and default values.
306     .sp
307     .KE
308     .LP
309     Named contexts in contrast hold sets of values that are swapped
310     in and out one at a time.
311     There are three named contexts in MGF, the current material, the
312     current color and the current vertex.
313     Each one may be associated with an identifier (any non-white
314     sequence of printing ASCII characters beginning with a letter),
315     and one of each is in effect at any given time.
316     Initially, these contexts are unnamed, and invoking an unnamed
317     context always returns to the original (default) values.
318     (See Table 2 for a list of contexts, their related
319     entities and defaults.)\0
320     .LP
321     It is easiest to think of a context as a "scratch space" where
322     values are written by some entities and read by others.
323     Naming a context allows us to reestablish the same scratch space
324     later, usually for reference but it can be altered as well.
325     Let us say we wanted to create a smooth blue plastic material with a
326     diffuse reflectance of 20% and a specular reflectance of 4%:
327     .DS
328     # Establish a new material context called "blue_plastic"
329     m blue_plastic =
330     # Reestablish a previous color context called "blue"
331     c blue
332     # Set the diffuse reflectance, which uses the above color
333     rd .20
334     # Get the unnamed color context (always starts out grey)
335     c
336     # Set the specular reflectance, which is uncolored
337     rs .04 0
338     # We're done, the current material context is now "blue_plastic"
339     .DE
340     Note that the above assumes that we have previously defined a color
341     context named "blue".
342     If we forgot to do that, the above description would generate an
343     "undefined" error.
344     The color context affects the material context indirectly because it
345     is read by the specular and diffuse reflectance entities, which are
346     in turn written to the current material.
347     It is not necessary to indent the entities that affect the material
348     definition, but it improves readability.
349     Note also that there is no explicit end to the material definition.
350     As long as a context remains in effect, its contents may be altered
351     by its field entities.
352     This will not affect previous uses of the context, however.
353     For example, a surface entity following the above definition will
354     have the specified color and reflectance, and later changes to the
355     material "blue_plastic" will have no effect on it.
356     .LP
357     Each of the three named contexts has an associated entity that
358     controls it.
359     The material context is controlled by the
360     .UL m
361     entity, the color context is controlled by the
362     .UL c
363     entity, and the vertex context is controlled by the
364     .UL v
365     entity.
366     There are exactly four forms for each entity.
367     The first form is the keyword by itself, which establishes
368     an unnamed context with predetermined default values.
369     This is a useful way to set values without worrying about saving
370     them for recall later.
371     The second form is to give the keyword with a previously defined
372     name.
373     This reestablishes a prior context for reuse.
374     The third form is to give the keyword with a name followed by an
375     equals sign.
376     (There must be a space between the name and the equals sign, since
377     it is a separate argument.)\0
378     This establishes a new context and assigns it the same default
379     values as the unnamed context.
380     The fourth and final form gives the keyword followed by a name then
381     an equals then the name of a previous context definition.
382     This establishes a new context for the first name, assigning the
383     values from the second named context rather than the usual defaults.
384     This is a convenient way create an alias or
385     to modify a context under a new name (i.e. "save as").
386     .NH 2
387     Hierarchical Contexts and Transformations
388     .LP
389     As mentioned in the last subsection, there are two hierarchical
390     contexts in MGF, the current object and the current transformation.
391     We will start by discussing the current object, since it is
392     the simpler of the two.
393     .NH 3
394     Objects
395     .LP
396     There is no particular need in lighting simulation or rendering to
397     name objects, but it may help the user
398     to know what object a particular surface is associated with.
399     The
400     .UL o
401     entity provides a convenient mechanism for associating names with
402     surfaces.
403     The basic use of this entity is as follows:
404     .DS
405     o object_name
406     [object entities...]
407     o subobject_name
408     [subobject entities...]
409     o
410     [more object entities and subobjects...]
411     o
412     .DE
413     The
414     .UL o
415     keyword by itself marks the end of an object context.
416     Any number of hierarchical context levels are supported, and there are no
417     rules governing the choice of object names except that they begin
418     with a letter and be made up of printing, non-white ASCII characters.
419     Indentation is not necessary of course, but it does improve
420     readability.
421     .NH 3
422     Transformations
423     .LP
424     MGF supports only rigid-body (i.e. non-distorting) transformations
425     with uniform scaling.
426     Unlike the other contexts, transformations have no associated
427     name, only arguments.
428     Thus, there is no way to reestablish a previous transformation other
429     than to give the same arguments over again.
430     Since the arguments are concise and self-explanatory, this was thought
431     sufficient.
432     The following transformation flags and
433     parameters are defined:
434     .TS I
435     l l.
436     -t dx dy dz translate objects along the given vector
437     -rx degrees rotate objects about the X-axis
438     -ry degrees rotate objects about the Y-axis
439     -rz degrees rotate objects about the Z-axis
440     -s scalefactor scale objects by the given factor
441     -mx mirror objects about the Y-Z plane
442     -my mirror objects about the X-Z plane
443     -mz mirror objects about the X-Y plane
444     -i N repeat the following arguments N times
445     -a N make an array of N geometric instances
446     .TE
447     Transform arguments have a cumulative effect.
448     That is, a rotation
449     about X of 20 degrees followed by a rotation about X of -50 degrees
450     results in a total rotation of -30 degrees.
451     However, if the two
452     rotations are separated by some translation vector, the cumulative
453     effect is quite different.
454     It is best to think of each argument as
455     acting on the included geometric objects, and each subsequent transformation
456     argument affects the objects relative to their new position/orientation.
457     .LP
458     For example, rotating an object about its center is most easily done
459     by translating
460     the object back to the origin, applying the desired rotation, and translating
461     it again back to its original position, like so:
462     .DS
463     # rotate an included object 20 degrees clockwise looking down
464     # an axis parallel to Y and passing through the point (15,0,-35)
465     xf -t -15 0 35 -ry -20 -t 15 0 -35
466     i object.mgf
467     xf
468     .DE
469     Note that the include entity,
470     .UL i,
471     permits a transformation to be given with it, so the above could
472     have been written more compactly as:
473     .DS
474     i object.mgf -t -15 0 35 -ry -20 -t 15 0 -35
475     .DE
476     .LP
477     Rotations are given in degrees counter-clockwise about a principal axis.
478     That is, with the thumb of the right hand pointing in the direction
479     of the axis, rotation follows the curl of the fingers.
480     .LP
481     The transform entity itself is cumulative, but in the reverse
482     order to its arguments.
483     That is, later transformations (i.e. enclosed transformations)
484     are prepended to existing (i.e. enclosing) ones.
485     A transform command
486     with no arguments is used to return to the previous condition.
487     It is
488     necessary that transforms and their end statements ("xf" by itself) be
489     balanced in a file, so that later or enclosing files are not affected.
490     .LP
491     Transformations apply only to geometric types, e.g. polygons, spheres, etc.
492     Vertices and the components that go into geometry are not directly affected.
493     This is to avoid confusion and the inadvertent multiple application of a
494     given transformation.
495     For example:
496     .DS
497     xf -t 5 0 0
498     v v1 =
499     p 0 10 0
500     n 0 0 1
501     xf -rx 180
502     # Transform now in effect is "-rx 180 -t 5 0 0"
503     ring v1 0 2
504     xf
505     xf
506     .DE
507     The final ring center is (5,-10,0) -- note that the vertex itself is
508     not affected by the transformation, only the geometry that calls on
509     it.
510     The normal orientation is (0,0,-1) due to the rotation about X,
511     which also reversed the sign of the central Y coordinate.
512     .NH 3
513     Arrays
514     .LP
515     The -a N transform specification causes the following transform
516     arguments to be repeated along with the contents of the included
517     objects N times.
518     The first instance of the geometry will be in its
519     initial location; the second instance will be repositioned according
520     to the named transformation; the third instance will be repositioned by
521     applying this transformation twice, and so on up to N-1 applications.
522     .LP
523     Multi-dimensional arrays may be specified with a single include
524     entity by giving multiple array commands separated by their
525     corresponding transforms.
526     A final transformation may be given
527     by preceding it with a -i 1 specification.
528     In other words, the
529     scope of an array command continues until the next -i or -a option.
530     .LP
531     The following MGF description places 60 spheres at a one unit spacing
532     in a 3x4x5 array, then moves the whole thing to an origin of
533     (15,30,45):
534     .DS
535     v v0 =
536     p 0 0 0
537     xf -a 3 -t 1 0 0 -a 4 -t 0 1 0 -a 5 -t 0 0 1 -i 1 -t 15 30 45
538     sph v0 0.1
539     xf
540     .DE
541     Note the "-i 1" in the specification, which marks the end of the
542     third array arguments before the final translation.
543     .NH 2
544     Detailed MGF Example
545     .LP
546     The following example of a simple room with a single door
547     and six file cabinets shows MGF in action, with copious comments to
548     help explain what's going on.
549     .DS
550     # "ceiling_tile" is a diffuse white surface with 75% reflectance:
551     # Create new named material context and clear it
552     m ceiling_tile =
553     # Specify one-sided material so we can see through from above
554     sides 1
555     # Set neutral color
556     c
557     # Set diffuse reflectance
558     rd .75
559     # "stainless_steel" is a mostly specular surface with 70% reflectance:
560     m stainless_steel =
561     sides 1
562     c
563     # Set specular reflectance to 50%, .08 roughness
564     rs .5 .08
565     # Other 20% reflectance is diffuse
566     rd .2
567    
568     # The following materials were measured with a spectrophotometer:
569     m beige_paint =
570     sides 1
571     # Set diffuse spectral reflectance
572     c
573     # Spectrum measured in 10 nm increments from 400 to 700 nm
574     cspec 400 700 35.29 44.87 47.25 47.03 46.87 47.00 47.09 \\\\
575     47.15 46.80 46.17 46.26 48.74 51.08 51.31 51.10 \\\\
576     51.11 50.52 50.36 51.72 53.61 53.95 52.08 49.49 \\\\
577     48.30 48.75 49.99 51.35 52.75 54.44 56.34 58.00
578     rd 0.5078
579     # Neutral (grey) specular component
580     c
581     rs 0.0099 0.08000
582     m mottled_carpet =
583     sides 1
584     c
585     cspec 400 700 11.23 11.28 11.39 11.49 11.61 11.73 11.88 \\\\
586     12.02 12.12 12.19 12.30 12.37 12.37 12.36 12.34 \\\\
587     12.28 12.22 12.29 12.45 12.59 12.70 12.77 12.82 \\\\
588     12.88 12.98 13.24 13.67 14.31 15.55 17.46 19.75
589     rd 0.1245
590     m reddish_cloth =
591     # 2-sided so we can observe it from behind
592     sides 2
593     c
594     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
595     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
596     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
597     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
598     rd 0.3210
599     m burgundy_formica =
600     sides 1
601     c
602     cspec 400 700 3.86 3.74 3.63 3.51 3.34 3.21 3.14 \\\\
603     3.09 3.08 3.14 3.13 2.91 2.72 2.74 2.72 \\\\
604     2.60 2.68 3.40 4.76 6.05 6.65 6.75 6.68 \\\\
605     6.63 6.56 6.51 6.46 6.41 6.36 6.34 6.34
606     rd 0.0402
607     c
608     rs 0.0284 0.05000
609     m speckled_grey_formica =
610     sides 1
611     c
612     cspec 400 700 30.95 44.77 51.15 52.60 53.00 53.37 53.68 \\\\
613     54.07 54.33 54.57 54.85 55.20 55.42 55.51 55.54 \\\\
614     55.46 55.33 55.30 55.52 55.81 55.91 55.92 56.00 \\\\
615     56.22 56.45 56.66 56.72 56.58 56.44 56.39 56.39
616     rd 0.5550
617     c
618     rs 0.0149 0.15000
619    
620     # 40' x 22' x 9' office space with no windows and one door
621    
622     # All measurements are in inches, so enclose with a metric conversion:
623     xf -s .0254
624    
625     # The room corner vertices:
626     v rc.xyz =
627     p 0 0 0
628     v rc.Xyz =
629     p 480 0 0
630     v rc.xYz =
631     p 0 264 0
632     v rc.xyZ =
633     p 0 0 108
634     v rc.XYz =
635     p 480 264 0
636     v rc.xYZ =
637     p 0 264 108
638     v rc.XyZ =
639     p 480 0 108
640     v rc.XYZ =
641     p 480 264 108
642    
643     # The floor:
644     # Push object name
645     o floor
646     # Get previously defined carpet material
647     m mottled_carpet
648     # Polygonal face using defined vertices
649     f rc.xyz rc.Xyz rc.XYz rc.xYz
650     # Pop object name
651     o
652    
653     # The ceiling:
654     o ceiling
655     m ceiling_tile
656     f rc.xyZ rc.xYZ rc.XYZ rc.XyZ
657     o
658    
659     # The door outline vertices:
660     v do.xz =
661     p 216 0 0
662     v do.Xz =
663     p 264 0 0
664     v do.xZ =
665     p 216 0 84
666     v do.XZ =
667     p 264 0 84
668    
669     # The walls:
670     o wall
671     m beige_paint
672     o x
673     f rc.xyz rc.xYz rc.xYZ rc.xyZ
674     o
675     o X
676     f rc.Xyz rc.XyZ rc.XYZ rc.XYz
677     o
678     o y
679     f rc.xyz rc.xyZ rc.XyZ rc.Xyz do.Xz do.XZ do.xZ do.xz
680     o
681     o Y
682     f rc.xYz rc.XYz rc.XYZ rc.xYZ
683     o
684     o
685    
686     # The door and jam vertices:
687     v djo.xz =
688     p 216 .5 0
689     v djo.xZ =
690     p 216 .5 84
691     v djo.XZ =
692     p 264 .5 84
693     v djo.Xz =
694     p 264 .5 0
695     v dji.Xz =
696     p 262 .5 0
697     v dji.XZ =
698     p 262 .5 82
699     v dji.xZ =
700     p 218 .5 82
701     v dji.xz =
702     p 218 .5 0
703     v door.xz =
704     p 218 0 0
705     v door.xZ =
706     p 218 0 82
707     v door.XZ =
708     p 262 0 82
709     v door.Xz =
710     p 262 0 0
711    
712     # The door, jam and knob
713     o door
714     m burgundy_formica
715     f door.xz door.xZ door.XZ door.Xz
716     o jam
717     m beige_paint
718     f djo.xz djo.xZ djo.XZ djo.Xz dji.Xz dji.XZ dji.xZ dji.xz
719     f djo.xz do.xz do.xZ djo.xZ
720     f djo.xZ do.xZ do.XZ djo.XZ
721     f djo.Xz djo.XZ do.XZ do.Xz
722     f dji.xz dji.xZ door.xZ door.xz
723     f dji.xZ dji.XZ door.XZ door.xZ
724     f dji.Xz door.Xz door.XZ dji.XZ
725     o
726     o knob
727     m stainless_steel
728     # Define vertices needed for curved geometry
729     v kb1 =
730     p 257 0 36
731     v kb2 =
732     p 257 .25 36
733     n 0 1 0
734     v kb3 =
735     p 257 2 36
736     # 1" diameter cylindrical base from kb1 to kb2
737     cyl kb1 1 kb2
738     # Ring at base of knob stem
739     ring kb2 .4 1
740     # Knob stem
741     cyl kb2 .4 kb3
742     # Spherical knob
743     sph kb3 .85
744     o
745     o
746    
747     i cubfurn.inc -mx -t 405 133.5 0
748     o
749    
750     # Six file cabinets (36" wide each)
751     # ("filecab.inc" was given as an earlier example in Section 1.2)
752     o filecab.x
753     # include a file as an array of three 36" apart
754     i filecab.inc -t -36 0 0 -rz -90 -t 1 54 0 -a 3 -t 0 36 0
755     o
756     o filecab.X
757     # the other three cabinets
758     i filecab.inc -rz 90 -t 479 54 0 -a 3 -t 0 36 0
759     o
760    
761     # End of transform from inches to meters:
762     xf
763    
764     # The 10 recessed fluorescent ceiling fixtures
765     ies hlrs2gna.ies -t 1.2192 2.1336 2.74 -a 5 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
766     .DE
767     .bp
768     .NH
769     MGF Entity Reference
770     .LP
771     There are currently 28 entities in the MGF specification.
772     For ease of reference we have broken these into five categories:
773     .IP 1.
774     General
775     .TS I
776     lw(.75i) lw(1.75i) lw(3i).
777     # [anything ...] a comment
778     o [name] begin/end object context
779     xf [xform] begin/end transformation context
780     i pathname [xform] include file (with transformation)
781     ies pathname [-m f][xform] include IES luminaire (with transformation)
782     .TE
783     .IP 2.
784     Color
785     .TS I
786     lw(.75i) lw(1.75i) lw(3i).
787     c [id [= [template]]] get/set color context
788     cxy x y set CIE (x,y) chromaticity for current color
789     cspec l_min l_max v1 v2 ... set relative spectrum for current color
790     cct temperature set spectrum based on black body temperature
791     cmix w1 c1 w2 c2 ... mix named colors to make current color
792     .TE
793     .IP 3.
794     Material
795     .TS
796     lw(.75i) lw(1.75i) lw(3i).
797     m [id [= [template]]] get/set material context
798     sides {1|2} set number of sides for current material
799     rd rho_d set diffuse reflectance for current material
800     td tau_d set diffuse transmittance for current material
801     ed epsilon_d set diffuse emittance for current material
802     rs rho_s alpha_r set specular reflectance for current material
803     ts tau_s alpha_t set specular transmittance for current material
804     ir n_real n_imag set index of refraction for current material
805     .TE
806     .IP 4.
807     Vertex
808     .TS
809     lw(.75i) lw(1.75i) lw(3i).
810     v [id [= [template]]] get/set vertex context
811     p x y z set point position for current vertex
812     n dx dy dz set surface normal for current vertex
813     .TE
814     .IP 5.
815     Geometry
816     .TS
817     lw(.75i) lw(1.75i) lw(3i).
818     f v1 v2 v3 ... polygon using current material, spec. vertices
819     sph vc radius sphere
820     cyl v1 radius v2 truncated right cylinder (open-ended)
821     cone v1 rad1 v2 rad2 truncated right cone (open-ended)
822     prism v1 v2 v3 ... length truncated right prism (closed solid)
823     ring vc rmin rmax circular ring with inner and outer radii
824     torus vc rmin rmax circular torus with inner and outer radii
825     .TE
826     .ds LH General Entities
827     .ds RH #
828     .bp
829     .SH
830     NAME
831     .LP
832     # - a comment
833     .SH
834     SYNOPSIS
835     .LP
836     .B #
837     [
838     .I anything
839     ]
840     .SH
841     DESCRIPTION
842     .LP
843     A comment is a bit of text explanation.
844     Since it is an entity like any other (except that it has no effect),
845     there must be at least one space between the keyword (which is a
846     pound sign) and the "arguments," and the end of line may be escaped
847     as usual with the backslash character ('\\').
848     .LP
849     A comment may actually be used to hold auxiliary information such as
850     view parameters, which may be interpreted by some destination program.
851     Care should be taken under such circumstances that the user does not
852     inadvertently mung or mimic this information in other comments, and
853     it is therefore advisable to use an additional set of identifying
854     characters to distinguish such data.
855     .SH
856     EXAMPLE
857     .DS
858     # The following include file is in inches, so convert to meters
859     i cubgeom.inc -s .0254
860     # Stuff we don't want to see at the moment:
861     # i person.mgf -t 3 2 0
862     # ies hlrs3gna.ies -rz 90 -t 1.524 1.8288 2.74 \\\\
863     -a 6 -t 1.8288 0 0 -a 2 -t 0 3.048 0
864     .DE
865     .ds RH O
866     .bp
867     .SH
868     NAME
869     .LP
870     o - begin or end object context
871     .SH
872     SYNOPSIS
873     .LP
874     .B o
875     [
876     .I name
877     ]
878     .SH
879     DESCRIPTION
880     .LP
881     If
882     .I name
883     is given, we push a new object context onto the stack, which is to
884     say that we begin a new subobject by this name\(dg.
885     .FS
886     \(dgA name is any sequence of printing, non-white ASCII characters
887     beginning with a letter.
888     .FE
889     If the
890     .UL o
891     keyword is given by itself, then we pop the last object context off
892     the stack, which means that we leave the current subobject.
893     .LP
894     All geometry between the start of an object context and its matching
895     end statement is associated with the given name.
896     This may be used in modeling software to help identify objects and
897     subobjects, or it may be ignored altogether.
898     .LP
899     Object begin and end statements should be balanced in a file, and
900     care should be taken not to overlap transform
901     .UL (xf)
902     contexts with object contexts, especially when arrays are involved.
903     This is because the standard parser will assign object contexts to
904     instanced geometry, which can get confused with other object
905     contexts if a clear enclosure is not maintained.
906     .SH
907     EXAMPLE
908     .DS
909     o body
910     o torso
911     i torso.mgf
912     o
913     o arm
914     o left
915     i leftarm.mgf
916     o
917     o right
918     i leftarm.mgf -mx
919     o
920     o
921     o
922     .DE
923     .SH
924     SEE ALSO
925     .LP
926     .UL xf
927     .ds RH XF
928     .bp
929     .SH
930     NAME
931     .LP
932     xf - begin or end transformation context
933     .SH
934     SYNOPSIS
935     .LP
936     .B xf
937     [
938     .I transform
939     ]
940     .SH
941     DESCRIPTION
942     .LP
943     If a set of
944     .I transform
945     arguments are given, we push a new transformation context onto the
946     stack.
947     If the
948     .UL xf
949     keyword is given by itself, then we pop the last transformation
950     context off the stack.
951     The total transformation in effect at any given time is
952     computed by prepending each set subcontext arguments onto those of
953     its enclosing context.
954     This and other details about transformation specifications
955     are explained in some detail in section 2.2.2.
956     .LP
957     The following transformation flags and
958     parameters are defined:
959     .TS
960     center;
961     l l.
962     -t dx dy dz translate objects along the given vector
963     -rx degrees rotate objects about the X-axis
964     -ry degrees rotate objects about the Y-axis
965     -rz degrees rotate objects about the Z-axis
966     -s scalefactor scale objects by the given factor
967     -mx mirror objects about the Y-Z plane
968     -my mirror objects about the X-Z plane
969     -mz mirror objects about the X-Y plane
970     -i N repeat the following arguments N times
971     -a N make an array of N geometric instances
972     .TE
973     .SH
974     EXAMPLE
975     .DS
976     # Create 3x5 array of evenly-spaced spheres (grid size = 3)
977     v vc =
978     p 0 0 0
979     xf -t 1 1 10 -a 3 -t 3 0 0 -a 5 -t 0 3 0
980     sph vc .5
981     xf
982     .DE
983     .SH
984     SEE ALSO
985     .LP
986     .UL i,
987     .UL ies,
988     .UL o
989     .ds RH I
990     .bp
991     .SH
992     NAME
993     .LP
994     i - include MGF data file
995     .SH
996     SYNOPSIS
997     .LP
998     .B i
999     .I pathname
1000     [
1001     .I transform
1002     ]
1003     .SH
1004     DESCRIPTION
1005     .LP
1006     Include the information contained in the file
1007     .I pathname.
1008     If a
1009     .I transform
1010     specification is given, then it will be applied as though the
1011     include statement were enclosed by beginning and ending
1012     .UL xf
1013     entities with this transformation.
1014     .LP
1015     The
1016     .I pathname
1017     will be interpreted relative to the enclosing MGF file.
1018     That is, if the file containing the include statement is in some
1019     parent or subdirectory, then the given pathname is appended to this
1020     directory.
1021     It is illegal to specify a
1022     .I pathname
1023     relative to the root directory, and the MGF standard requires that
1024     all filenames adhere to the ISO-9660 8.3 name format for maximum
1025     portability between systems.
1026     The directory separator is defined to be slash ('/'), and drive
1027     specifications (such as "c:") are not allowed.
1028     All pathnames should be given in lower case, and will be converted to
1029     upper case on systems that require it.
1030     (That way, there are no accidental name collisions.)\0
1031     .LP
1032     The suggested suffix for MGF-adherent files is ".mgf".
1033     Files that are not in metric units but are in MGF may be given any
1034     suffix, but we suggest using ".inc" as a convention.
1035     .SH
1036     EXAMPLE
1037     .DS
1038     # Define vertices for 62x30" partition
1039     i pv62x30.inc
1040     # Insert 2 62x30" partitions
1041     o cpart1
1042     i partn.inc -t 75 130.5 0
1043     o
1044     o cpart3
1045     i partn.inc -t 186 130.5 0
1046     o
1047     # Define vertices for 62x36" partition
1048     i pv62x36.inc
1049     # Insert 62x36" partition
1050     o cpart2
1051     i partn.inc -t 105 130.5 0
1052     o
1053     .DE
1054     .SH
1055     SEE ALSO
1056     .LP
1057     .UL ies,
1058     .UL o,
1059     .UL xf
1060     .ds RH IES
1061     .bp
1062     .SH
1063     NAME
1064     .LP
1065     ies - include IESNA luminaire file
1066     .SH
1067     SYNOPSIS
1068     .LP
1069     .B ies
1070     .I pathname
1071     [
1072     .B \-m
1073     .I multiplier
1074     ]
1075     [
1076     .I transform
1077     ]
1078     .SH
1079     DESCRIPTION
1080     .LP
1081     Load the IES standard luminaire information contained in the file
1082     .I pathname.
1083     If a
1084     .I multiplier
1085     is given, all candela values will be multiplied by this factor.
1086     (This option must appear first if present.)\0
1087     If a
1088     .I transform
1089     specification is given, then it will be applied as though the
1090     statement were enclosed by beginning and ending
1091     .UL xf
1092     entities with this transformation.
1093     .LP
1094     The
1095     .I pathname
1096     will be interpreted relative to the enclosing MGF file, and all
1097     restrictions discussed under the
1098     .UL i
1099     entity also apply to the IES file name.
1100     The suggested suffix is ".ies", but this has not been followed
1101     consistently by lighting manufacturers.
1102     .SH
1103     EXAMPLE
1104     .DS
1105     # Insert 10 2x4' fluorescent troffers in two groups
1106     ies cf9pr240.ies -t 3.6576 2.1336 2.74 -a 3 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
1107     ies cf9pr240.ies -rz 90 -t 1.2192 1.8288 2.74 \\\\
1108     -a 2 -t 9.7536 0 0 -a 2 -t 0 3.048 0
1109     .DE
1110     .SH
1111     SEE ALSO
1112     .LP
1113     .UL i,
1114     .UL o,
1115     .UL xf
1116     .ds LH Color Entities
1117     .ds RH C
1118     .bp
1119     .SH
1120     NAME
1121     .LP
1122     c - get or set the current color context
1123     .SH
1124     SYNOPSIS
1125     .LP
1126     .B c
1127     [
1128     .I id
1129     [
1130     .B =
1131     [
1132     .I template
1133     ]
1134     ]
1135     ]
1136     .SH
1137     DESCRIPTION
1138     .LP
1139     If the
1140     .UL c
1141     keyword is given by itself, then it establishes the unnamed color
1142     context, which is neutral (i.e. equal-energy) grey.
1143     This context may be modified, but the changes will not be saved.
1144     .LP
1145     If the keyword is followed by an identifier
1146     .I id,
1147     then it reestablishes a previous context.
1148     If the specified context was never defined, an error will result.
1149     .LP
1150     If the entity is given with an identifier
1151     followed by an equals sign ('='), then a new context is established,
1152     and cleared to the default neutral grey.
1153     (Note that the equals sign must be separated from other
1154     arguments by white space to be properly recognized.)\0
1155     If the equals sign is followed by a second identifier
1156     .I template,
1157     then this previously defined color will be used as a source of
1158     default values rather than grey.
1159     This is most useful for establishing a color alias.
1160     .SH
1161     EXAMPLE
1162     .DS
1163     # Define the color "red32"
1164     c red32 =
1165     cxy .42 .15
1166     # Make "cabinet_color" an alias for "red32"
1167     c cabinet_color = red32
1168    
1169     # Later in another part of the description...
1170    
1171     # Get our cabinet color
1172     c cabinet_color
1173     # Get the geometry
1174     i cabgeom.mgf
1175     .DE
1176     .SH
1177     SEE ALSO
1178     .LP
1179     .UL cct,
1180     .UL cmix,
1181     .UL cspec,
1182     .UL cxy,
1183     .UL m
1184     .ds RH CXY
1185     .bp
1186     .SH
1187     NAME
1188     .LP
1189     cxy - set the CIE (x,y) chromaticity for the current color
1190     .SH
1191     SYNOPSIS
1192     .LP
1193     .B cxy
1194     .I "x y"
1195     .SH
1196     DESCRIPTION
1197     .LP
1198     This entity sets the current color using (x,y) chromaticity
1199     coordinates for the 1931 CIE standard 2 degree observer.
1200     Legal values for
1201     .I x
1202     and
1203     .I y
1204     are greater than zero and sum to less than one, and more
1205     specifically they must fit within the curve of the visible spectrum.
1206     The
1207     .I x
1208     coordinate roughly corresponds to the red part of the spectrum and
1209     the
1210     .I y
1211     coordinate corresponds to the green.
1212     The CIE z coordinate is implicit, since it is equal to (1-x-y).
1213     .LP
1214     All colors in MGF are absolute, thus colorimeter measurements should
1215     be conducted the same for surfaces as for light sources.
1216     Applying a standard illuminant calculation is redundant and
1217     introduces inaccuracies, and should therefore be avoided if
1218     possible.
1219     .LP
1220     Conversion between CIE colors and those more commonly used in
1221     computer graphics are described in the application notes section
1222     6.1.1.
1223     .SH
1224     EXAMPLE
1225     .DS
1226     # Set unnamed color context
1227     c
1228     # Set CIE chromaticity to a bluish hue
1229     cxy .15 .2
1230     # Apply color to diffuse reflectance of 15%
1231     rd .15
1232     .DE
1233     .SH
1234     SEE ALSO
1235     .LP
1236     .UL c,
1237     .UL cct,
1238     .UL cmix,
1239     .UL cspec
1240     .ds RH CSPEC
1241     .bp
1242     .SH
1243     NAME
1244     .LP
1245     cspec - set the relative spectrum for the current color
1246     .SH
1247     SYNOPSIS
1248     .LP
1249     .B cspec
1250     .I "l_min l_max o1 o2 ... oN"
1251     .SH
1252     DESCRIPTION
1253     .LP
1254     Assign a relative spectrum measured between
1255     .I l_min
1256     and
1257     .I l_max
1258     nanometers at evenly spaced intervals.
1259     The first value,
1260     .I o1
1261     corresponds to the measurement at
1262     .I l_min,
1263     and the last value,
1264     .I oN
1265     corresponds to the measurement at
1266     .I l_max.
1267     Values in between are separated by
1268     .I "(l_max-l_min)/(N-1)"
1269     nanometers.
1270     All values must be non-negative, and the spectrum outside of the
1271     specified range is assumed to be zero.
1272     (The visible range is 380 to 780 nm.)\0
1273     The actual units and scale of the measurements do not matter,
1274     since the total will be
1275     normalized according to whatever the color is modifying
1276     (e.g. photometric reflectance or emittance).
1277     .SH
1278     EXAMPLE
1279     .DS
1280     # Color measured at 10 nm increments from 400 to 700
1281     m reddish_cloth =
1282     c
1283     cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \\\\
1284     32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \\\\
1285     30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \\\\
1286     33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00
1287     rd 0.3210
1288     .DE
1289     .SH
1290     SEE ALSO
1291     .LP
1292     .UL c,
1293     .UL cct,
1294     .UL cmix,
1295     .UL cxy
1296     .ds RH CCT
1297     .bp
1298     .SH
1299     NAME
1300     .LP
1301     cct - set the current color to a black body spectrum
1302     .SH
1303     SYNOPSIS
1304     .LP
1305     .B cct
1306     .I temperature
1307     .SH
1308     DESCRIPTION
1309     .LP
1310     The
1311     .UL cct
1312     entity sets the current color to the spectrum of an ideal
1313     black body radiating at
1314     .I temperature
1315     degrees Kelvin.
1316     This is often the most convenient way to set the color of an
1317     incandescent light source, but it is not recommended for
1318     fluorescent lamps or other materials that do not fit a
1319     black body spectrum.
1320     .SH
1321     EXAMPLE
1322     .DS
1323     # Define an incandescent source material at 3000 degrees K
1324     m incand3000k =
1325     c
1326     cct 3000
1327     ed 1500
1328     .DE
1329     .SH
1330     SEE ALSO
1331     .LP
1332     .UL c,
1333     .UL cmix,
1334     .UL cspec,
1335     .UL cxy
1336     .ds RH CMIX
1337     .bp
1338     .SH
1339     NAME
1340     .LP
1341     cmix - mix two or more named colors to make the current color
1342     .SH
1343     SYNOPSIS
1344     .LP
1345     .B cmix
1346     .I "w1 c1 w2 c2 ..."
1347     .SH
1348     DESCRIPTION
1349     .LP
1350     The
1351     .UL cmix
1352     entity sums together two or more named colors using specified
1353     weighting coefficients, which correspond to the relative
1354     photometric brightness of each.
1355     As in all color specifications, the result is normalized so the
1356     absolute scale of the weights does not matter, only their relative
1357     values.
1358     .LP
1359     If any of the colors is a spectral quantity (i.e. from a
1360     .UL cspec
1361     or
1362     .UL cct
1363     entity), then all the colors are first converted to spectral
1364     quantities.
1365     This is done with an approximation for CIE (x,y) chromaticities,
1366     which may be problematic depending on their values.
1367     In general, it is safest to add together colors that are either
1368     all spectral quantities or all CIE quantities.
1369     .SH
1370     EXAMPLE
1371     .DS
1372     # Define RGB primaries for a standard color monitor
1373     c R =
1374     cxy 0.640 0.330
1375     c G =
1376     cxy 0.290 0.600
1377     c B =
1378     cxy 0.150 0.060
1379     # Mix them together in appropriate amounts for white
1380     c white =
1381     cmix 0.265 R 0.670 G 0.065 B
1382     .DE
1383     .SH
1384     SEE ALSO
1385     .LP
1386     .UL c,
1387     .UL cct,
1388     .UL cspec,
1389     .UL cxy
1390     .ds LH Material Entities
1391     .ds RH M
1392     .bp
1393     .SH
1394     NAME
1395     .LP
1396     m - get or set the current material context
1397     .SH
1398     SYNOPSIS
1399     .LP
1400     .B m
1401     [
1402     .I id
1403     [
1404     .B =
1405     [
1406     .I template
1407     ]
1408     ]
1409     ]
1410     .SH
1411     DESCRIPTION
1412     .LP
1413     If the
1414     .UL m
1415     keyword is given by itself, then it establishes
1416     the unnamed material context, which is a perfect two-sided black absorber.
1417     This context may be modified, but the changes will not be saved.
1418     .LP
1419     If the keyword is followed by an identifier
1420     .I id,
1421     then it reestablishes a previous context.
1422     If the specified context was never defined, an error will result.
1423     .LP
1424     If the entity is given with an identifier
1425     followed by an equals sign ('='), then a new context is established,
1426     and cleared to the default material.
1427     (Note that the equals sign must be separated from other
1428     arguments by white space to be properly recognized.)\0
1429     If the equals sign is followed by a second identifier
1430     .I template,
1431     then this previously defined material will be used as a source of
1432     default values instead.
1433     This may be used to establish a material alias, or to modify an
1434     existing material and give it a new name.
1435     .LP
1436     The sum of the diffuse and specular reflectances and transmittances
1437     must not be greater than one (with no negative values, obviously).
1438     These values are assumed to be measured at normal incidence.
1439     If an index of refraction is given, this may modify the balance between
1440     diffuse and specular reflectance at other incident angles.
1441     If the
1442     material is one-sided (see
1443     .UL sides
1444     entity), then it may be a dielectric interface.
1445     In this case, the specular transmittance given is that which would be
1446     measured at normal incidence for a pane of the material 5 mm thick.
1447     This is important for figuring the actual transmittance for non-planar
1448     geometries assuming a uniformly absorbing medium.
1449     (Diffuse transmittance will not be affected by thickness.)\0
1450     If the index of
1451     refraction has an imaginary part, then the surface is a metal and this
1452     implies other properties as well.
1453     The default index of refraction is that of a vacuum, i.e. (1,0).
1454     .SH
1455     EXAMPLE
1456     .DS
1457     # Define a blue enamel paint
1458     m blue_enamel =
1459     c
1460     cxy 0.2771 0.2975
1461     rd 0.5011
1462     c
1463     rs 0.0100 0.0350
1464     # Assign blue_enamel to be the color of the south wall
1465     m swall_mat = blue_enamel
1466     # ...
1467     # South wall face
1468     m swall_mat
1469     f sv1 sv2 sv3 sv4
1470     .DE
1471     .SH
1472     SEE ALSO
1473     .LP
1474     .UL ed,
1475     .UL ir,
1476     .UL rd,
1477     .UL rs,
1478     .UL sides,
1479     .UL td,
1480     .UL ts
1481     .ds RH SIDES
1482     .bp
1483     .SH
1484     NAME
1485     .LP
1486     sides - set the number of sides for the current material
1487     .SH
1488     SYNOPSIS
1489     .LP
1490     .B sides
1491     {
1492     .B 1
1493     |
1494     .B 2
1495     }
1496     .SH
1497     DESCRIPTION
1498     .LP
1499     The
1500     .UL sides
1501     entity is used to set the number of sides for the current material.
1502     If a surface is two-sided, then it will appear
1503     identical when viewed from either the front or the back.
1504     If a surface is one-sided,
1505     then it appears invisible when viewed from the back side.
1506     This means
1507     that a transmitting object will affect the light coming in through the
1508     front surface and ignore the characteristics of the back surface,
1509     unless the index of refraction is set.
1510     If the index of refraction is set, then the object will act as a
1511     solid piece of dielectric material.
1512     In either case, the transmission properties of the exiting surface
1513     should be the same as the incident surface for the model to be
1514     physically valid.
1515     .LP
1516     The default number of sides is two.
1517     .SH
1518     EXAMPLE
1519     .DS
1520     # Describe a blue crystal ball
1521     m blue_crystal =
1522     ir 1.650000 0
1523     # Solid dielectrics must use one-sided materials
1524     sides 1
1525     c
1526     rs 0.0602 0
1527     c
1528     cxy 0.3127 0.2881
1529     ts 0.6425 0
1530     v sc =
1531     p 10 15 1.5
1532     sph sc .02
1533     .DE
1534     .SH
1535     SEE ALSO
1536     .LP
1537     .UL ed,
1538     .UL ir,
1539     .UL m,
1540     .UL rd,
1541     .UL rs,
1542     .UL td,
1543     .UL ts
1544     .ds RH RD
1545     .bp
1546     .SH
1547     NAME
1548     .LP
1549     rd - set the diffuse reflectance for the current material
1550     .SH
1551     SYNOPSIS
1552     .LP
1553     .B rd
1554     .I rho_d
1555     .SH
1556     DESCRIPTION
1557     .LP
1558     Set the diffuse reflectance for the current material to
1559     .I rho_d
1560     using the current color to determine the spectral characteristics.
1561     This is the fraction of visible light that is reflected from a
1562     surface equally in all directions according to Lambert's law, and is
1563     often called the "Lambertian component."
1564     Photometric reflectance is measured according to v(lambda)
1565     response function of the 1931 CIE standard 2
1566     degree observer, and assumes an equal-energy white light source.
1567     The value must be between zero and one, and may be further
1568     restricted by the luminosity of the selected color.
1569     (I.e. it is impossible to have a violet material with a photometric
1570     reflectance close to one since the eye is less sensitive in this part
1571     of the spectrum.)\0
1572     .LP
1573     The default diffuse reflectance is zero.
1574     .SH
1575     EXAMPLE
1576     .DS
1577     # An off-white paint with 70% reflectance
1578     m flat_white70 =
1579     c
1580     cxy .3632 .3420
1581     rd .70
1582     .DE
1583     .SH
1584     SEE ALSO
1585     .LP
1586     .UL c,
1587     .UL ed,
1588     .UL ir,
1589     .UL m,
1590     .UL rs,
1591     .UL sides,
1592     .UL td,
1593     .UL ts
1594     .ds RH TD
1595     .bp
1596     .SH
1597     NAME
1598     .LP
1599     td - set the diffuse transmittance for the current material
1600     .SH
1601     SYNOPSIS
1602     .LP
1603     .B td
1604     .I tau_d
1605     .SH
1606     DESCRIPTION
1607     .LP
1608     Set the diffuse transmittance for the current material to
1609     .I tau_d
1610     using the current color to determine the spectral characteristics.
1611     This is the fraction of visible light that is transmitted through a
1612     surface equally in all (transmitted) directions.
1613     Like reflectance, transmittance is measured according to the
1614     standard v(lambda) curve, and assumes an equal-energy white light source.
1615     It is probably not possible to create a material with a diffuse
1616     transmittance above 50%, since well-diffused light will be reflected
1617     as well.
1618     .LP
1619     The default diffuse transmittance is zero.
1620     .SH
1621     EXAMPLE
1622     .DS
1623     # Model a perfect spherical diffuser, i.e. light hitting \
1624     either side will be scattered equally in all directions
1625     m wonderland_diffuser =
1626     c
1627     td .5
1628     rd .5
1629     .DE
1630     .SH
1631     SEE ALSO
1632     .LP
1633     .UL c,
1634     .UL ed,
1635     .UL ir,
1636     .UL m,
1637     .UL rd,
1638     .UL rs,
1639     .UL sides,
1640     .UL ts
1641     .ds RH ED
1642     .bp
1643     .SH
1644     NAME
1645     .LP
1646     ed - set the diffuse emittance for the current material
1647     .SH
1648     SYNOPSIS
1649     .LP
1650     .B ed
1651     .I epsilon_d
1652     .SH
1653     DESCRIPTION
1654     .LP
1655     Set the diffuse emittance for the current material to
1656     .I epsilon_d
1657     lumens per square meter using the current color to determine the
1658     spectral characteristics.
1659     Note that this is emittance rather than exitance, and therefore
1660     does not include reflected or transmitted light, which is a function
1661     of the other material settings and the illuminated environment.
1662     .LP
1663     The total lumen output of a convex emitting object
1664     is the radiating area of that object multiplied by its emittance.
1665     Therefore, one can compute the appropriate
1666     .I epsilon_d
1667     value for an emitter by dividing the total lumen output by the
1668     radiating area (in square meters).
1669     .LP
1670     The default emittance is zero.
1671     .SH
1672     EXAMPLE
1673     .DS
1674     # A 100-watt incandescent bulb (1600 lumens) modeled as a sphere
1675     m
1676     c
1677     cct 3000
1678     ed 87712
1679     v cent =
1680     p 0 0 0
1681     sph cent .0381
1682     .DE
1683     .SH
1684     SEE ALSO
1685     .LP
1686     .UL c,
1687     .UL ir,
1688     .UL m,
1689     .UL rd,
1690     .UL rs,
1691     .UL sides,
1692     .UL td,
1693     .UL ts
1694     .ds RH RS
1695     .bp
1696     .SH
1697     NAME
1698     .LP
1699     rs - set the specular reflectance for the current material
1700     .SH
1701     SYNOPSIS
1702     .LP
1703     .B rs
1704     .I "rho_s alpha_r"
1705     .SH
1706     DESCRIPTION
1707     .LP
1708     Set the specular reflectance for the current material to
1709     .I rho_s
1710     using the current color to determine the spectral characteristics.
1711     The surface roughness parameter is set to
1712     .I alpha_r,
1713     which is the RMS height of surface variations over the
1714     autocorrelation distance (equivalent to RMS facet slope).
1715     A roughness value of zero means a perfectly smooth surface, and
1716     values greater than 0.2 are unusual.
1717     (See application notes section 6.1.2 for a comparison between the
1718     roughness parameter and Phong specular power.)\0
1719     .LP
1720     The default specular reflectance is zero.
1721     .SH
1722     EXAMPLE
1723     .DS
1724     # Define a slightly rough brass metallic surface
1725     m rough_brass =
1726     c
1727     cxy .3820 .4035
1728     # 30% specular, 9% diffuse
1729     rs .30 .08
1730     rd .09
1731     .DE
1732     .SH
1733     SEE ALSO
1734     .LP
1735     .UL c,
1736     .UL ed,
1737     .UL ir,
1738     .UL m,
1739     .UL rd,
1740     .UL sides,
1741     .UL td,
1742     .UL ts
1743     .ds RH TS
1744     .bp
1745     .SH
1746     NAME
1747     .LP
1748     ts - set the specular transmittance for the current material
1749     .SH
1750     SYNOPSIS
1751     .LP
1752     .B ts
1753     .I "tau_s alpha_t"
1754     .SH
1755     DESCRIPTION
1756     .LP
1757     Set the specular transmittance for the current material to
1758     .I tau_s
1759     using the current color to determine the spectral characteristics.
1760     The effective surface roughness is set to
1761     .I alpha_t.
1762     Rays will be transmitted with the same distribution as they would
1763     have been reflected with if this roughness value were given to the
1764     .UL rs
1765     entity.
1766     .LP
1767     The default specular transmittance is zero.
1768     .SH
1769     EXAMPLE
1770     .DS
1771     # Define a green glass material (58% transmittance)
1772     m glass =
1773     sides 2
1774     ir 1.52 0
1775     c
1776     rs 0.0725 0
1777     c
1778     cxy .23 .38
1779     ts 0.5815 0
1780     # Define an uncolored translucent plastic (40% transmittance)
1781     m translucent =
1782     sides 2
1783     ir 1.4 0
1784     c
1785     rs .045 0
1786     ts .40 .05
1787     .DE
1788     .SH
1789     SEE ALSO
1790     .LP
1791     .UL c,
1792     .UL ed,
1793     .UL ir,
1794     .UL m,
1795     .UL rd,
1796     .UL rs,
1797     .UL sides,
1798     .UL td
1799     .ds RH IR
1800     .bp
1801     .SH
1802     NAME
1803     .LP
1804     ir - set the complex index of refraction for the current material
1805     .SH
1806     SYNOPSIS
1807     .LP
1808     .B ir
1809     .I "n_real n_imag"
1810     .SH
1811     DESCRIPTION
1812     .LP
1813     Set the index of refraction for the current material to
1814     .I (n_real,n_imag).
1815     If the material is a dielectric (as opposed to metallic), then
1816     .I n_imag
1817     should be zero.
1818     For solid dielectric objects, the material should be made one-sided.
1819     If it is being used for thin objects, then a two-sided
1820     material is appropriate.
1821     (See the
1822     .UL sides
1823     entity.)\0
1824     .LP
1825     The default index of refraction is that of a vacuum, (1,0).
1826     .SH
1827     EXAMPLE
1828     .DS
1829     # Define polished aluminum material
1830     m polished_aluminum =
1831     # Complex index of refraction (from physics table)
1832     ir .770058 6.08351
1833     c
1834     rs .75 0
1835     .DE
1836     .SH
1837     SEE ALSO
1838     .LP
1839     .UL c,
1840     .UL ed,
1841     .UL m,
1842     .UL rd,
1843     .UL rs,
1844     .UL sides,
1845     .UL td,
1846     .UL ts
1847     .ds LH Vertex Entities
1848     .ds RH V
1849     .bp
1850     .SH
1851     NAME
1852     .LP
1853     v - get or set the current vertex context
1854     .SH
1855     SYNOPSIS
1856     .LP
1857     .B v
1858     [
1859     .I id
1860     [
1861     .B =
1862     [
1863     .I template
1864     ]
1865     ]
1866     ]
1867     .SH
1868     DESCRIPTION
1869     .LP
1870     If the
1871     .UL v
1872     keyword is given by itself, then it establishes
1873     the unnamed vertex context, which is the origin with no normal.
1874     This context may be modified, but the changes will not be saved.
1875     (The unnamed vertex is never used except as a source of default
1876     values since all geometric entities call their vertices by name.)\0
1877     .LP
1878     If the keyword is followed by an identifier
1879     .I id,
1880     then it reestablishes a previous context.
1881     If the specified context was never defined, an error will result.
1882     .LP
1883     If the entity is given with an identifier
1884     followed by an equals sign ('='), then a new context is established,
1885     and cleared to the default vertex (the origin).
1886     (Note that the equals sign must be separated from other
1887     arguments by white space to be properly recognized.)\0
1888     If the equals sign is followed by a second identifier
1889     .I template,
1890     then this previously defined vertex will be used as a source of
1891     default values instead.
1892     This may be used to establish a vertex alias, or to modify an
1893     existing vertex and give it a new name.
1894     .LP
1895     A non-zero vertex normal must be given for
1896     certain entities, specifically
1897     .UL ring
1898     and
1899     .UL torus
1900     require a normal direction.
1901     An
1902     .UL f
1903     entity will interpolate vertex normals if given, and
1904     use the polygon plane normal otherwise.
1905     See the
1906     .UL prism
1907     entry for an explanation of how it interprets and uses vertex
1908     normals.
1909     The other entities ignore vertex normals if present.
1910     .LP
1911     The actual position and normal direction for a vertex is determined
1912     at the time of use by a geometric entity.
1913     Specifically, the transformation in effect at the time the vertex is
1914     defined is irrelevant.
1915     The only transformation that matters is the one that is applied to
1916     the geometry itself.
1917     This prevents double-transformation of vertices and allows one set
1918     of vertices to be used for multiple purposes, e.g. the front and
1919     back sides of a drawer.
1920     .SH
1921     EXAMPLE
1922     .DS
1923     # Make a capped cylinder
1924     v end1 =
1925     p 0 0 0
1926     n 0 0 -1
1927     v end2 =
1928     p 0 0 1
1929     cyl end1 1.2 end2
1930     # Forgot normal for end2
1931     v end2
1932     n 0 0 1
1933     ring end1 0 1.2
1934     ring end2 0 1.2
1935     .DE
1936     .SH
1937     SEE ALSO
1938     .LP
1939     .UL cone,
1940     .UL cyl,
1941     .UL f,
1942     .UL n,
1943     .UL p,
1944     .UL prism,
1945     .UL ring,
1946     .UL sph,
1947     .UL torus
1948     .ds RH P
1949     .bp
1950     .SH
1951     NAME
1952     .LP
1953     p - set the point location for the current vertex
1954     .SH
1955     SYNOPSIS
1956     .LP
1957     .B p
1958     .I "px py pz"
1959     .SH
1960     DESCRIPTION
1961     .LP
1962     Set the 3-dimensional position for the current vertex to
1963     .I (px,py,pz).
1964     The actual position of the vertex will be determined by the
1965     transformation in effect at the time the vertex is applied to a
1966     geometric surface entity.
1967     The transform current when the position is set is irrelevant.
1968     .LP
1969     The default vertex position is the origin, (0,0,0).
1970     .SH
1971     EXAMPLE
1972     .DS
1973     # Make a small circle of 6 spheres
1974     v scent =
1975     p 1 0 0
1976     xf -a 6 -rz 60
1977     sph scent .05
1978     xf
1979     .DE
1980     .SH
1981     SEE ALSO
1982     .LP
1983     .UL cone,
1984     .UL cyl,
1985     .UL f,
1986     .UL n,
1987     .UL prism,
1988     .UL ring,
1989     .UL sph,
1990     .UL torus,
1991     .UL v
1992     .ds RH N
1993     .bp
1994     .SH
1995     NAME
1996     .LP
1997     n - set the surface normal direction for the current vertex
1998     .SH
1999     SYNOPSIS
2000     .LP
2001     .B n
2002     .I "dx dy dz"
2003     .SH
2004     DESCRIPTION
2005     .LP
2006     Set the 3-dimensional surface normal for the current vertex to the
2007     normalized vector along
2008     .I (dx,dy,dz).
2009     If this vector is zero, then the surface normal is effectively
2010     unset.
2011     The actual surface normal orientation of the vertex will be determined
2012     by the transformation in effect at the time the vertex is applied to a
2013     geometric surface entity.
2014     The current transform when the normal is set is irrelevant.
2015     .LP
2016     The default vertex normal is the zero vector (i.e. no normal).
2017     .SH
2018     EXAMPLE
2019     .DS
2020     # Make a chain of 10 interlocking doughnuts
2021     v tcent =
2022     p 0 0 0
2023     n 0 1 0
2024     xf -a 10 -rx 90 -t .2 0 0
2025     torus tcent .1 .2
2026     xf
2027     .DE
2028     .SH
2029     SEE ALSO
2030     .LP
2031     .UL f,
2032     .UL p,
2033     .UL prism,
2034     .UL ring,
2035     .UL torus,
2036     .UL v
2037     .ds LH Geometric Entities
2038     .ds RH F
2039     .bp
2040     .SH
2041     NAME
2042     .LP
2043     f - create an N-sided polygonal face
2044     .SH
2045     SYNOPSIS
2046     .LP
2047     .B f
2048     .I "v1 v2 ... vN"
2049     .SH
2050     DESCRIPTION
2051     .LP
2052     Create a polygonal face made of the current material
2053     by connecting the named vertices in order, and connecting the last
2054     vertex to the first.
2055     There must be at least three vertices, and if any vertex is undefined,
2056     an error will result.
2057     .LP
2058     The surface orientation is determined by the right-hand rule; when
2059     the curl of the fingers follows the given order of the vertices, the
2060     surface normal points in the thumb direction.
2061     Face vertices should be coplanar, though this is difficult to guarantee
2062     in a 3-dimensional specification.
2063     .LP
2064     If any vertices have associated surface normals, they will be used
2065     instead of the average plane normal, though it is safest to specify
2066     either all normals or no normals, and to stick with triangles
2067     when normals are used.
2068     Also, specified normals should point in the general direction of the
2069     surface for best results.
2070     .LP
2071     There is no explicit representation of holes in MGF. A hole must be
2072     represented implicitly by connecting vertices to form "seams." For
2073     example, a wall with a window in it might look as shown in Figure 1.
2074     In many systems, the wall itself would be represented with the first
2075     list of vertices, (v1,v2,v3,v4) and the hole associated with that
2076     wall as a second set of vertices (v5,v6,v7,v8). In MGF, we must
2077     give the whole thing as a single polygon, connecting the vertices so
2078     as to create a "seam," as shown in Figure 2.
2079     This could be written in MGF as "f v1 v2 v3 v4 v5 v6 v7 v8 v5 v4".
2080     .LP
2081     It is very important that the order of the hole be opposite to the
2082     order of the outer perimeter, otherwise the polygon will be
2083     "twisted" on top of itself. Note also that the seam was traversed
2084     in both directions, once going from v4 to v5, and again returning
2085     from v5 to v4. This is a necessary condition for a proper seam.
2086     .LP
2087     The choice of vertices to make into a seam is somewhat arbitrary, but
2088     some rendering systems may not give sane results if you cross over a
2089     hole with part of your seam. If we had chosen to create the seam
2090     between v2 and v5 in the above example instead of v4 and v5, the seam
2091     would cross our hole and may not render correctly\(dg.
2092     .FS
2093     \(dgFor systems that
2094     are sensitive to this, it is probably safest for their MGF
2095     loader/translator to re-expresses seams in terms of holes again, which can
2096     be done easily so long as vertices are shared in the fashion shown.
2097     .FE
2098     .bp
2099     Replace this page with the first page from "figures.ps".
2100     .bp
2101     .SH
2102     EXAMPLE
2103     .DS
2104     # Make a pyramid
2105     v apex =
2106     p 1 1 1
2107     v base0 =
2108     p 0 0 0
2109     v base1 =
2110     p 0 2 0
2111     v base2 =
2112     p 2 2 0
2113     v base3 =
2114     p 2 0 0
2115     # Bottom
2116     f base0 base1 base2 base3
2117     # Sides
2118     f base0 apex base1
2119     f base1 apex base2
2120     f base2 apex base3
2121     f base3 apex base0
2122     .DE
2123     .SH
2124     SEE ALSO
2125     .LP
2126     .UL cone,
2127     .UL cyl,
2128     .UL m,
2129     .UL prism,
2130     .UL ring,
2131     .UL sph,
2132     .UL torus,
2133     .UL v
2134     .ds RH SPH
2135     .bp
2136     .SH
2137     NAME
2138     .LP
2139     sph - create a sphere
2140     .SH
2141     SYNOPSIS
2142     .LP
2143     .B sph
2144     .I "vc rad"
2145     .SH
2146     DESCRIPTION
2147     .LP
2148     Create a sphere made of the current material with its center at the
2149     named vertex
2150     .I vc
2151     and a radius of
2152     .I rad.
2153     If the vertex is undefined an error will result.
2154     .LP
2155     The surface normal is usually directed outward, but will be directed
2156     inward if the given radius is negative.
2157     (This typically matters only for one-sided materials.)\0
2158     A zero radius is illegal.
2159     .SH
2160     EXAMPLE
2161     .DS
2162     # Create a thick glass sphere with a hollow inside
2163     m glass =
2164     sides 1
2165     ir 1.52 0
2166     c
2167     rs .06 0
2168     ts .88 0
2169     v cent =
2170     p 0 0 1.1
2171     # The outer shell
2172     sph cent .1
2173     # The inner bubble
2174     sph cent -.08
2175     .DE
2176     .SH
2177     SEE ALSO
2178     .LP
2179     .UL cone,
2180     .UL cyl,
2181     .UL f,
2182     .UL m,
2183     .UL prism,
2184     .UL ring,
2185     .UL torus,
2186     .UL v
2187     .ds RH CYL
2188     .bp
2189     .SH
2190     NAME
2191     .LP
2192     cyl - create an open-ended, truncated right cylinder
2193     .SH
2194     SYNOPSIS
2195     .LP
2196     .B cyl
2197     .I "v1 rad v2"
2198     .SH
2199     DESCRIPTION
2200     .LP
2201     Create a truncated right cylinder of radius
2202     .I rad
2203     using the current material, starting at the named vertex
2204     .I v1
2205     and continuing to
2206     .I v2.
2207     The ends will be open, but may be capped using the
2208     .UL ring
2209     entity if desired.
2210     .LP
2211     The surface normal will usually be directed outward, but may be
2212     directed inward by giving a negative value for
2213     .I rad.
2214     A zero radius is illegal, and
2215     .I v1
2216     cannot equal
2217     .I v2.
2218     .SH
2219     EXAMPLE
2220     .DS
2221     # A stylus with one rounded and one pointed end
2222     o stylus
2223     v vtip0 =
2224     p 0 0 0
2225     v vtip1 =
2226     p 0 0 .005
2227     v vend =
2228     p 0 0 .05
2229     cyl vtip1 .0015
2230     sph vend .0015
2231     cone vtip0 0 vtip1 .0015
2232     o
2233     .DE
2234     .SH
2235     SEE ALSO
2236     .LP
2237     .UL cone,
2238     .UL f,
2239     .UL m,
2240     .UL prism,
2241     .UL ring,
2242     .UL sph,
2243     .UL torus,
2244     .UL v
2245     .ds RH CONE
2246     .bp
2247     .SH
2248     NAME
2249     .LP
2250     cone - create an open-ended, truncated right cone
2251     .SH
2252     SYNOPSIS
2253     .LP
2254     .B cone
2255     .I "v1 rad1 v2 rad2"
2256     .SH
2257     DESCRIPTION
2258     .LP
2259     Create a truncated right cone using the current material.
2260     The starting radius is
2261     .I rad1
2262     at
2263     .I v1
2264     and the ending radius is
2265     is
2266     .I rad2
2267     at
2268     .I v2.
2269     The ends will be open, but may be capped using the
2270     .UL ring
2271     entity if desired.
2272     .LP
2273     The surface normal will usually be directed outward, but may be
2274     directed inward by giving negative values for both radii.
2275     (It is illegal for the signs of the two radii to disagree.)\0
2276     One but not both radii may be zero, indicating that the cone comes
2277     to a point.
2278     .LP
2279     Although it is not strictly forbidden to have equal cone radii, the
2280     .UL cyl
2281     entity should be used in such cases.
2282     Likewise, the
2283     .UL ring
2284     entity must be used if
2285     .I v1
2286     and
2287     .I v2
2288     are equal.
2289     .SH
2290     EXAMPLE
2291     .DS
2292     # A parasol
2293     o parasol
2294     v v1 =
2295     p 0 0 0
2296     v v2 =
2297     p 0 0 .75
2298     v v3 =
2299     p 0 0 .7
2300     m handle_mat
2301     cyl v1 .002 v2
2302     m parasol_paper
2303     cyl v2 0 v3 .33
2304     o
2305     .DE
2306     .SH
2307     SEE ALSO
2308     .LP
2309     .UL cyl,
2310     .UL f,
2311     .UL m,
2312     .UL prism,
2313     .UL ring,
2314     .UL sph,
2315     .UL torus,
2316     .UL v
2317     .ds RH PRISM
2318     .bp
2319     .SH
2320     NAME
2321     .LP
2322     prism - create a closed right prism
2323     .SH
2324     SYNOPSIS
2325     .LP
2326     .B prism
2327     .I "v1 v2 ... vN length"
2328     .SH
2329     DESCRIPTION
2330     .LP
2331     Create a closed right prism using the current material.
2332     One end face will be enclosed by the named vertices, and the
2333     opposite end face will be a mirror image at a distance
2334     .I length
2335     from the original.
2336     The edges will be extruded into N quadrilaterals connecting
2337     the two end faces.
2338     .LP
2339     The order of vertices determines the original face orientation
2340     according to the right-hand rule as explained for the
2341     .UL f
2342     entity.
2343     Normally, the prism is extruded in the direction opposite to the
2344     original surface normal, resulting in faces that all point outward.
2345     If the specified
2346     .I length
2347     is negative, the prism will be extruded above the original face
2348     and all surface normals will point inward.
2349     .LP
2350     If the vertices have associated normals, they are applied to the
2351     side faces only, and should generally point in the appropriate
2352     direction (i.e. in or out depending on whether
2353     .I length
2354     is negative or positive).
2355     .SH
2356     EXAMPLE
2357     .DS
2358     # Make a unit cube starting at the origin and \\\\
2359     extending to the positive octant
2360     v cv0 =
2361     p 0 0 0
2362     v cv1 =
2363     p 0 1 0
2364     v cv2 =
2365     p 1 1 0
2366     v cv3 =
2367     p 1 0 0
2368     # Right hand rule has original face looking in -Z direction
2369     prism cv0 cv1 cv2 cv3 1
2370     .DE
2371     .SH
2372     SEE ALSO
2373     .LP
2374     .UL cyl,
2375     .UL cone,
2376     .UL f,
2377     .UL m,
2378     .UL ring,
2379     .UL sph,
2380     .UL torus,
2381     .UL v
2382     .ds RH RING
2383     .bp
2384     .SH
2385     NAME
2386     .LP
2387     ring - create a circular ring with inner and outer radii
2388     .SH
2389     SYNOPSIS
2390     .LP
2391     .B cyl
2392     .I "vc rmin rmax"
2393     .SH
2394     DESCRIPTION
2395     .LP
2396     Create a circular face of the current material centered on the named
2397     vertex
2398     .I vc
2399     with an inner radius of
2400     .I rmin
2401     and an outer radius of
2402     .I rmax.
2403     The surface orientation is determined by the normal vector
2404     associated with
2405     .I vc.
2406     If this vertex is undefined or has no normal, an error will result.
2407     The minimum radius may be equal to but not less than zero, and the
2408     maximum radius must be strictly greater than the minimum.
2409     .SH
2410     EXAMPLE
2411     .DS
2412     # The proverbial brass ring
2413     o brass_ring
2414     m brass
2415     v end1 =
2416     p 0 -.005 0
2417     n 0 -1 0
2418     v end2 =
2419     p 0 .005 0
2420     n 0 1 0
2421     ring end1 .02 .03
2422     cyl end1 .03 end2
2423     ring end2 .02 .03
2424     cyl end2 -.02 end1
2425     o
2426     .DE
2427     .SH
2428     SEE ALSO
2429     .LP
2430     .UL cyl,
2431     .UL cone,
2432     .UL f,
2433     .UL m,
2434     .UL prism,
2435     .UL sph,
2436     .UL torus,
2437     .UL v
2438     .ds RH TORUS
2439     .bp
2440     .SH
2441     NAME
2442     .LP
2443     torus - create a regular torus
2444     .SH
2445     SYNOPSIS
2446     .LP
2447     .B torus
2448     .I "vc rmin rmax"
2449     .SH
2450     DESCRIPTION
2451     .LP
2452     Create a torus of the current material centered on the named vertex
2453     .I vc
2454     with an inner radius of
2455     .I rmin
2456     and an outer radius of
2457     .I rmax.
2458     The plane of the torus will be perpendicular to the normal vector
2459     associated with
2460     .I vc.
2461     If this vertex is undefined or has no normal, an error will result.
2462     .LP
2463     If a torus with an inward facing surface normal is desired,
2464     .I rmin
2465     and
2466     .I rmax
2467     may be negative.
2468     The minimum radius may be zero, but may not be negative when
2469     .I rmax
2470     is positive or vice versa.
2471     The magnitude or
2472     .I rmax
2473     must always be strictly greater than that of
2474     .I rmin.
2475     .SH
2476     EXAMPLE
2477     .DS
2478     # The proverbial brass ring -- easy grip version
2479     o brass_ring
2480     m brass
2481     v center =
2482     p 0 0 0
2483     n 0 1 0
2484     torus center .02 .03
2485     o
2486     .DE
2487     .SH
2488     SEE ALSO
2489     .LP
2490     .UL cyl,
2491     .UL cone,
2492     .UL f,
2493     .UL m,
2494     .UL prism,
2495     .UL ring,
2496     .UL sph,
2497     .UL v
2498     .ds RH
2499     .ds LH
2500     .bp
2501     .NH
2502     MGF Translators
2503     .LP
2504     Initially, there are four translators for MGF data, but only
2505     one of these is distributed with the MGF parser itself,
2506     .I mgfilt.
2507     Two of the other translators,
2508     .I mgf2rad
2509     and
2510     .I rad2mgf
2511     convert between MGF and the Radiance scene description language,
2512     and are distributed for free with the rest of the Radiance
2513     package\(dg.
2514     .FS
2515     \(dgRadiance is available by anonymous ftp from hobbes.lbl.gov and
2516     nestor.epfl.ch, or by WWW from
2517     "http://radsite.lbl.gov/radiance/HOME.html"
2518     .FE
2519     A third translator,
2520     .I mgf2meta,
2521     converts to a 2-dimensional line plot, and is also
2522     distributed with Radiance.
2523     .LP
2524     Mgfilt is a simple but useful utility that takes MGF on its input
2525     and produces MGF on its output.
2526     It uses the parser to convert entities that are not wanted or
2527     understood, and produces only the requested ones.
2528     This is useful for seeing what exactly a program must understand
2529     when it supports a given set of entities, and may serve as a
2530     substitute for linking to the parser library for programmers who
2531     wish to interpret the ASCII input directly but without all the
2532     unwanted entities.
2533     In future releases of MGF, this utility will also be handy for
2534     taking new entities and producing older versions of MGF for
2535     translators that have not yet been updated properly.
2536     .ds LH Translators
2537     .ds RH MGFILT
2538     .bp
2539     .SH
2540     NAME
2541     .LP
2542     mgfilt - get usable MGF entities from input
2543     .SH
2544     SYNOPSIS
2545     .LP
2546     .B mgfilt
2547     .B version
2548     [
2549     .B input ..
2550     ]
2551     .br
2552     or
2553     .br
2554     .B mgfilt
2555     .B "e1,e2,.."
2556     [
2557     .B input ..
2558     ]
2559     .SH
2560     DESCRIPTION
2561     .LP
2562     .I Mgfilt
2563     takes one or more MGF input files and converts all the entities to
2564     the types listed.
2565     In the first form, a single integer is given for the
2566     .I version
2567     of MGF that is to be produced.
2568     Since MGF is in its first major release, this is not yet a useful
2569     form, but it will be when the second major release comes out.
2570     .LP
2571     In the second form,
2572     .I mgfilt
2573     produces only the entities listed in the first argument, which must
2574     be comma-separated.
2575     The listed entity order is not important, but all entities given
2576     must be defined in the current version of MGF.
2577     Unknown entities will be summarily discarded on the input, and a
2578     warning message will be printed to the standard error.
2579     .SH
2580     EXAMPLES
2581     .LP
2582     To take an MGF version 3 file and send it to a version 2
2583     translator:
2584     .IP
2585     mgfilt 2 input.mgf | mgf2rad > input.rad
2586     .LP
2587     To take an MGF file and produce only flat polygonal faces
2588     with no materials:
2589     .IP
2590     mgfilt f,v,p,xf input.mgf > flatpoly.mgf
2591     .SH
2592     SEE ALSO
2593     .LP
2594     mgf2rad, rad2mgf
2595     .ds RH MGF2RAD
2596     .bp
2597     .SH
2598     NAME
2599     .LP
2600     mgf2rad - convert Materials and Geometry Format file to RADIANCE description
2601     .SH
2602     SYNOPSIS
2603     .LP
2604     .B mgf2rad
2605     [
2606     .B "\-m matfile"
2607     ][
2608     .B "\-e mult"
2609     ][
2610     .B "\-g dist"
2611     ]
2612     [
2613     .B input ..
2614     ]
2615     .SH
2616     DESCRIPTION
2617     .LP
2618     .I Mgf2rad
2619     converts one or more Materials and Geometry Format (MGF)
2620     files to a RADIANCE scene description.
2621     By definition, all output dimensions are in meters.
2622     The material names and properties
2623     for the surfaces will be those assigned in MGF.
2624     Any materials not defined in MGF will result in an error during
2625     translation.
2626     Light sources are described inline as IES luminaire files, and
2627     .I mgf2rad
2628     calls the program
2629     .I ies2rad(1)
2630     to translate these files.
2631     If an IES file in turn contains an MGF description of the local
2632     fixture geometry, this may result in a recursive call to
2633     .I mgf2rad,
2634     which is normal and should be transparent.
2635     The only side-effect of this additional translation is the
2636     appearance of other RADIANCE scene and data files produced
2637     automatically by
2638     .I ies2rad.
2639     .LP
2640     The
2641     .I \-m
2642     option may be used to put all the translated materials into a separate
2643     RADIANCE file.
2644     This is not always advisable, as any given material name may be
2645     reused at different points in the MGF description, and writing them
2646     to a separate file loses the contextual association between
2647     materials and surfaces.
2648     As long as unique material names are used throughout the MGF
2649     description and material properties are not redefined, there
2650     will be no problem.
2651     Note that this is the only way to get all the translated materials
2652     into a single file, since no output is produced for unreferenced
2653     materials; i.e. translating just the MGF materials does not work.
2654     .LP
2655     The
2656     .I \-e
2657     option may be used to multiply all the emission values by the
2658     given
2659     .I mult
2660     factor.
2661     The
2662     .I \-g
2663     option may be used to establish a glow distance (in meters)
2664     for all emitting surfaces.
2665     These two options are employed principally by
2666     .I ies2rad,
2667     and are not generally useful to most users.
2668     .SH
2669     EXAMPLES
2670     .LP
2671     To translate two MGF files into one RADIANCE materials file and
2672     one geometry file:
2673     .IP
2674     mgf2rad -m materials.rad building1.mgf building2.mgf > building1+2.rad
2675     .LP
2676     To create an octree directly from two MGF files and one RADIANCE
2677     file:
2678     .IP
2679     oconv '\\!mgf2rad materials.mgf scene.mgf' source.rad > scene.oct
2680     .SH
2681     FILES
2682     .LP
2683     tmesh.cal Used to smooth polygonal geometry
2684     .br
2685     *.rad RADIANCE source descriptions created by ies2rad
2686     .br
2687     *.dat RADIANCE source data created by ies2rad
2688     .br
2689     source.cal Used for IES source coordinates
2690     .SH
2691     AUTHOR
2692     .LP
2693     Greg Ward
2694     .SH
2695     SEE ALSO
2696     .LP
2697     ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)
2698     .ds RH
2699     RAD2MGF
2700     .bp
2701     .SH
2702     NAME
2703     .LP
2704     rad2mgf - convert RADIANCE scene description to Materials and Geometry Format
2705     .SH
2706     SYNOPSIS
2707     .LP
2708     .B rad2mgf
2709     [
2710     .B \-dU
2711     ]
2712     [
2713     .B input ..
2714     ]
2715     .SH
2716     DESCRIPTION
2717     .LP
2718     .I Rad2mgf
2719     converts one or more RADIANCE scene files
2720     to the Materials and Geometry Format (MGF).
2721     Input units are specified with the
2722     .I \-mU
2723     option, where
2724     .I U
2725     is one of 'm' (meters), 'c' (centimeters), 'f' (feet) or 'i'
2726     (inches).
2727     The assumed unit is meters, which is the required output unit for
2728     MGF (thus the need to know).
2729     If the input dimensions are in none of these units, then the user
2730     should apply
2731     .I xform(1)
2732     with the
2733     .I \-s
2734     option to bring the units into line prior to translation.
2735     .LP
2736     The MGF material names and properties
2737     for the surfaces will be those assigned in RADIANCE.
2738     If a referenced material has not been defined, then its name will
2739     be invoked in the MGF output without definition, and the description
2740     will be incomplete.
2741     .SH
2742     LIMITATIONS
2743     .LP
2744     Although MGF supports all of the geometric types and the most
2745     common material types used in RADIANCE, there is currently no
2746     support for advanced BRDF materials, patterns, textures or mixtures.
2747     Also, the special types "source" and "antimatter" are not supported,
2748     and all light source materials are converted to simple diffuse emitters
2749     (except "illum" materials, which are converted to their alternates).
2750     These primitives are reproduced as comments in the output and
2751     must be replaced manually if necessary.
2752     .LP
2753     The RADIANCE "instance" type is treated specially.
2754     .I Rad2mgf
2755     converts each instance to an MGF include statement, using the corresponding
2756     transformation and a file name derived from the octree name.
2757     (The original octree suffix is replaced by ".mgf".)\0
2758     For this to work, the user must separately create the referenced
2759     MGF files from the original RADIANCE descriptions.
2760     The description file names can usually be determined using the
2761     .I getinfo(1)
2762     command run on the octrees in question.
2763     .SH
2764     EXAMPLES
2765     .LP
2766     To convert three RADIANCE files (in feet) to one MGF file:
2767     .IP
2768     mgf2rad -df file1.rad file2.rad file3.rad > scene.mgf
2769     .LP
2770     To translate a RADIANCE materials file to MGF:
2771     .IP
2772     mgf2rad materials.rad > materials.mgf
2773     .SH
2774     AUTHOR
2775     .LP
2776     Greg Ward
2777     .SH
2778     SEE ALSO
2779     .LP
2780     getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)
2781     .ds RH MGF2META
2782     .bp
2783     .SH
2784     NAME
2785     .LP
2786     mgf2meta - convert Materials and Geometry Format file to Metafile graphics
2787     .SH
2788     SYNOPSIS
2789     .LP
2790     .B mgf2meta
2791     [
2792     .B "-t threshold"
2793     ]
2794     .B "{x|y|z} xmin xmax ymin ymax zmin zmax"
2795     [
2796     .B input ..
2797     ]
2798     .SH
2799     DESCRIPTION
2800     .LP
2801     .I Mgf2meta
2802     converts one or more Materials and Geometry Format (MGF)
2803     files to a 2-D orthographic projection along the selected axis in the
2804     .I metafile(1)
2805     graphics format.
2806     All geometry is clipped to the specified bounding box, and the
2807     resulting orientation is as follows:
2808     .sp .5
2809     .nf
2810     Projection Orientation
2811     ======= ========
2812     x Y-axis right, Z-axis up
2813     y Z-axis right, X-axis up
2814     z X-axis right, Z-axis up
2815     .fi
2816     .LP
2817     If multiple input files are given, the first file prints in black,
2818     the second prints in red, the third in green and the fourth in blue.
2819     If more than four input files are given, they cycle through the
2820     colors again in three other line types: dashed, dotted and
2821     dot-dashed.
2822     .LP
2823     The
2824     .I \-t
2825     option may be used to randomly throw out line segments that are
2826     shorter than the given
2827     .I threshold
2828     (given as a fraction of the plot width).
2829     Segments are included with a
2830     probability equal to the square of the line length over the square
2831     of the threshold.
2832     This can greatly reduce the number of lines in the drawing (and
2833     therefore improve the drawing speed) with only a modest loss in
2834     quality.
2835     A typical value for this parameter is 0.005.
2836     .LP
2837     All MGF material information is ignored on the input.
2838     .SH
2839     EXAMPLES
2840     .LP
2841     To project two MGF files along the Z-axis and display them under
2842     X11:
2843     .IP
2844     mgf2meta z 0 10 0 15 0 9 building1.mgf building2.mgf | x11meta
2845     .LP
2846     To convert a RADIANCE scene to a line drawing in RADIANCE picture
2847     format:
2848     .IP
2849     rad2mgf scene.rad | mgf2meta x `getbbox -h scene.rad` | meta2tga |
2850     ra_t8 -r > scene.pic
2851     .SH
2852     AUTHOR
2853     .LP
2854     Greg Ward
2855     .SH
2856     SEE ALSO
2857     .LP
2858     getbbox(1), meta2tga(1), metafile(5), mgf2rad(1), pflip(1),
2859     protate(1), psmeta(1), ra_t8(1), rad2mgf(1), t4014(1), x11meta(1)
2860     .ds RH
2861     .ds LH
2862     .bp
2863     .NH
2864     MGF Parser Library
2865     .LP
2866     The principal motivation for creating a standard parser library for
2867     MGF is to make it easy for software developers to offer some base
2868     level of compliance.
2869     The key to making MGF easy to support in fact is the parser, which
2870     has the ability to express higher order entities in terms of
2871     lower order ones.
2872     For example, tori are part of the MGF specification, but if a given
2873     program or translator does not support them, the parser will convert
2874     them to cones.
2875     If cones are not supported either, it will convert them further into
2876     smoothed polygons.
2877     If smoothing (vertex normal information) is not supported, it will
2878     be ignored and the program will just get flat polygons.
2879     This is done in such a way that future versions of the standard may
2880     include new entities that old software does not even have to know
2881     about, and they will be converted appropriately.
2882     Forward compatibility is thus built right into the parser loading
2883     mechanism itself -- the programmer simply links to the new code and
2884     the new standard is supported without any further changes.
2885     .SH
2886     Language
2887     .LP
2888     The provided MGF parser is written in ANSI-C.
2889     This language was chosen for reasons of portability and efficiency.
2890     Almost all systems support some form of ANSI-compatible C, and many
2891     languages can cross-link to C libraries without modification.
2892     Backward compatibility to Kernighan and Ritchie C is achieved by
2893     compiling with the -DNOPROTO flag.
2894     .LP
2895     All of the data structures and prototypes needed for the library
2896     are in the header file "parser.h".
2897     This file is the best resource for the parser and is updated with
2898     each MGF release.
2899     .SH
2900     Mechanism
2901     .LP
2902     The parser works by a simple callback mechanism to routines that
2903     actually interpret the individual entities.
2904     Some of these routines will belong to the calling program, and some
2905     will be entity support routines included in the library itself.
2906     There is a global array of function pointers, called
2907     .I mg_ehand.
2908     It is defined thus:
2909     .DS
2910     extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv);
2911     .DE
2912     Before parsing begins, this dispatch table is initialized to point to the
2913     routines that will handle each supported entity.
2914     Every entity handler has the same basic prototype, which is the
2915     same as the
2916     .I main
2917     function, i.e:
2918     .DS
2919     extern int \f2handler\f1(int argc, char **argv);
2920     .DE
2921     The first argument is the number of words in the MGF entity
2922     (counting the entity itself) and the second argument is an array of
2923     nul-terminated strings with the entity and its arguments.
2924     The function should return zero or one of the error
2925     codes defined in "parser.h".
2926     A non-zero return value causes the parser to abort, returning the
2927     error up through its call stack to the entry function, usually
2928     .I mg_load.
2929     .LP
2930     A special function pointer for undefined entities is
2931     defined as follows:
2932     .DS
2933     extern int (*mg_uhand)(int argc, char **argv);
2934     .DE
2935     By default, this points to the library function
2936     .I mg_defuhand,
2937     which prints an error message on the first unknown entity and keeps a
2938     count from then on, which is stored in the global unsigned integer
2939     .I mg_nunknown.
2940     If the
2941     .I mg_uhand
2942     pointer is assigned a value of NULL instead, parsing will abort at the
2943     first unrecognized entity.
2944     The reason this is not the default action is that ignoring unknown entities
2945     offers a certain base level of forward compatibility.
2946     Ignoring things one does not understand is not the best approach, but it
2947     is usually better than quitting with an error message if the input is
2948     in fact valid, but is a later version of the standard.
2949     The real solution is to update the interpreter by linking to a new version
2950     of the parser, or use a new version of the
2951     .I mgfilt
2952     command to convert the new MGF input to an older standard.
2953     .LP
2954     The
2955     .I mg_uhand
2956     pointer may also be used to customize the language for a particular
2957     application by adding entities, though this is discouraged because it
2958     tends to weaken the standard.
2959     .LP
2960     The skeletal framework for an MGF loader or translator is to assign
2961     function pointers to the
2962     .I mg_ehand
2963     array, call the parser initialization function
2964     .I mg_init,
2965     then call the file loader function
2966     .I mg_load
2967     once for each input file.
2968     This will in turn make calls back to the functions assigned to
2969     .I mg_ehand.
2970     To give a simple example, let us look at a
2971     translator that understands only flat polygonal faces, putting out
2972     vertex locations immediately after each "face" keyword:
2973     .DS
2974     #include <stdio.h>
2975     #include "parser.h"
2976    
2977     int
2978     myfaceh(ac, av) /* face handling routine */
2979     int ac;
2980     char **av;
2981     {
2982     C_VERTEX *vp; /* vertex structure pointer */
2983     FVECT vert; /* vertex point location */
2984     int i;
2985    
2986     if (ac < 4) /* check # arguments */
2987     return(MG_EARGC);
2988     printf("face\n"); /* begin face output */
2989     for (i = 1; i < ac; i++) {
2990     if ((vp = c_getvert(av[i])) == NULL) /* vertex from name */
2991     return(MG_EUNDEF);
2992     xf_xfmpoint(vert, vp->p); /* apply transform */
2993     printf("%15.9f %15.9f %15.9f\n",
2994     vert[0], vert[1], vert[2]); /* output vertex */
2995     }
2996     printf(";\\n"); /* end of face output */
2997     return(MG_OK); /* normal exit */
2998     }
2999    
3000     main(argc, argv) /* translate MGF file(s) */
3001     int argc;
3002     char **argv;
3003     {
3004     int i;
3005     /* initialize dispatch table */
3006     mg_ehand[MG_E_FACE] = myfaceh; /* ours */
3007     mg_ehand[MG_E_VERTEX] = c_hvertex; /* parser lib */
3008     mg_ehand[MG_E_POINT] = c_hvertex; /* parser lib */
3009     mg_ehand[MG_E_XF] = xf_handler; /* parser lib */
3010     mg_init(); /* initialize parser */
3011     for (i = 1; i < argc; i++) /* load each file argument */
3012     if (mg_load(argv[i]) != MG_OK) /* and check for error */
3013     exit(1);
3014     exit(0); /* all done! */
3015     }
3016     .DE
3017     Hopefully, this example demonstrates just how easy it is to
3018     write an MGF translator.
3019     Of course, translators get more complicated the more entity
3020     types they support, but the point is that one does not
3021     .I have
3022     to support every entity -- the parser handles what the translator
3023     does not.
3024     Also, the library includes many general entity handlers,
3025     further reducing the burden on the programmer.
3026     This same principle means that it is not necessary to modify an
3027     existing program to accommodate a new version of MGF -- one need only
3028     link to the new parser library to comply with the new standard.
3029     .SH
3030     Division of Labor
3031     .LP
3032     As seen in the previous example, there are two parser routines that
3033     are normally called directly in an MGF translator or loader program.
3034     The first is
3035     .I mg_init,
3036     which takes no arguments but relies on the program having
3037     initialized those parts of the global
3038     .I mg_ehand
3039     array it cares about.
3040     The second routine is
3041     .I mg_load,
3042     which is called once on each input file.
3043     (A third routine,
3044     .I mg_clear,
3045     may be called to free the parser data structures after each file or
3046     after all files, if the program plans to continue rather than
3047     exit.)\0
3048     .LP
3049     The rest of the routines in a translator or loader program are
3050     called indirectly through the
3051     .I mg_ehand
3052     dispatch table, and they are the ones that do the real work of
3053     supporting the MGF entities.
3054     In addition to converting or discarding entities that the calling
3055     program does not know or care about, the parser library includes a
3056     set of context handlers that greatly simplify the translation
3057     process.
3058     There are three handlers for each of the three named contexts and
3059     their constituents, and two handlers for the two hierarchical
3060     context entities.
3061     To use these handlers, one simply sets the appropriate positions in the
3062     .I mg_ehand
3063     dispatch table to point to these functions.
3064     Additional functions and global data structures provide convenient
3065     access to the relevant contexts, and all of these are detailed in
3066     the following manual pages.
3067     .ds LH Basic Parser Routines
3068     .ds RH MG_INIT
3069     .bp
3070     .SH
3071     NAME
3072     .LP
3073     mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers
3074     .SH
3075     SYNOPSIS
3076     .LP
3077     #include "parser.h"
3078     .LP
3079     .B void
3080     mg_init(
3081     .B void
3082     )
3083     .LP
3084     .B int
3085     mg_defuhand(
3086     .B int
3087     argc,
3088     .B char
3089     **argv )
3090     .LP
3091     .B "extern int"
3092     (*mg_ehand[MG_NENTITIES])(
3093     .B int
3094     argc,
3095     .B char
3096     **argv )
3097     .LP
3098     .B "extern int"
3099     (*mg_uhand)(
3100     .B int
3101     argc,
3102     .B char
3103     **argv )
3104     .LP
3105     .B "extern unsigned"
3106     mg_nunknown
3107     .SH
3108     DESCRIPTION
3109     .LP
3110     The parser dispatch table,
3111     .I mg_ehand
3112     is initially set to all NULL pointers, and it
3113     is the duty of the calling program to assign entity handler functions to
3114     each of the supported entity positions in the array.
3115     The entities are given in the include file "parser.h" as the
3116     following:
3117     .DS
3118     #define MG_E_COMMENT 0 /* # */
3119     #define MG_E_COLOR 1 /* c */
3120     #define MG_E_CCT 2 /* cct */
3121     #define MG_E_CONE 3 /* cone */
3122     #define MG_E_CMIX 4 /* cmix */
3123     #define MG_E_CSPEC 5 /* cspec */
3124     #define MG_E_CXY 6 /* cxy */
3125     #define MG_E_CYL 7 /* cyl */
3126     #define MG_E_ED 8 /* ed */
3127     #define MG_E_FACE 9 /* f */
3128     #define MG_E_INCLUDE 10 /* i */
3129     #define MG_E_IES 11 /* ies */
3130     #define MG_E_IR 12 /* ir */
3131     #define MG_E_MATERIAL 13 /* m */
3132     #define MG_E_NORMAL 14 /* n */
3133     #define MG_E_OBJECT 15 /* o */
3134     #define MG_E_POINT 16 /* p */
3135     #define MG_E_PRISM 17 /* prism */
3136     #define MG_E_RD 18 /* rd */
3137     #define MG_E_RING 19 /* ring */
3138     #define MG_E_RS 20 /* rs */
3139     #define MG_E_SIDES 21 /* sides */
3140     #define MG_E_SPH 22 /* sph */
3141     #define MG_E_TD 23 /* td */
3142     #define MG_E_TORUS 24 /* torus */
3143     #define MG_E_TS 25 /* ts */
3144     #define MG_E_VERTEX 26 /* v */
3145     #define MG_E_XF 27 /* xf */
3146    
3147     #define MG_NENTITIES 28 /* total # entities */
3148     .DE
3149     .LP
3150     Once the
3151     .I mg_ehand
3152     array has been set by the program, the
3153     .I mg_init
3154     routine must be called to complete the initialization process.
3155     This should be done once and only once per invocation, before any other
3156     parser routines are called.
3157     .LP
3158     The
3159     .I mg_uhand
3160     variable points to the current handler for unknown entities
3161     encountered on the input.
3162     Its default value points to the
3163     .I mg_defuhand
3164     function, which simply increments the global variable
3165     .I mg_nunknown,
3166     printing a warning message on the standard error on the first
3167     offense.
3168     (This message may be avoided by incrementing
3169     .I mg_nunknown
3170     before processing begins.)\0
3171     If
3172     .I mg_uhand
3173     is assigned a value of NULL, then an unknown entity will return an
3174     .I MG_EUNK
3175     error, which will cause the parser to abort.
3176     (See the
3177     .I mg_load
3178     page for a list of errors.)\0
3179     If the
3180     .I mg_uhand
3181     pointer is assigned to another function, that function will receive
3182     any unknown entities and their arguments, and the parsing will
3183     abort if the new function returns a non-zero error value.
3184     This offers a convenient way to customize the language by adding
3185     non-standard entities.
3186     .SH
3187     DIAGNOSTICS
3188     .LP
3189     If an inconsistent set of entities has been set for support, the
3190     .I mg_init
3191     routine will print an informative message to standard error and abort
3192     the calling program with a call to
3193     .I exit.
3194     This is normally unacceptable behavior for a library routine, but since
3195     such an error indicates a fault with the calling program itself,
3196     recovery is impossible.
3197     .SH
3198     SEE ALSO
3199     .LP
3200     mg_load, mg_handle
3201     .ds RH MG_LOAD
3202     .bp
3203     .SH
3204     NAME
3205     .LP
3206     mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures
3207     .SH
3208     SYNOPSIS
3209     .LP
3210     #include "parser.h"
3211     .LP
3212     .B int
3213     mg_load(
3214     .B char
3215     *filename )
3216     .LP
3217     .B void
3218     mg_clear(
3219     .B void
3220     )
3221     .LP
3222     .B extern
3223     MG_FCTXT *mg_file
3224     .LP
3225     .B "extern char"
3226     *mg_err[MG_NERRS]
3227     .SH
3228     DESCRIPTION
3229     .LP
3230     The
3231     .I mg_load
3232     function loads the named file, or standard input if
3233     .I filename
3234     is the NULL pointer.
3235     Calls back to the appropriate MGF handler routines are made through the
3236     .I mg_ehand
3237     dispatch table.
3238     .LP
3239     The global
3240     .I mg_file
3241     variable points to the current file context structure, which
3242     may be useful for the interpretation of certain entities, such as
3243     .UL ies,
3244     which must know the directory path of the enclosing file.
3245     This structure is of the defined type
3246     .I MG_FCTXT,
3247     given in "parser.h" as:
3248     .DS
3249     typedef struct mg_fctxt {
3250     char fname[96]; /* file name */
3251     FILE *fp; /* stream pointer */
3252     int fid; /* unique file context id */
3253     char inpline[4096]; /* input line */
3254     int lineno; /* line number */
3255     struct mg_fctxt *prev; /* previous context */
3256     } MG_FCTXT;
3257     .DE
3258     .SH
3259     DIAGNOSTICS
3260     .LP
3261     If an error is encountered during parsing,
3262     .I mg_load
3263     will print an appropriate error message to the standard error stream
3264     and return one of the non-zero values from "parser.h" listed below:
3265     .DS
3266     #define MG_OK 0 /* normal return value */
3267     #define MG_EUNK 1 /* unknown entity */
3268     #define MG_EARGC 2 /* wrong number of arguments */
3269     #define MG_ETYPE 3 /* argument type error */
3270     #define MG_EILL 4 /* illegal argument value */
3271     #define MG_EUNDEF 5 /* undefined reference */
3272     #define MG_ENOFILE 6 /* cannot open input file */
3273     #define MG_EINCL 7 /* error in included file */
3274     #define MG_EMEM 8 /* out of memory */
3275     #define MG_ESEEK 9 /* file seek error */
3276     #define MG_EBADMAT 10 /* bad material specification */
3277    
3278     #define MG_NERRS 11
3279     .DE
3280     If it is inappropriate to send output to standard error, the calling
3281     program should use the routines listed under
3282     .I mg_open
3283     for better control over the parsing process.
3284     .LP
3285     The
3286     .I mg_err
3287     array contains error messages corresponding to each of the values
3288     listed above in the native country's language.
3289     .SH
3290     SEE ALSO
3291     .LP
3292     mg_fgetpos, mg_handle, mg_init
3293     .ds RH MG_OPEN
3294     .bp
3295     .SH
3296     NAME
3297     .LP
3298     mg_open, mg_read, mg_parse, mg_close - MGF file loading subroutines
3299     .SH
3300     SYNOPSIS
3301     .LP
3302     #include "parser.h"
3303     .LP
3304     .B int
3305     mg_open( MG_FCTXT *fcp,
3306     .B char
3307     *filename )
3308     .LP
3309     .B int
3310     mg_read(
3311     .B void
3312     )
3313     .LP
3314     .B int
3315     mg_parse(
3316     .B void
3317     )
3318     .LP
3319     .B void
3320     mg_close(
3321     .B void
3322     )
3323     .SH
3324     DESCRIPTION
3325     .LP
3326     Most loaders and translators will call the
3327     .I mg_load
3328     routine to handle the above operations, but some programs or
3329     entity handlers require tighter control over the loading process.
3330     .LP
3331     The
3332     .I mg_open
3333     routine takes an uninitialized
3334     .I MG_FCTXT
3335     structure and a file name as its arguments.
3336     If
3337     .I filename
3338     is the NULL pointer, the standard input is "opened."
3339     The
3340     .I fcp
3341     structure will be set by
3342     .I mg_open
3343     prior to its return, and the global
3344     .I mg_file
3345     pointer will be assigned to point to it.
3346     This variable must not be destroyed until after the file is closed
3347     with a call to
3348     .I mg_close.
3349     (See the
3350     .I mg_load
3351     page for a definition of
3352     .I mg_file
3353     and the
3354     .I MG_FCTXT
3355     type.)\0
3356     .LP
3357     The
3358     .I mg_read
3359     function reads the next input line from the current file,
3360     returning the number of characters in the line, or zero if the
3361     end of file is reached or there is a file error.
3362     The function skips over escaped newlines, and keeps track of the
3363     line number in the current file context
3364     .I mg_file,
3365     which also contains the line that was read.
3366     .LP
3367     The
3368     .I mg_parse
3369     function breaks the current line in the
3370     .I mg_file
3371     structure into words and calls the appropriate handler routine, if
3372     any.
3373     Blank lines and unsupported entities cause a quick return.
3374     .LP
3375     The
3376     .I mg_close
3377     routine closes the current input file (unless it is the standard
3378     input) and returns to the previous file context (if any).
3379     .SH
3380     DIAGNOSTICS
3381     .LP
3382     The
3383     .I mg_open
3384     function returns
3385     .I MG_OK
3386     (0) normally, or
3387     .I MG_ENOFILE
3388     if the open fails for some reason.
3389     .LP
3390     The
3391     .I mg_parse
3392     function returns
3393     .I MG_OK
3394     if the current line was successfully interpreted, or one of the
3395     defined error values if there is a problem.
3396     (See the
3397     .I mg_load
3398     page for the defined error values.)\0
3399     .SH
3400     SEE ALSO
3401     .LP
3402     mg_fgetpos, mg_handle, mg_init, mg_load
3403     .ds RH MG_FGETPOS
3404     .bp
3405     .SH
3406     NAME
3407     .LP
3408     mg_fgetpos, mg_fgoto - get current file position and seek to pointer
3409     .SH
3410     SYNOPSIS
3411     .LP
3412     #include "parser.h"
3413     .LP
3414     .B void
3415     mg_fgetpos( MG_FPOS *pos )
3416     .LP
3417     .B int
3418     mg_fgoto( MG_FPOS *pos )
3419     .SH
3420     DESCRIPTION
3421     .LP
3422     The
3423     .I mg_fgetpos
3424     gets the current MGF file position and loads it into the passed
3425     .I MG_FPOS
3426     structure,
3427     .I pos.
3428     .LP
3429     The
3430     .I mg_fgoto
3431     function seeks to the position
3432     .I pos,
3433     taken from a previous call to
3434     .I mg_fgetpos.
3435     .SH
3436     DIAGNOSTICS
3437     .LP
3438     If
3439     .I mg_fgoto
3440     is passed an illegal pointer or one that does not correspond to the
3441     current
3442     .I mg_file
3443     context, it will return the
3444     .I MG_ESEEK
3445     error value.
3446     Normally, it returns
3447     .I MG_OK
3448     (0).
3449     .SH
3450     SEE ALSO
3451     .LP
3452     mg_load, mg_open
3453     .ds RH MG_HANDLE
3454     .bp
3455     .SH
3456     NAME
3457     .LP
3458     mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance and control
3459     .SH
3460     SYNOPSIS
3461     .LP
3462     .B int
3463     mg_handle(
3464     .B int
3465     en,
3466     .B int
3467     ac,
3468     .B char
3469     *av )
3470     .LP
3471     .B int
3472     mg_entity(
3473     .B char
3474     *name )
3475     .LP
3476     .B "extern char"
3477     mg_ename[MG_NENTITIES][MG_MAXELEN]
3478     .LP
3479     .B "extern int"
3480     mg_nqcdivs
3481     .SH
3482     DESCRIPTION
3483     .LP
3484     The
3485     .I mg_handle
3486     routine may be used to pass entities back to the parser
3487     to be redirected through the
3488     .I mg_ehand
3489     dispatch table.
3490     This method is recommended rather than calling through
3491     .I mg_ehand
3492     directly, since the parser sometimes has its own support routines
3493     that it needs to call for specific entities.
3494     The first argument,
3495     .I en,
3496     is the corresponding entity number, or -1 if
3497     .I mg_handle
3498     should figure it out from the first
3499     .I av
3500     argument.
3501     .LP
3502     The
3503     .I mg_entity
3504     function gets an entity number from its name, using a hash
3505     table on the
3506     .I mg_ename
3507     list.
3508     .LP
3509     The
3510     .I mg_ename
3511     table contains the string names corresponding to each MGF entity in
3512     the designated order.
3513     (See the
3514     .I mg_init
3515     page for the list of MGF entities.)\0
3516     .LP
3517     The global integer variable
3518     .I mg_nqcdivs
3519     tells the parser how many subdivisions to use per quarter circle (90
3520     degrees) when tesselating curved geometry.
3521     The default value is 5, and it may be reset at any time by the
3522     calling program.
3523     .SH
3524     DIAGNOSTICS
3525     .LP
3526     The
3527     .I mg_handle
3528     function returns
3529     .I MG_OK
3530     if the entity is handled correctly, or one of the predefined error
3531     values if there is a problem.
3532     (See the
3533     .I mg_load
3534     page for a list of error values.)\0
3535     .LP
3536     The
3537     .I mg_entity
3538     function returns -1 if the passed name does not appear in the
3539     .I mg_ename
3540     list.
3541     .SH
3542     SEE ALSO
3543     .LP
3544     mg_init, mg_load, mg_open
3545     .ds RH ISINT, ISFLT, ISNAME
3546     .bp
3547     .SH
3548     NAME
3549     .LP
3550     isint, isflt, isname - determine if string fits integer or real format,
3551     or is legal identifier
3552     .SH
3553     SYNOPSIS
3554     .LP
3555     .B int
3556     isint(
3557     .B char
3558     *str )
3559     .LP
3560     .B int
3561     isflt(
3562     .B char
3563     *str )
3564     .LP
3565     .B int
3566     isname(
3567     .B char
3568     *str )
3569     .SH
3570     DESCRIPTION
3571     .LP
3572     The
3573     .I isint
3574     function checks to see if the passed string
3575     .I str
3576     matches a decimal integer format (positive or negative),
3577     and returns 1 or 0 based on whether it does or does not.
3578     .LP
3579     The
3580     .I isflt
3581     function checks to see if the passed string
3582     .I str
3583     matches a floating point format (positive or negative with optional
3584     exponent), and returns 1 or 0 based on whether it does or does not.
3585     .LP
3586     The
3587     .I isname
3588     function checks to see if the passed string
3589     .I str
3590     is a legal identifier name.
3591     In MGF, a legal identifier must begin with a letter and contain only
3592     visible ASCII characters (those between decimal 33 and 127 inclusive).
3593     The one caveat to this is that names may begin with one or more
3594     underscores ('_'), but this is a trick employed by the parser to
3595     maintain a separate name space from the user, and is not legal usage
3596     otherwise.
3597     .LP
3598     Note that a string that matches an integer format is also a valid
3599     floating point value.
3600     Conversely, a string that is not a floating point number cannot be a
3601     valid integer.
3602     .LP
3603     These routines are useful for checking arguments passed to entity
3604     handlers that certain types in certain positions.
3605     If an invalid argument is passed, the handler should return an
3606     .I MG_ETYPE
3607     error.
3608     .SH
3609     SEE ALSO
3610     .LP
3611     mg_init, mg_load
3612     .ds LH Entity Support Routines
3613     .ds RH C_HVERTEX
3614     .bp
3615     .SH
3616     NAME
3617     .LP
3618     c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support
3619     .SH
3620     SYNOPSIS
3621     .LP
3622     #include "parser.h"
3623     .LP
3624     .B int
3625     c_hvertex(
3626     .B int
3627     argc,
3628     .B char
3629     **argv )
3630     .LP
3631     C_VERTEX *c_getvert(
3632     .B char
3633     *name )
3634     .LP
3635     .B "extern char"
3636     *c_vname
3637     .LP
3638     .B extern
3639     C_VERTEX *c_cvertex
3640     .SH
3641     DESCRIPTION
3642     .LP
3643     The
3644     .I c_hvertex
3645     function handles the MGF vertex entities,
3646     .UL v,
3647     .UL p
3648     and
3649     .UL n.
3650     If either
3651     .UL p
3652     or
3653     .UL n
3654     is supported, then
3655     .UL v
3656     must be also.
3657     The assignments are normally made to the
3658     .I mg_ehand
3659     array prior to parser initialization, like so:
3660     .DS
3661     mg_ehand[MG_E_VERTEX] = c_hvertex; /* support "v" entity */
3662     mg_ehand[MG_E_POINT] = c_hvertex; /* support "p" entity */
3663     mg_ehand[MG_E_NORMAL] = c_hvertex; /* support "n" entity */
3664     /* other entity handler assignments... */
3665     mg_init(); /* initialize parser */
3666     .DE
3667     If vertex normals are not understood by any of the program-supported
3668     entities, then the
3669     .I MG_E_NORMAL
3670     entry may be left with its original NULL assignment.
3671     .LP
3672     The
3673     .I c_getvert
3674     call takes the name of a defined vertex and returns a pointer to its
3675     .I C_VERTEX
3676     structure, defined in "parser.h" as:
3677     .DS
3678     typedef FLOAT FVECT[3]; /* a 3-d real vector */
3679    
3680     typedef struct {
3681     int clock; /* incremented each change -- resettable */
3682     FVECT p, n; /* point and normal */
3683     } C_VERTEX; /* vertex context */
3684     .DE
3685     The
3686     .I clock
3687     member will be incremented each time the value gets changed by a
3688     .UL p
3689     or
3690     .UL n
3691     entity, and may be reset by the controlling program if desired.
3692     This is a convenient way to keep track of whether or not a vertex has
3693     changed since its last use.
3694     To link identical vertices, one must also check that the current
3695     transform has not changed, which is uniquely identified by the
3696     global
3697     .I xf_context->xid
3698     variable, but only if one is using the parser libraries transform
3699     handler.
3700     (See the
3701     .I xf_handler
3702     page.)\0
3703     .LP
3704     It is possible but not recommended to alter the contents of the
3705     vertex structure returned by
3706     .I c_getvert.
3707     Normally it is read during the
3708     interpretation of entities using named vertices.
3709     .LP
3710     The name of the current vertex is given by the global
3711     .I c_cvname
3712     variable, which is set to NULL if the unnamed vertex is current.
3713     The current vertex value is pointed to by the global variable
3714     .I c_cvertex,
3715     which should never be NULL.
3716     .SH
3717     DIAGNOSTICS
3718     .LP
3719     The
3720     .I c_hvertex
3721     function returns
3722     .I MG_OK
3723     (0) if the vertex is handled correctly, or one of the predefined
3724     error values if there is a problem.
3725     (See the
3726     .I mg_load
3727     page for a list of errors.)\0
3728     .LP
3729     The
3730     .I c_getvert
3731     function returns NULL if the specified vertex name is undefined, at
3732     which point the calling function should return an
3733     .I MG_EUNDEF
3734     error.
3735     .SH
3736     SEE ALSO
3737     .LP
3738     c_hcolor, c_hmaterial, mg_init, mg_load, xf_handler
3739     .ds RH C_HCOLOR
3740     .bp
3741     .SH
3742     NAME
3743     .LP
3744     c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey -
3745     color entity support
3746     .SH
3747     SYNOPSIS
3748     .LP
3749     #include "parser.h"
3750     .LP
3751     .B int
3752     c_hcolor(
3753     .B int
3754     argc,
3755     .B char
3756     **argv )
3757     .LP
3758     C_COLOR *c_getcolor(
3759     .B char
3760     *name )
3761     .LP
3762     .B "extern char"
3763     *c_ccname
3764     .LP
3765     .B extern
3766     C_COLOR *c_ccolor
3767     .LP
3768     .B void
3769     c_ccvt( C_COLOR *cvp,
3770     .B int
3771     cflags )
3772     .LP
3773     .B int
3774     c_isgrey( C_COLOR *cvp )
3775     .SH
3776     DESCRIPTION
3777     .LP
3778     The
3779     .I c_hcolor
3780     function supports the MGF entities,
3781     .UL c,
3782     .UL cxy,
3783     .UL cspec,
3784     .UL cct
3785     and
3786     .UL cmix.
3787     It is an error to support any of the color field entities without
3788     supporting the
3789     .UL c
3790     entity itself.
3791     The assignments are normally made to the
3792     .I mg_ehand
3793     array prior to parser initialization, like so:
3794     .DS
3795     mg_ehand[MG_E_COLOR] = c_hcolor; /* support "c" entity */
3796     mg_ehand[MG_E_CXY] = c_hcolor; /* support "cxy" entity */
3797     mg_ehand[MG_E_CSPEC] = c_hcolor; /* support "cspec" entity */
3798     mg_ehand[MG_E_CCT] = c_hcolor; /* support "cct" entity */
3799     mg_ehand[MG_E_CMIX] = c_hcolor; /* support "cmix" entity */
3800     /* other entity handler assignments... */
3801     mg_init(); /* initialize parser */
3802     .DE
3803     If the loader/translator has no use for spectral data, the entries for
3804     .UL cspec
3805     and
3806     .UL cct
3807     may be left with their original NULL assignments and these entities will
3808     be re-expressed appropriately as tristimulus values.
3809     .LP
3810     The
3811     .I c_getcolor
3812     function takes the name of a defined color and returns a pointer to its
3813     .I C_COLOR
3814     structure, defined in "parser.h" as:
3815     .DS
3816     #define C_CMINWL 380 /* minimum wavelength */
3817     #define C_CMAXWL 780 /* maximum wavelength */
3818     #define C_CNSS 41 /* number of spectral samples */
3819     #define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1))
3820     #define C_CMAXV 10000 /* nominal maximum sample value */
3821     #define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */
3822    
3823     typedef struct {
3824     int clock; /* incremented each change */
3825     short flags; /* what's been set */
3826     short ssamp[C_CNSS]; /* spectral samples, min wl to max */
3827     long ssum; /* straight sum of spectral values */
3828     float cx, cy; /* xy chromaticity value */
3829     float eff; /* efficacy (lumens/watt) */
3830     } C_COLOR; /* color context */
3831     .DE
3832     The
3833     .I clock
3834     member will be incremented each time the value gets changed by a
3835     color field entity, and may be reset by the calling program if
3836     desired.
3837     This is a convenient way to keep track of whether or not a color has
3838     changed since its last use.
3839     The
3840     .I flags
3841     member indicates which color representations have been assigned,
3842     and is an inclusive OR of one or more of the following:
3843     .DS
3844     #define C_CSSPEC 01 /* flag if spectrum is set */
3845     #define C_CDSPEC 02 /* flag if defined w/ spectrum */
3846     #define C_CSXY 04 /* flag if xy is set */
3847     #define C_CDXY 010 /* flag if defined w/ xy */
3848     #define C_CSEFF 020 /* flag if efficacy set */
3849     .DE
3850     .LP
3851     It is possible but not recommended to alter the contents of the
3852     color structure returned by
3853     .I c_getcolor.
3854     Normally, this routine is never called directly, since there are no
3855     entities that access colors by name other than
3856     .UL c.
3857     .LP
3858     The global variable
3859     .I c_ccname
3860     points to the name of the current color, or NULL if it is unnamed.
3861     The variable
3862     .I c_ccolor
3863     points to the current color value, which should never be NULL.
3864     .LP
3865     The
3866     .I c_ccvt
3867     routine takes a
3868     .I C_COLOR
3869     structure and a set of desired flag settings and computes the
3870     missing color representation(s).
3871     .LP
3872     The
3873     .I c_isgrey
3874     function returns 1 if the passed color is very close to neutral
3875     grey, or 0 otherwise.
3876     .SH
3877     DIAGNOSTICS
3878     .LP
3879     The
3880     .I c_hcolor
3881     function returns
3882     .I MG_OK
3883     (0) if the color is handled correctly, or one of the predefined
3884     error values if there is a problem.
3885     (See the
3886     .I mg_load
3887     page for a list of errors.)\0
3888     .LP
3889     The
3890     .I c_getcolor
3891     function returns NULL if the specified color name is undefined, at
3892     which point the calling function should return an
3893     .I MG_EUNDEF
3894     error.
3895     .SH
3896     SEE ALSO
3897     .LP
3898     c_hmaterial, c_hvertex, mg_init, mg_load
3899     .ds RH C_HMATERIAL
3900     .bp
3901     .SH
3902     NAME
3903     .LP
3904     c_hmaterial, c_getmaterial, c_cmname, c_cmaterial -
3905     material entity support
3906     .SH
3907     SYNOPSIS
3908     .LP
3909     #include "parser.h"
3910     .LP
3911     .B int
3912     c_hmaterial(
3913     .B int
3914     argc,
3915     .B char
3916     **argv )
3917     .LP
3918     C_MATERIAL *c_getmaterial(
3919     .B char
3920     *name )
3921     .LP
3922     .B "extern char"
3923     *c_cmname
3924     .LP
3925     .B extern
3926     C_MATERIAL *c_cmaterial
3927     .SH
3928     DESCRIPTION
3929     .LP
3930     The
3931     .I c_hmaterial
3932     function supports the MGF entities,
3933     .UL m,
3934     .UL ed,
3935     .UL ir,
3936     .UL rd,
3937     .UL rs,
3938     .UL sides,
3939     .UL td,
3940     and
3941     .UL ts.
3942     It is an error to support any of the material field entities without
3943     supporting the
3944     .UL m
3945     entity itself.
3946     The assignments are normally made to the
3947     .I mg_ehand
3948     array prior to parser initialization, like so:
3949     .DS
3950     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* support "m" entity */
3951     mg_ehand[MG_E_ED] = c_hmaterial; /* support "ed" entity */
3952     mg_ehand[MG_E_IR] = c_hmaterial; /* support "ir" entity */
3953     mg_ehand[MG_E_RD] = c_hmaterial; /* support "rd" entity */
3954     mg_ehand[MG_E_RS] = c_hmaterial; /* support "rs" entity */
3955     mg_ehand[MG_E_SIDES] = c_hmaterial; /* support "sides" entity */
3956     mg_ehand[MG_E_TD] = c_hmaterial; /* support "td" entity */
3957     mg_ehand[MG_E_TS] = c_hmaterial; /* support "ts" entity */
3958     /* other entity handler assignments... */
3959     mg_init(); /* initialize parser */
3960     .DE
3961     Any of the above entities besides
3962     .UL m
3963     may be unsupported, but the parser will not attempt to include their
3964     effect into other members, e.g. an unsupported
3965     .UL rs
3966     component will not be added back into the
3967     .UL rd
3968     member.
3969     It is therefore safer to support all of the relevant material
3970     entities and make final approximations from the complete
3971     .I C_MATERIAL
3972     structure.
3973     .LP
3974     The
3975     .I c_getmaterial
3976     function takes the name of a defined material and returns a pointer to its
3977     .I C_MATERIAL
3978     structure, defined in "parser.h" as:
3979     .DS
3980     #define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */
3981    
3982     typedef struct {
3983     int clock; /* incremented each change -- resettable */
3984     int sided; /* 1 if surface is 1-sided, 0 for 2-sided */
3985     float nr, ni; /* index of refraction, real and imaginary */
3986     float rd; /* diffuse reflectance */
3987     C_COLOR rd_c; /* diffuse reflectance color */
3988     float td; /* diffuse transmittance */
3989     C_COLOR td_c; /* diffuse transmittance color */
3990     float ed; /* diffuse emittance */
3991     C_COLOR ed_c; /* diffuse emittance color */
3992     float rs; /* specular reflectance */
3993     C_COLOR rs_c; /* specular reflectance color */
3994     float rs_a; /* specular reflectance roughness */
3995     float ts; /* specular transmittance */
3996     C_COLOR ts_c; /* specular transmittance color */
3997     float ts_a; /* specular transmittance roughness */
3998     } C_MATERIAL; /* material context */
3999     .DE
4000     The
4001     .I clock
4002     member will be incremented each time the value gets changed by a
4003     material field entity, and may be reset by the calling program if
4004     desired.
4005     This is a convenient way to keep track of whether or not a material has
4006     changed since its last use.
4007     .LP
4008     All reflectance and transmittance values correspond to normal
4009     incidence, and may vary as a function of angle depending on the
4010     index of refraction.
4011     A solid object is normally represented with a one-sided material.
4012     A two-sided material is most appropriate for thin surfaces, though
4013     it may be used also when the surface normal orientations in a model
4014     are unreliable.
4015     .LP
4016     If a transparent or translucent surface is one-sided, then the
4017     absorption will change as a function of distance through the
4018     material, and a single value for diffuse or specular transmittance is
4019     ambiguous.
4020     We therefore define a standard thickness,
4021     .I C_1SIDEDTHICK,
4022     which is the object thickness to which the given values correspond,
4023     so that one may compute the isotropic absorptance of the material.
4024     .LP
4025     It is possible but not recommended to alter the contents of the
4026     material structure returned by
4027     .I c_getmaterial.
4028     Normally, this routine is never called directly, since there are no
4029     entities that access materials by name other than
4030     .UL m.
4031     .LP
4032     The global variable
4033     .I c_cmname
4034     points to the name of the current material, or NULL if it is unnamed.
4035     The variable
4036     .I c_cmaterial
4037     points to the current material value, which should never be NULL.
4038     .SH
4039     DIAGNOSTICS
4040     .LP
4041     The
4042     .I c_hmaterial
4043     function returns
4044     .I MG_OK
4045     (0) if the color is handled correctly, or one of the predefined
4046     error values if there is a problem.
4047     (See the
4048     .I mg_load
4049     page for a list of errors.)\0
4050     .LP
4051     The
4052     .I c_getmaterial
4053     function returns NULL if the specified material name is undefined, at
4054     which point the calling function should return an
4055     .I MG_EUNDEF
4056     error.
4057     .SH
4058     SEE ALSO
4059     .LP
4060     c_hcolor, c_hvertex, mg_init, mg_load
4061     .ds RH OBJ_HANDLER
4062     .bp
4063     .SH
4064     NAME
4065     .LP
4066     obj_handler, obj_clear, obj_nnames, obj_name - object name support
4067     .SH
4068     SYNOPSIS
4069     .LP
4070     .B int
4071     obj_handler(
4072     .B int
4073     argc,
4074     .B char
4075     **argv )
4076     .LP
4077     .B void
4078     obj_clear(
4079     .B void
4080     )
4081     .LP
4082     .B "extern int"
4083     obj_nnames
4084     .LP
4085     .B "extern char"
4086     **obj_name
4087     .SH
4088     DESCRIPTION
4089     .LP
4090     The
4091     .I obj_handler
4092     routine should be assigned to the
4093     .I MG_E_OBJECT
4094     entry of the parser's
4095     .I mg_ehand
4096     array prior to calling
4097     .I mg_load
4098     if the loader/translator wishes to support hierarchical object
4099     names.
4100     .LP
4101     The
4102     .I obj_clear
4103     function may be used to clear the object name stack and free any
4104     associated memory, but this is usually not necessary since
4105     .UL o
4106     begin and end entities are normally balanced in the input.
4107     .LP
4108     The global
4109     .I obj_nnames
4110     variable indicates the number of names currently in the object
4111     stack, and the
4112     .I obj_name
4113     list contains the name strings in the same order as they were
4114     encountered on the input.
4115     (I.e. the most recently pushed name is last.)\0
4116     .SH
4117     DIAGNOSTICS
4118     .LP
4119     The
4120     .I obj_handler
4121     function returns
4122     .I MG_OK
4123     (0) if the color is handled correctly, or one of the predefined
4124     error values if there is a problem.
4125     (See the
4126     .I mg_load
4127     page for a list of errors.)\0
4128     .SH
4129     SEE ALSO
4130     .LP
4131     mg_init, mg_load, xf_handler
4132     .ds RH XF_HANDLER
4133     .bp
4134     .SH
4135     NAME
4136     .LP
4137     xf_handler, xf_clear, xf_context, xf_argend - transformation support
4138     .SH
4139     SYNOPSIS
4140     .LP
4141     .B int
4142     xf_handler(
4143     .B int
4144     argc,
4145     .B char
4146     **argv )
4147     .LP
4148     .B void
4149     xf_clear(
4150     .B void
4151     )
4152     .LP
4153     .B extern
4154     XF_SPEC *xf_context
4155     .LP
4156     .B "extern char"
4157     **xf_argend
4158     .SH
4159     DESCRIPTION
4160     .LP
4161     The
4162     .I xf_handler
4163     routine should be assigned to the
4164     .I MG_E_XF
4165     entry of the parser's
4166     .I mg_ehand
4167     array prior to calling
4168     .I mg_load
4169     if the loader/translator wishes to support hierarchical
4170     transformations.
4171     (Note that all MGF geometric entities require this support.)\0
4172     .LP
4173     The
4174     .I xf_clear
4175     function may be used to clear the transform stack and free any
4176     associated memory, but this is usually not necessary since
4177     .UL xf
4178     begin and end entities are normally balanced in the input.
4179     .LP
4180     The global
4181     .I xf_context
4182     variable points to the current transformation context, which is of
4183     the type
4184     .I XF_SPEC,
4185     described in "parser.h":
4186     .DS
4187     typedef struct xf_spec {
4188     long xid; /* unique transform id */
4189     short xac; /* context argument count */
4190     short rev; /* boolean true if vertices reversed */
4191     XF xf; /* cumulative transformation */
4192     struct xf_array *xarr; /* transformation array pointer */
4193     struct xf_spec *prev; /* previous transformation context */
4194     } XF_SPEC; /* followed by argument buffer */
4195     .DE
4196     The
4197     .I xid
4198     member is a identifier associated with this transformation,
4199     which should be the same for identical transformations, as an aid to
4200     vertex sharing.
4201     (See also the
4202     .I c_hvertex
4203     page.)\0
4204     The
4205     .I xac
4206     member indicates the total number of transform arguments, and is
4207     used to indicate the position of the first argument relative to the
4208     last one pointed to by the global
4209     .I xf_argend
4210     variable.
4211     .LP
4212     The first transform argument starts at
4213     .I xf_argv,
4214     which is a macro defined in "parser.h" as:
4215     .DS
4216     #define xf_argv (xf_argend - xf_context->xac)
4217     .DE
4218     Note that accessing this macro will result in a segmentation violation
4219     if the current context is NULL, so one should first test the second macro
4220     .I xf_argc
4221     against zero.
4222     This macro is defined as:
4223     .DS
4224     #define xf_argc (xf_context==NULL ? 0 : xf_context->xac)
4225     .DE
4226     .LP
4227     Normally, neither of these macros will be used, since there are
4228     routines for transforming points, vectors and scalars directly based
4229     on the current transformation context.
4230     (See the
4231     .I xf_xfmpoint
4232     page for details.)\0
4233     .LP
4234     The
4235     .I rev
4236     member of the
4237     .I XF_SPEC
4238     structure indicates whether or not this transform reverses the order
4239     of polygon vertices.
4240     This member will be 1 if the transformation mirrors about an odd
4241     number of coordinate axes, thus inverting faces.
4242     The usual thing to do in this circumstance is to interpret the
4243     vertex arguments in the reverse order, so as to bring the face back
4244     to its original orientation in the new position.
4245     .LP
4246     The
4247     .I xf
4248     member contains the transformation scalefactor (in xf.sca)
4249     and 4x4 homogeneous matrix (in xf.xfm), but these will usually not
4250     be accessed directly.
4251     Likewise, the
4252     .I xarr
4253     and
4254     .I prev
4255     members point to data that should not be needed by the calling
4256     program.
4257     .SH
4258     DIAGNOSTICS
4259     .LP
4260     The
4261     .I xf_handler
4262     function returns
4263     .I MG_OK
4264     (0) if the color is handled correctly, or one of the predefined
4265     error values if there is a problem.
4266     (See the
4267     .I mg_load
4268     page for a list of errors.)\0
4269     .SH
4270     SEE ALSO
4271     .LP
4272     mg_init, mg_load, obj_handler, xf_xfmpoint
4273     .ds RH XF_XFMPOINT
4274     .bp
4275     .SH
4276     NAME
4277     .LP
4278     xf_xfmpoint xf_xfmvect, xf_rotvect, xf_scale - apply current
4279     transformation
4280     .SH
4281     SYNOPSIS
4282     .LP
4283     .B void
4284     xf_xfmpoint( FVECT pnew, FVECT pold )
4285     .LP
4286     .B void
4287     xf_xfmvect( FVECT vnew, FVECT vold )
4288     .LP
4289     .B void
4290     xf_rotvect( FVECT nnew, FVECT nold )
4291     .LP
4292     .B double
4293     xf_scale(
4294     .B double
4295     sold )
4296     .SH
4297     DESCRIPTION
4298     .LP
4299     The
4300     .I xf_xfmpoint
4301     routine applies the current transformation defined by
4302     .I xf_context
4303     to the point
4304     .I pold,
4305     scaling, rotating and moving it to its proper location, which is put in
4306     .I pnew.
4307     (The two arguments may point to the same vector.)\0
4308     .LP
4309     The
4310     .I xf_xfmvect
4311     routine applies the current transformation to the vector
4312     .I vold,
4313     scaling and rotating it to its proper location, which is put in
4314     .I vnew.
4315     (The two arguments may point to the same vector.)\0
4316     The only difference between
4317     .I xf_xfmpoint
4318     and
4319     .I xf_xfmvect
4320     is that in the latter, the final translation is not applied.
4321     .LP
4322     The
4323     .I xf_rotvect
4324     routine rotates the vector
4325     .I nold
4326     using the current transformation, and stores the result in
4327     .I nnew.
4328     (The two arguments may point to the same vector.)\0
4329     No translation or scaling is applied, which is the appropriate
4330     action for surface normal vectors for example.
4331     .LP
4332     The
4333     .I xf_scale
4334     function takes a scalar argument
4335     .I sold
4336     and applies the current scale factor, returning the result.
4337     .SH
4338     SEE ALSO
4339     .LP
4340     xf_handler
4341     .ds LH
4342     .ds RH
4343     .bp
4344     .NH
4345     Application Notes
4346     .NH 2
4347     Relation to Standard Practices in Computer Graphics
4348     .LP
4349     For those coming from a computer graphics background, some of the
4350     choices in the material model may seem strange or even capricious.
4351     Why not simply stick with RGB colors and a Phong specular component
4352     like everyone else?
4353     What is the point in choosing the number of sides to a material?
4354     .LP
4355     In the real world, a surface can have only one side,
4356     defining the interface between one volume and another.
4357     Many object-space rendering packages (e.g. z-buffer algorithms) take
4358     advantage of this fact by culling back-facing polygons and thus saving
4359     as much as 50% of the preprocessing time.
4360     However, many models rely on an
4361     approximation whereby a single surface is used to represent a very thin
4362     volume, such as a pane of glass, and this also can provide significant
4363     calculational savings in an image-space algorithm (such as
4364     ray-tracing).
4365     Also, many models are created in such a way that the front vs. back
4366     information is lost or confused, so that the back side of one or
4367     more surfaces may have to serve as the front side during rendering.
4368     (AutoCAD is one easily identified culprit in this department.)\0
4369     Since both types of surface models are useful and any
4370     rendering algorithm may ultimately be applied, MGF provides a way
4371     to specify sidedness rather than picking one interpretation or the other.
4372     .LP
4373     The problem with RGB is that there is no accepted standard, and even
4374     if we were to set one it would either be impossible to realize (i.e.
4375     impossible to create phosphors with the chosen colors) or it would
4376     have a gamut that excludes many saturated colors.
4377     The CIE color system was very carefully conceived and developed,
4378     and is the standard to which all photometric measurements adhere.
4379     It is therefore the logical choice in any standard format, though it
4380     has been too often ignored by the computer graphics community.
4381     .LP
4382     Regarding Phong shading, this was never a physical model and making it
4383     behave basic laws of reciprocity and energy balance is difficult.
4384     More to the point, specular power has almost nothing to do with
4385     surface microstructure, and is difficult to set properly
4386     even if every physical characteristic of a material has
4387     been carefully measured.
4388     This is the ultimate indictment of any physical model -- that it
4389     is incapable of reproducing any measurement whatsoever.
4390     .LP
4391     Admittedly, the compliment of diffuse and specular component plus
4392     surface roughness and index of refraction used in MGF is less than a
4393     perfect model, but it is serviceable for most materials and
4394     relatively simple to incorporate into a rendering algorithm.
4395     In the long term, MGF shall probably include full spectral
4396     scattering functions, though the sheer quantity of data involved
4397     makes this burdensome from both the measurement side and the
4398     simulation side.
4399     .NH 3
4400     Converting between Phong Specular Power and Gaussian Roughness
4401     .LP
4402     So-called specular reflection and transmission are modeled using a
4403     Gaussian distribution of surface facets.
4404     The roughness parameters to the
4405     .UL rs
4406     and
4407     .UL ts
4408     entities specify
4409     the root-mean-squared (RMS) surface facet slope, which varies from 0
4410     for a perfectly smooth surface to around .2 for a fairly rough one.
4411     The effect this will have on the reflected component distribution is
4412     well-defined, but predicting the behavior of the transmitted
4413     component requires further assumptions.
4414     We assume that the surface
4415     scatters light passing through it just as much as it scatters
4416     reflected light.
4417     This assumption is approximately correct for a
4418     two-sided transparent material with an index of refraction of 1.5
4419     (like glass) and both sides having the given RMS facet slope.
4420     .LP
4421     Oftentimes, one is translating from a Phong exponent on the cosine
4422     of the half-vector-to-normal angle to the more physical but less
4423     familiar Gaussian model of MGF.
4424     The hardest part is translating the specular power to a roughness value.
4425     For this, we recommend the following approximation:
4426     .IP
4427     roughness = 0.6/sqrt(specular_power)
4428     .LP
4429     It is not a perfect correlation, but it is about as close as one can get.
4430     .NH 3
4431     Converting between RGB and CIE Colors
4432     .LP
4433     Unlike most graphics languages, MGF does not use an RGB color model,
4434     simply because there is no recognized definition for this model.
4435     It is based on computer monitor phosphors, which vary from one
4436     CRT to the next.
4437     (There is an RGB standard defined in the TV
4438     industry, but this has a rather poor correlation to most computer
4439     monitors and it is impossible to express many real-world colors
4440     within its limited gamut.)\0
4441     .LP
4442     MGF uses two alternative, well-defined standards, spectral power
4443     distributions and the 1931 CIE 2 degree standard observer.
4444     With the CIE standard, any viewable
4445     color may be exactly represented as an (x,y) chromaticity value.
4446     Unfortunately, the interaction between
4447     colors (i.e. colored light sources and interreflections) cannot be
4448     specified exactly with any finite coordinate set, including CIE
4449     chromaticities.
4450     So, MGF offers the ability to give reflectance,
4451     transmittance or emittance as a function of wavelength over the visible
4452     spectrum.
4453     This function is still discretized, but at a user-selectable
4454     resolution.
4455     Furthermore, spectral colors may be mixed, providing (nearly)
4456     arbitrary basis functions, which can produce more accurate results in
4457     some cases and are merely a convenience for translation in others.
4458     .LP
4459     Conversion back and forth between CIE chromaticity coordinates and spectral
4460     samples is provided within the MGF parser.
4461     Unfortunately, conversion
4462     to and from RGB values depends on a particular RGB definition, and as we
4463     have said, there is no recognized standard.
4464     We therefore recommend that
4465     you decide yourself what chromaticity values to use for each RGB primary,
4466     and adopt the following code to convert between CIE and RGB coordinates.
4467     .LP
4468     .nf
4469     #ifdef NTSC
4470     #define CIE_x_r 0.670 /* standard NTSC primaries */
4471     #define CIE_y_r 0.330
4472     #define CIE_x_g 0.210
4473     #define CIE_y_g 0.710
4474     #define CIE_x_b 0.140
4475     #define CIE_y_b 0.080
4476     #define CIE_x_w 0.3333 /* monitor white point */
4477     #define CIE_y_w 0.3333
4478     #else
4479     #define CIE_x_r 0.640 /* nominal CRT primaries */
4480     #define CIE_y_r 0.330
4481     #define CIE_x_g 0.290
4482     #define CIE_y_g 0.600
4483     #define CIE_x_b 0.150
4484     #define CIE_y_b 0.060
4485     #define CIE_x_w 0.3333 /* monitor white point */
4486     #define CIE_y_w 0.3333
4487     #endif
4488    
4489     #define CIE_D ( CIE_x_r*(CIE_y_g - CIE_y_b) + \\\\
4490     CIE_x_g*(CIE_y_b - CIE_y_r) + \\\\
4491     CIE_x_b*(CIE_y_r - CIE_y_g) )
4492     #define CIE_C_rD ( (1./CIE_y_w) * \\\\
4493     ( CIE_x_w*(CIE_y_g - CIE_y_b) - \\\\
4494     CIE_y_w*(CIE_x_g - CIE_x_b) + \\\\
4495     CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g ) )
4496     #define CIE_C_gD ( (1./CIE_y_w) * \\\\
4497     ( CIE_x_w*(CIE_y_b - CIE_y_r) - \\\\
4498     CIE_y_w*(CIE_x_b - CIE_x_r) - \\\\
4499     CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r ) )
4500     #define CIE_C_bD ( (1./CIE_y_w) * \\\\
4501     ( CIE_x_w*(CIE_y_r - CIE_y_g) - \\\\
4502     CIE_y_w*(CIE_x_r - CIE_x_g) + \\\\
4503     CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r ) )
4504    
4505     #define CIE_rf (CIE_y_r*CIE_C_rD/CIE_D)
4506     #define CIE_gf (CIE_y_g*CIE_C_gD/CIE_D)
4507     #define CIE_bf (CIE_y_b*CIE_C_bD/CIE_D)
4508    
4509     float xyz2rgbmat[3][3] = { /* XYZ to RGB */
4510     {(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g)/CIE_C_rD,
4511     (CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b)/CIE_C_rD,
4512     (CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g)/CIE_C_rD},
4513     {(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b)/CIE_C_gD,
4514     (CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r)/CIE_C_gD,
4515     (CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b)/CIE_C_gD},
4516     {(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r)/CIE_C_bD,
4517     (CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g)/CIE_C_bD,
4518     (CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r)/CIE_C_bD}
4519     };
4520    
4521     float rgb2xyzmat[3][3] = { /* RGB to XYZ */
4522     {CIE_x_r*CIE_C_rD/CIE_D,CIE_x_g*CIE_C_gD/CIE_D,CIE_x_b*CIE_C_bD/CIE_D},
4523     {CIE_y_r*CIE_C_rD/CIE_D,CIE_y_g*CIE_C_gD/CIE_D,CIE_y_b*CIE_C_bD/CIE_D},
4524     {(1.-CIE_x_r-CIE_y_r)*CIE_C_rD/CIE_D,
4525     (1.-CIE_x_g-CIE_y_g)*CIE_C_gD/CIE_D,
4526     (1.-CIE_x_b-CIE_y_b)*CIE_C_bD/CIE_D}
4527     };
4528    
4529    
4530     cie_rgb(rgbcolor, ciecolor) /* convert CIE to RGB */
4531     register float *rgbcolor, *ciecolor;
4532     {
4533     register int i;
4534    
4535     for (i = 0; i < 3; i++) {
4536     rgbcolor[i] = xyz2rgbmat[i][0]*ciecolor[0] +
4537     xyz2rgbmat[i][1]*ciecolor[1] +
4538     xyz2rgbmat[i][2]*ciecolor[2] ;
4539     if (rgbcolor[i] < 0.0) /* watch for negative values */
4540     rgbcolor[i] = 0.0;
4541     }
4542     }
4543    
4544    
4545     rgb_cie(ciecolor, rgbcolor) /* convert RGB to CIE */
4546     register float *ciecolor, *rgbcolor;
4547     {
4548     register int i;
4549    
4550     for (i = 0; i < 3; i++)
4551     ciecolor[i] = rgb2xyzmat[i][0]*rgbcolor[0] +
4552     rgb2xyzmat[i][1]*rgbcolor[1] +
4553     rgb2xyzmat[i][2]*rgbcolor[2] ;
4554     }
4555     .fi
4556     .LP
4557     An alternative to adopting the above code is to use the MGF "cmix"
4558     entity to convert from RGB directly by naming the three primaries in
4559     terms of their chromaticities, e.g:
4560     .DS
4561     c R =
4562     cxy 0.640 0.330
4563     c G =
4564     cxy 0.290 0.600
4565     c B =
4566     cxy 0.150 0.060
4567     .DE
4568     .LP
4569     Then, converting from RGB to MGF colors is as simple as multiplying each
4570     component by its relative luminance in a cmix statement, for instance:
4571     .DS
4572     c white =
4573     cmix 0.265 R 0.670 G 0.065 B
4574     .DE
4575     .LP
4576     For the chosen RGB standard, the above specification would result a pure
4577     white.
4578     The reason the coefficients are not all 1 as you might expect is
4579     that cmix uses relative luminance as the standard for its weights.
4580     Since
4581     blue is less luminous for the same energy than red, which is in turn
4582     less luminous than green, the weights cannot be the same to achieve an
4583     even spectral balance.
4584     Unfortunately, computing these relative weights
4585     is not straightforward, though it is given in the above macros as CIE_rf,
4586     CIE_gf and CIE_bf.
4587     (The common factors in these macros may of course
4588     be removed since
4589     .UL cmix
4590     weights are all relative.)\0
4591     Alternatively, one could measure the actual full scale luminance of
4592     the phosphors with a luminance probe and get the same relative
4593     values.
4594     .NH 2
4595     Relation to IESNA LM-63 and Luminaire Catalogs
4596     .LP
4597     Recently, the Illuminating Engineering Society of North America
4598     (IESNA) adopted MGF as the official standard for
4599     representing luminaire geometry and materials.
4600     The way this works in an IES luminaire data file is through the
4601     addition of a keyword called LUMINOUSGEOMETRY, which is given on a
4602     line in the header portion of a file (before the TILT specification)
4603     like so:
4604     .LP
4605     .B [LUMINOUSGEOMETRY]
4606     .I mgf_file
4607     .LP
4608     The given MGF file must exist relative to the directory containing
4609     the IES file (i.e. the same stipulations and restrictions on pathnames
4610     apply as for the MGF
4611     .UL i
4612     entity).
4613     Furthermore, the position of the MGF geometry must be
4614     such that the gross geometric specification of emitting surfaces
4615     in the IES file completely
4616     blocks or encloses the luminous portions of the MGF description.
4617     Specifically, any ray traced towards the MGF geometry must strike
4618     the IES gross geometry before it strikes any luminous surface in the
4619     MGF description.
4620     This provides a convenient way of preventing overcounting in the
4621     illumination calculation, while still allowing for accurate fixture
4622     appearance.
4623     .LP
4624     To give two examples, let us consider first a recessed can, followed
4625     by a hanging direct/indirect fluorescent fixture.
4626     .LP
4627     The most appropriate IES geometric specification for the emitting
4628     area of a can light would be a circular disk.
4629     Since the IES gross geometry gives only the diameter of the disk, the
4630     actual 3-dimensional placement is implicitly defined as having a
4631     center at the origin, with the radiating disk facing in the
4632     negative Z direction (nadir, downwards).
4633     The MGF geometry would then be placed such that any luminous portion
4634     was above this disk, and no portion of it would obstruct the IES
4635     geometry.
4636     The most sensible position therefore has the IES disk flush with the
4637     MGF can opening, as shown in Figure 3.
4638     .bp
4639     Replace this page with the second page from "figures.ps".
4640     .bp
4641     .LP
4642     In the case of a direct/indirect fluorescent fixture, light will
4643     exit both the top and the bottom sides, and the IES geometry must
4644     enclose the radiating portion of the fixture entirely.
4645     It is acceptable to have additional MGF geometry above the
4646     fixture so long as it does not radiate, which is what we must do if
4647     we wish to include the support rods, as shown in Figure 4.
4648     .LP
4649     Note that the origin is always in the exact center of the IES
4650     geometry.
4651     .LP
4652     Not all fixtures will fit the simple IES geometry specification so
4653     nicely.
4654     For odd-shaped fixtures, it may be necessary to use an IES geometry
4655     that does not match the radiating area terribly well in order that
4656     it completely block or enclose the required MGF specification.
4657     .LP
4658     The unit of length in the MGF file is always meters, regardless of
4659     the units specified in the enclosing IES file.
4660     However, any and all multipliers applied to the candlepower data in the
4661     IES file will also be applied to the emittance of surfaces in the
4662     MGF specification, so that one MGF file may serve similar
4663     luminaires that differ in their total output.
4664     .NH
4665     Credits
4666     .LP
4667     The MGF language grew out of a joint investigation into physical
4668     representations for rendering undertaken by the author
4669     (Greg Ward of LBL) and Holly Rushmeier of the National
4670     Institute of Standards and Technology.
4671     After deciding that a complete and robust specification was
4672     an extreme challenge, we shelved the project for another time.
4673     A few months later, the author spoke with Ian Ashdown and Robert
4674     Shakespeare, who are both members of the IES Computing Committee,
4675     about the need for extending the existing data standard to
4676     include luminaire geometry and near-field photometry.
4677     We then moved forward as a team towards a somewhat less ambitious
4678     approach to physical materials and geometry that had the advantage
4679     of simplicity and the possibility of support with a standard parser
4680     library.
4681     The author went to work over the next two months
4682     on the detailed design of the language
4683     and an ANSI-C parser, with regular feedback from the other three
4684     team members.
4685     Several months and several versions later, we arrived at release
4686     1.0, which is the occasion of this document's creation.
4687     .LP
4688     Funding for this work... would be nice.