
The Materials and Geometry Format

Greg Ward
Lawrence Berkeley Laboratory

1. Introduction

The Materials and Geometry Format (referred to henceforth as MGF) is a description language
for 3-dimensional environments expressly suited to visible light simulation and rendering. The
materials are physically-based and rely on standard and well-accepted definitions of color,
reflectance and transmittance for good accuracy and reproducibility. The geometry is based on
boundary representation using simple geometric primitives such as polygons, spheres and cones.
The file format itself is terse but human-readable ASCII text.

1.1. What makes MGF special?

There are three principal reasons to use MGF as an input language for lighting simulation and
physically-based rendering:

1. It’s the only existing format that describes materials physically.

2. It is endorsed by the Illuminating Engineering Society of North America (IESNA) as
part of their LM-63-1995 standard for luminaire data.

3. It’s easy and fun to support since it comes with a standard parser and sample scenes
and objects at the web site, "http://radsite.lbl.gov/mgf/HOME.html".

The standard parser provides both immediate and long-term benefits, since it presents a program-
ming interface that is more stable even than the language itself. Unlike AutoCAD DXF and other
de facto standards, a change to the language will not break existing programs. This is because the
parser gives the calling software only those entities it can handle. If the translator understands
only polygons, it will be given only polygons. If a new geometric primitive is included in a later
version of the standard, the new parser that comes with it will still be able to express this entity as
polygons. Thus, the urgency of modifying code to support a changing standard is removed, and
long-term stability is assured.

This notion of extensibility is a cornerstone of the format, and it goes well beyond the extensibil-
ity of other languages because is guarantees that new versions of the standard will not break
existing programs, and the new information will be used as much as possible. Other languages
either require that all translators stay up to date with the latest standard, or allow forward compa-
tibility by simply ignoring new entities. In MGF, if NURBS are added at some point and the
translator or loader does not handle them directly, the new version of the parser will automati-
cally convert them to smoothed polygons without changing a single line of the calling program.
It is merely necessary to link to the new library, and all the new entities are supported†.

����������������
†If an old version of the parser encounters new entities it does not recognize, the default action is to ignore
them, printing a warning message. This may be overridden to support custom entities, but such practice is
discouraged because it weakens the standard.

MGF February 1996 Version 1.1

- 2 -

1.2. What does MGF look like?

MGF has a simple entity-per-line structure, with a similar appearance to Wavefront’s .OBJ for-
mat. Each entity is specified by a short keyword, and arguments are separated by white space
(tabs and/or spaces). A newline may be escaped with a backslash (’\’), in which case it counts as
a space. Lines and continued lines may have up to 4096 characters, including newlines, tabs and
spaces. A comment is an ignored entity whose keyword is the pound sign (’#’).

Here is an MGF file that describes a simple two-drawer file cabinet:

Conversion from inches to meters
xf -s .0254
Surface material
m burgundy_formica =

c
cxy .362 .283

rd .0402
c
rs .0284 .05
sides 1

Cabinet vertices
v fc.xy =

p .05 0 0
v fc.xY =

p .05 18 0
v fc.XY =

p 35.95 18 0
v fc.Xy =

p 35.95 0 0
Cabinet
prism fc.xy fc.xY fc.XY fc.Xy 24
Drawer vertices
v fcd.Xz =

p 34 0 0
v fcd.XZ =

p 34 0 10
v fcd.xZ =

p 0 0 10
v fcd.xz =

p 0 0 0
Two drawers
o drawer

xf -t 1 18.1 2 -a 2 -t 0 0 11
prism fcd.xz fcd.Xz fcd.XZ fcd.xZ .9
xf

o
End of units conversion
xf

1.3. MGF’s place in the world of standards

MGF was developed initially to support detailed geometric description of light fixtures for the
IESNA luminaire data standard, publication LM-63†. Existing standards for geometric
����������������
†To obtain the latest version of this standard, write to: Illuminating Engineering Society of North America,
345 East 47th St., New York, NY 10017.

MGF February 1996 Version 1.1

- 3 -

description were either too cumbersome (e.g. Radiance) or did not include physical materials
(e.g. IGES). It was noted early on that a standard able to fully describe luminaires would neces-
sarily be capable of describing other objects as well; indeed whole environments could be defined
this way. Since the descriptions would be physical, they could serve as input to both lighting
simulation and rendering software. A standard language for describing the appearance of physi-
cal objects has been lacking for some time, and current efforts in this direction (i.e. STEP) seem
several years away from fruition. (There are other languages for describing realistic scenes that
deserve mention here, such as VRML and the Manchester Scene Description Language, but none
give specific attention to physical material properties and are thus unsuitable for lighting simula-
tion.)

In short, we saw this as an opportunity to offer the lighting and rendering community a simple
and easy-to-support standard for describing environments in a physically valid way. Our hope is
that this will promote sharing color, material and object libraries as well as complete scene
descriptions. Sharing libraries is of obvious benefit to users and software developers alike. Shar-
ing scenes should also permit comparisons between rendering systems and intervalidation of
lighting calculations. As anyone who works in this field knows, modeling is the most difficult
step in creating any simulation or rendering, and there is no excuse for this data being held pris-
oner by a proprietary data format.

2. MGF Basics

The default coordinate system in MGF is right-handed with distances given in meters, though this
can be effectively changed by specifying a global transformation. The transformation context is
affected by the xf�� entity, and the whole of MGF can be understood in terms of entities and con-
texts.

2.1. Entities and Contexts

An entity in MGF is any non-blank line, which must be one of a finite set of command keywords
followed by zero or more arguments. (As mentioned previously, an entity may continue over
multiple lines by escaping the newline with a backslash.) Table 1 gives a list of entities and their
expected arguments. Section 3 gives more detailed information on each entity.

A context describes the current state of the interpreter, and affects or is affected by certain enti-
ties as they are read in. MGF contexts can be divided into two types, hierarchical contexts and
named contexts .

Hierarchical contexts are manipulated by a single entity and have an associated "stack" onto
which new contexts are "pushed" using the entity. The last context may be "popped" by giving
the entity again with no arguments. The two hierarchical contexts in MGF are the current
transformation, manipulated with the xf�� entity, and the current object, manipulated with the o�
entity.

Named contexts in contrast hold sets of values that are swapped in and out one at a time. There
are three named contexts in MGF, the current material, the current color and the current vertex.
Each one may be associated with an identifier (any non-white sequence of printing ASCII charac-
ters beginning with a letter), and one of each is in effect at any given time. Initially, these con-
texts are unnamed, and invoking an unnamed context always returns to the original (default)
values. (See Table 2 for a list of contexts, their related entities and defaults.)

It is easiest to think of a context as a "scratch space" where values are written by some entities
and read by others. Naming a context allows us to reestablish the same scratch space later, usu-
ally for reference but it can be altered as well. Let us say we wanted to create a smooth blue plas-
tic material with a diffuse reflectance of 20% and a specular reflectance of 4%:

MGF February 1996 Version 1.1

- 4 -

���
Keyword Arguments Interpretation��
[anything ...] a comment
o [name] begin/end object context
xf [xform] begin/end transformation context
i pathname [xform] include file (with transformation)
ies pathname [-m f][xform] include IES luminaire (with transformation)���
c [id [= [template]]] get/set color context
cxy x y set CIE (x,y) chromaticity for current color
cspec l_min l_max v1 v2 ... set relative spectrum for current color
cct temperature set spectrum based on black body temperature
cmix w1 c1 w2 c2 ... mix named colors to make current color���
m [id [= [template]]] get/set material context
sides {1|2} set number of sides for current material
rd rho_d set diffuse reflectance for current material
td tau_d set diffuse transmittance for current material
ed epsilon_d set diffuse emittance for current material
rs rho_s alpha_r set specular reflectance for current material
ts tau_s alpha_t set specular transmittance for current material
ir n_real n_imag set index of refraction for current material���
v [id [= [template]]] get/set vertex context
p x y z set point position for current vertex
n dx dy dz set surface normal for current vertex���
f v1 v2 v3 ... polygon using current material, spec. vertices
fh v1 v2 v3 - ... face with explicit holes
sph vc radius sphere
cyl v1 radius v2 truncated right cylinder (open-ended)
cone v1 rad1 v2 rad2 truncated right cone (open-ended)
prism v1 v2 v3 ... length truncated right prism (closed solid)
ring vc rmin rmax circular ring with inner and outer radii
torus vc rmin rmax circular torus with inner and outer radii���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1. MGF entities and their arguments. Arguments in brackets are optional.
Arguments in curly braces mean one of the given choices must appear. Ellipsis (...)
mean that any number of arguments may be given.

���
Context Cntl. Entity Default Value Field Entities Affects��
Object o - - -���

f, fh, sph, cyl,
cone, ring,
torus, prism

Transform xf - -

���
sides, rd, td, ed,
rs, ts, ir

f, fh, sph, cyl,
cone, ring,
torus, prism

Material m 2-sided black

���
cxy, cspec, cct,
cmix

rd, td, ed, rs, tsColor c neutral grey
���

(0,0,0), no
normal

f, fh, sph, cyl,
cone, ring,
torus, prism

Vertex v p, n

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2. MGF contexts and their related entities and default values.

Establish a new material context called "blue_plastic"
m blue_plastic =

Reestablish a previous color context called "blue"
MGF February 1996 Version 1.1

c blue
S t th diff fl t hi h th b l

- 5 -

rd .20
Get the unnamed color context (always starts out grey)
c
Set the specular reflectance, which is uncolored
rs .04 0

We’re done, the current material context is now "blue_plastic"

Note that the above assumes that we have previously defined a color context named "blue". If we
forgot to do that, the above description would generate an "undefined" error. The color context
affects the material context indirectly because it is read by the specular and diffuse reflectance
entities, which are in turn written to the current material. It is not necessary to indent the entities
that affect the material definition, but it improves readability. Note also that there is no explicit
end to the material definition. As long as a context remains in effect, its contents may be altered
by its field entities. This will not affect previous uses of the context, however. For example, a
surface entity following the above definition will have the specified color and reflectance, and
later changes to the material "blue_plastic" will have no effect on it.

Each of the three named contexts has an associated entity that controls it. The material context is
controlled by the m�� entity, the color context is controlled by the c� entity, and the vertex context is
controlled by the v� entity. There are exactly four forms for each entity. The first form is the key-
word by itself, which establishes an unnamed context with predetermined default values. This is
a useful way to set values without worrying about saving them for recall later. The second form
is to give the keyword with a previously defined name. This reestablishes a prior context for
reuse. The third form is to give the keyword with a name followed by an equals sign. (There
must be a space between the name and the equals sign, since it is a separate argument.) This
establishes a new context and assigns it the same default values as the unnamed context. The
fourth and final form gives the keyword followed by a name then an equals then the name of a
previous context definition. This establishes a new context for the first name, assigning the
values from the second named context rather than the usual defaults. This is a convenient way
create an alias or to modify a context under a new name (i.e. "save as").

2.2. Hierarchical Contexts and Transformations

As mentioned in the last subsection, there are two hierarchical contexts in MGF, the current
object and the current transformation. We will start by discussing the current object, since it is
the simpler of the two.

2.2.1. Objects

There is no particular need in lighting simulation or rendering to name objects, but it may help
the user to know what object a particular surface is associated with. The o� entity provides a con-
venient mechanism for associating names with surfaces. The basic use of this entity is as fol-
lows:

o object_name
[object entities...]
o subobject_name

[subobject entities...]
o
[more object entities and subobjects...]

o

The o� keyword by itself marks the end of an object context. Any number of hierarchical context
levels are supported, and there are no rules governing the choice of object names except that they
begin with a letter and be made up of printing, non-white ASCII characters. Indentation is not
necessary of course, but it does improve readability.

MGF February 1996 Version 1.1

- 6 -

2.2.2. Transformations

MGF supports only rigid-body (i.e. non-distorting) transformations with uniform scaling. Unlike
the other contexts, transformations have no associated name, only arguments. Thus, there is no
way to reestablish a previous transformation other than to give the same arguments over again.
Since the arguments are concise and self-explanatory, this was thought sufficient. The following
transformation flags and parameters are defined:

-t dx dy dz translate objects along the given vector
-rx degrees rotate objects about the X-axis
-ry degrees rotate objects about the Y-axis
-rz degrees rotate objects about the Z-axis
-s scalefactor scale objects by the given factor
-mx mirror objects about the Y-Z plane
-my mirror objects about the X-Z plane
-mz mirror objects about the X-Y plane
-i N repeat the following arguments N times
-a N make an array of N geometric instances

Transform arguments have a cumulative effect. That is, a rotation about X of 20 degrees fol-
lowed by a rotation about X of -50 degrees results in a total rotation of -30 degrees. However, if
the two rotations are separated by some translation vector, the cumulative effect is quite different.
It is best to think of each argument as acting on the included geometric objects, and each subse-
quent transformation argument affects the objects relative to their new position/orientation.

For example, rotating an object about its center is most easily done by translating the object back
to the origin, applying the desired rotation, and translating it again back to its original position,
like so:

rotate an included object 20 degrees clockwise looking down
an axis parallel to Y and passing through the point (15,0,-35)
xf -t -15 0 35 -ry -20 -t 15 0 -35
i object.mgf
xf

Note that the include entity, i,�� permits a transformation to be given with it, so the above could
have been written more compactly as:

i object.mgf -t -15 0 35 -ry -20 -t 15 0 -35

Rotations are given in degrees counter-clockwise about a principal axis. That is, with the thumb
of the right hand pointing in the direction of the axis, rotation follows the curl of the fingers.

The transform entity itself is cumulative, but in the reverse order to its arguments. That is, later
transformations (i.e. enclosed transformations) are prepended to existing (i.e. enclosing) ones. A
transform command with no arguments is used to return to the previous condition. It is necessary
that transforms and their end statements ("xf" by itself) be balanced in a file, so that later or
enclosing files are not affected.

Transformations apply only to geometric types, e.g. polygons, spheres, etc. Vertices and the
components that go into geometry are not directly affected. This is to avoid confusion and the
inadvertent multiple application of a given transformation. For example:

MGF February 1996 Version 1.1

- 7 -

xf -t 5 0 0
v v1 =

p 0 10 0
n 0 0 1

xf -rx 180
Transform now in effect is "-rx 180 -t 5 0 0"
ring v1 0 2
xf
xf

The final ring center is (5,-10,0) -- note that the vertex itself is not affected by the transformation,
only the geometry that calls on it. The normal orientation is (0,0,-1) due to the rotation about X,
which also reversed the sign of the central Y coordinate.

2.2.3. Arrays

The -a N transform specification causes the following transform arguments to be repeated along
with the contents of the included objects N times. The first instance of the geometry will be in its
initial location; the second instance will be repositioned according to the named transformation;
the third instance will be repositioned by applying this transformation twice, and so on up to N-1
applications.

Multi-dimensional arrays may be specified with a single include entity by giving multiple array
commands separated by their corresponding transforms. A final transformation may be given by
preceding it with a -i 1 specification. In other words, the scope of an array command continues
until the next -i or -a option.

The following MGF description places 60 spheres at a one unit spacing in a 3x4x5 array, then
moves the whole thing to an origin of (15,30,45):

v v0 =
p 0 0 0

xf -a 3 -t 1 0 0 -a 4 -t 0 1 0 -a 5 -t 0 0 1 -i 1 -t 15 30 45
sph v0 0.1
xf

Note the "-i 1" in the specification, which marks the end of the third array arguments before the
final translation.

2.3. Detailed MGF Example

The following example of a simple room with a single door and six file cabinets shows MGF in
action, with copious comments to help explain what’s going on.

MGF February 1996 Version 1.1

- 8 -

"ceiling_tile" is a diffuse white surface with 75% reflectance:
Create new named material context and clear it
m ceiling_tile =

Specify one-sided material so we can see through from above
sides 1
Set neutral color
c
Set diffuse reflectance
rd .75

"stainless_steel" is a mostly specular surface with 70% reflectance:
m stainless_steel =

sides 1
c
Set specular reflectance to 50%, .08 roughness
rs .5 .08
Other 20% reflectance is diffuse
rd .2

The following materials were measured with a spectrophotometer:
m beige_paint =

sides 1
Set diffuse spectral reflectance
c

Spectrum measured in 10 nm increments from 400 to 700 nm
cspec 400 700 35.29 44.87 47.25 47.03 46.87 47.00 47.09 \

47.15 46.80 46.17 46.26 48.74 51.08 51.31 51.10 \
51.11 50.52 50.36 51.72 53.61 53.95 52.08 49.49 \
48.30 48.75 49.99 51.35 52.75 54.44 56.34 58.00

rd 0.5078
Neutral (grey) specular component
c
rs 0.0099 0.08000

m mottled_carpet =
sides 1
c

cspec 400 700 11.23 11.28 11.39 11.49 11.61 11.73 11.88 \
12.02 12.12 12.19 12.30 12.37 12.37 12.36 12.34 \
12.28 12.22 12.29 12.45 12.59 12.70 12.77 12.82 \
12.88 12.98 13.24 13.67 14.31 15.55 17.46 19.75

rd 0.1245
m reddish_cloth =

2-sided so we can observe it from behind
sides 2
c

cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \
32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \
30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \
33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00

rd 0.3210
m burgundy_formica =

sides 1
c

cspec 400 700 3.86 3.74 3.63 3.51 3.34 3.21 3.14 \
3.09 3.08 3.14 3.13 2.91 2.72 2.74 2.72 \

MGF February 1996 Version 1.1

- 9 -

2.60 2.68 3.40 4.76 6.05 6.65 6.75 6.68 \
6.63 6.56 6.51 6.46 6.41 6.36 6.34 6.34

rd 0.0402
c
rs 0.0284 0.05000

m speckled_grey_formica =
sides 1
c

cspec 400 700 30.95 44.77 51.15 52.60 53.00 53.37 53.68 \
54.07 54.33 54.57 54.85 55.20 55.42 55.51 55.54 \
55.46 55.33 55.30 55.52 55.81 55.91 55.92 56.00 \
56.22 56.45 56.66 56.72 56.58 56.44 56.39 56.39

rd 0.5550
c
rs 0.0149 0.15000

40’ x 22’ x 9’ office space with no windows and one door

All measurements are in inches, so enclose with a metric conversion:
xf -s .0254

The room corner vertices:
v rc.xyz =

p 0 0 0
v rc.Xyz =

p 480 0 0
v rc.xYz =

p 0 264 0
v rc.xyZ =

p 0 0 108
v rc.XYz =

p 480 264 0
v rc.xYZ =

p 0 264 108
v rc.XyZ =

p 480 0 108
v rc.XYZ =

p 480 264 108

The floor:
Push object name
o floor

Get previously defined carpet material
m mottled_carpet
Polygonal face using defined vertices
f rc.xyz rc.Xyz rc.XYz rc.xYz

Pop object name
o

The ceiling:
o ceiling

m ceiling_tile
f rc.xyZ rc.xYZ rc.XYZ rc.XyZ

o

MGF February 1996 Version 1.1

- 10 -

The door outline vertices: v do.xz = p 216 0 0 v do.Xz =
p 264 0 0 v do.xZ = p 216 0 84 v do.XZ =
p 264 0 84

The walls: o wall m beige_paint o x
f rc.xyz rc.xYz rc.xYZ rc.xyZ o o X
f rc.Xyz rc.XyZ rc.XYZ rc.XYz o o y
f rc.xyz rc.xyZ rc.XyZ rc.Xyz do.Xz do.XZ do.xZ do.xz o

o Y f rc.xYz rc.XYz rc.XYZ rc.xYZ o o

The door and jam vertices: v djo.xz = p 216 .5 0
v djo.xZ = p 216 .5 84 v djo.XZ = p 264 .5 84
v djo.Xz = p 264 .5 0 v dji.Xz = p 262 .5 0
v dji.XZ = p 262 .5 82 v dji.xZ = p 218 .5 82
v dji.xz = p 218 .5 0 v door.xz = p 218 0 0
v door.xZ = p 218 0 82 v door.XZ = p 262 0 82
v door.Xz = p 262 0 0

The door, jam and knob o door m burgundy_formica
f door.xz door.xZ door.XZ door.Xz o jam

m beige_paint
f djo.xz djo.xZ djo.XZ djo.Xz dji.Xz dji.XZ dji.xZ dji.xz
f djo.xz do.xz do.xZ djo.xZ
f djo.xZ do.xZ do.XZ djo.XZ
f djo.Xz djo.XZ do.XZ do.Xz
f dji.xz dji.xZ door.xZ door.xz
f dji.xZ dji.XZ door.XZ door.xZ
f dji.Xz door.Xz door.XZ dji.XZ o o knob
m stainless_steel
Define vertices needed for curved geometry v kb1 =

p 257 0 36 v kb2 =
p 257 .25 36 n 0 1 0

v kb3 = p 257 2 36
1" diameter cylindrical base from kb1 to kb2
cyl kb1 1 kb2 # Ring at base of knob stem
ring kb2 .4 1 # Knob stem
cyl kb2 .4 kb3 # Spherical knob
sph kb3 .85 o o

Six file cabinets (36" wide each)
("filecab.inc" was given as an earlier example in Section 1.2) o filecab.x

include a file as an array of three 36" apart i filecab.inc -t -36 0 0 -
rz -90 -t 1 54 0 -a 3 -t 0 36 0 o o filecab.X

the other three cabinets i filecab.inc -rz 90 -t 479 54 0 -a 3 -t 0 36 0
o

End of transform from inches to meters: xf

The 10 recessed fluorescent ceiling fixtures ies hlrs2gna.ies -
t 1.2192 2.1336 2.74 -a 5 -t 2.4384 0 0 -a 2 -t 0 2.4384 0

MGF February 1996 Version 1.1

- 11 -

3. MGF Entity Reference

There are currently 28 entities in the MGF specification. For ease of reference we have broken
these into five categories:

1. General

[anything ...] a comment
o [name] begin/end object context
xf [xform] begin/end transformation context
i pathname [xform] include file (with transformation)
ies pathname [-m f][xform] include IES luminaire (with transformation)

2. Color

c [id [= [template]]] get/set color context
cxy x y set CIE (x,y) chromaticity for current color
cspec l_min l_max v1 v2 ... set relative spectrum for current color
cct temperature set spectrum based on black body temperature
cmix w1 c1 w2 c2 ... mix named colors to make current color

3. Material

m [id [= [template]]] get/set material context
sides {1|2} set number of sides for current material
rd rho_d set diffuse reflectance for current material
td tau_d set diffuse transmittance for current material
ed epsilon_d set diffuse emittance for current material
rs rho_s alpha_r set specular reflectance for current material
ts tau_s alpha_t set specular transmittance for current material
ir n_real n_imag set index of refraction for current material

4. Vertex

v [id [= [template]]] get/set vertex context
p x y z set point position for current vertex
n dx dy dz set surface normal for current vertex

5. Geometry

f v1 v2 v3 ... polygon using current material, spec. vertices
fh v1 v2 v3 - ... face with explicit holes
sph vc radius sphere
cyl v1 radius v2 truncated right cylinder (open-ended)
cone v1 rad1 v2 rad2 truncated right cone (open-ended)
prism v1 v2 v3 ... length truncated right prism (closed solid)
ring vc rmin rmax circular ring with inner and outer radii
torus vc rmin rmax circular torus with inner and outer radii

MGF February 1996 Version 1.1

General Entities - 12 - #

NAME

- a comment

SYNOPSIS

[anything]

DESCRIPTION

A comment is a bit of text explanation. Since it is an entity like any other (except that it has no
effect), there must be at least one space between the keyword (which is a pound sign) and the
"arguments," and the end of line may be escaped as usual with the backslash character (’\’).

A comment may actually be used to hold auxiliary information such as view parameters, which
may be interpreted by some destination program. Care should be taken under such circumstances
that the user does not inadvertently mung or mimic this information in other comments, and it is
therefore advisable to use an additional set of identifying characters to distinguish such data.

EXAMPLE

The following include file is in inches, so convert to meters
i cubgeom.inc -s .0254
Stuff we don’t want to see at the moment:
i person.mgf -t 3 2 0
ies hlrs3gna.ies -rz 90 -t 1.524 1.8288 2.74 \

-a 6 -t 1.8288 0 0 -a 2 -t 0 3.048 0

MGF February 1996 Version 1.1

General Entities - 13 - O

NAME

o - begin or end object context

SYNOPSIS

o [name]

DESCRIPTION

If name is given, we push a new object context onto the stack, which is to say that we begin a
new subobject by this name†. If the o� keyword is given by itself, then we pop the last object con-
text off the stack, which means that we leave the current subobject.

All geometry between the start of an object context and its matching end statement is associated
with the given name. This may be used in modeling software to help identify objects and subob-
jects, or it may be ignored altogether.

Object begin and end statements should be balanced in a file, and care should be taken not to
overlap transform (xf)��� contexts with object contexts, especially when arrays are involved. This is
because the standard parser will assign object contexts to instanced geometry, which can get con-
fused with other object contexts if a clear enclosure is not maintained.

EXAMPLE

o body
o torso

i torso.mgf
o
o arm

o left
i leftarm.mgf

o
o right

i leftarm.mgf -mx
o

o
o

SEE ALSO

xf��

����������������
†A name is any sequence of printing, non-white ASCII characters beginning with a letter.

MGF February 1996 Version 1.1

General Entities - 14 - XF

NAME

xf - begin or end transformation context

SYNOPSIS

xf [transform]

DESCRIPTION

If a set of transform arguments are given, we push a new transformation context onto the stack.
If the xf�� keyword is given by itself, then we pop the last transformation context off the stack. The
total transformation in effect at any given time is computed by prepending each set subcontext
arguments onto those of its enclosing context. This and other details about transformation
specifications are explained in some detail in section 2.2.2.

The following transformation flags and parameters are defined:

-t dx dy dz translate objects along the given vector
-rx degrees rotate objects about the X-axis
-ry degrees rotate objects about the Y-axis
-rz degrees rotate objects about the Z-axis
-s scalefactor scale objects by the given factor
-mx mirror objects about the Y-Z plane
-my mirror objects about the X-Z plane
-mz mirror objects about the X-Y plane
-i N repeat the following arguments N times
-a N make an array of N geometric instances

EXAMPLE

Create 3x5 array of evenly-spaced spheres (grid size = 3)
v vc =

p 0 0 0
xf -t 1 1 10 -a 3 -t 3 0 0 -a 5 -t 0 3 0

sph vc .5
xf

SEE ALSO

i,�� ies,��� o�

MGF February 1996 Version 1.1

General Entities - 15 - I

NAME

i - include MGF data file

SYNOPSIS

i pathname [transform]

DESCRIPTION

Include the information contained in the file pathname. If a transform specification is given, then
it will be applied as though the include statement were enclosed by beginning and ending xf�� enti-
ties with this transformation.

The pathname will be interpreted relative to the enclosing MGF file. That is, if the file contain-
ing the include statement is in some parent or subdirectory, then the given pathname is appended
to this directory. It is illegal to specify a pathname relative to the root directory, and the MGF
standard requires that all filenames adhere to the ISO-9660 8.3 name format for maximum porta-
bility between systems. The directory separator is defined to be slash (’/’), and drive
specifications (such as "c:") are not allowed. All pathnames should be given in lower case, and
will be converted to upper case on systems that require it. (That way, there are no accidental
name collisions.)

The suggested suffix for MGF-adherent files is ".mgf". Files that are not in metric units but are in
MGF may be given any suffix, but we suggest using ".inc" as a convention.

EXAMPLE

Define vertices for 62x30" partition
i pv62x30.inc
Insert 2 62x30" partitions
o cpart1

i partn.inc -t 75 130.5 0
o
o cpart3

i partn.inc -t 186 130.5 0
o
Define vertices for 62x36" partition
i pv62x36.inc
Insert 62x36" partition
o cpart2

i partn.inc -t 105 130.5 0
o

SEE ALSO

ies,��� o,�� xf��

MGF February 1996 Version 1.1

General Entities - 16 - IES

NAME

ies - include IESNA luminaire file

SYNOPSIS

ies pathname [−m multiplier] [transform]

DESCRIPTION

Load the IES standard luminaire information contained in the file pathname. If a multiplier is
given, all candela values will be multiplied by this factor. (This option must appear first if
present.) If a transform specification is given, then it will be applied as though the statement
were enclosed by beginning and ending xf�� entities with this transformation.

The pathname will be interpreted relative to the enclosing MGF file, and all restrictions dis-
cussed under the i� entity also apply to the IES file name. The suggested suffix is ".ies", but this
has not been followed consistently by lighting manufacturers.

EXAMPLE

Insert 10 2x4’ fluorescent troffers in two groups
ies cf9pr240.ies -t 3.6576 2.1336 2.74 -a 3 -t 2.4384 0 0 -a 2 -t 0 2.4384 0
ies cf9pr240.ies -rz 90 -t 1.2192 1.8288 2.74 \

-a 2 -t 9.7536 0 0 -a 2 -t 0 3.048 0

SEE ALSO

i,�� o,�� xf��

MGF February 1996 Version 1.1

Color Entities - 17 - C

NAME

c - get or set the current color context

SYNOPSIS

c [id [= [template]]]

DESCRIPTION

If the c� keyword is given by itself, then it establishes the unnamed color context, which is neutral
(i.e. equal-energy) grey. This context may be modified, but the changes will not be saved.

If the keyword is followed by an identifier id, then it reestablishes a previous context. If the
specified context was never defined, an error will result.

If the entity is given with an identifier followed by an equals sign (’=’), then a new context is
established, and cleared to the default neutral grey. (Note that the equals sign must be separated
from other arguments by white space to be properly recognized.) If the equals sign is followed
by a second identifier template, then this previously defined color will be used as a source of
default values rather than grey. This is most useful for establishing a color alias.

EXAMPLE

Define the color "red32"
c red32 =

cxy .42 .15
Make "cabinet_color" an alias for "red32"
c cabinet_color = red32

Later in another part of the description...

Get our cabinet color
c cabinet_color
Get the geometry
i cabgeom.mgf

SEE ALSO

cct,��� cmix,����� cspec,����� cxy,���� m��

MGF February 1996 Version 1.1

Color Entities - 18 - CXY

NAME

cxy - set the CIE (x,y) chromaticity for the current color

SYNOPSIS

cxy x y

DESCRIPTION

This entity sets the current color using (x,y) chromaticity coordinates for the 1931 CIE standard 2
degree observer. Legal values for x and y are greater than zero and sum to less than one, and
more specifically they must fit within the curve of the visible spectrum. The x coordinate
roughly corresponds to the red part of the spectrum and the y coordinate corresponds to the
green. The CIE z coordinate is implicit, since it is equal to (1-x-y).

All colors in MGF are absolute, thus colorimeter measurements should be conducted the same for
surfaces as for light sources. Applying a standard illuminant calculation is redundant and intro-
duces inaccuracies, and should therefore be avoided if possible.

Conversion between CIE colors and those more commonly used in computer graphics are
described in the application notes section 6.1.1.

EXAMPLE

Set unnamed color context
c
Set CIE chromaticity to a bluish hue
cxy .15 .2
Apply color to diffuse reflectance of 15%
rd .15

SEE ALSO

c,�� cct,��� cmix,����� cspec�����

MGF February 1996 Version 1.1

Color Entities - 19 - CSPEC

NAME

cspec - set the relative spectrum for the current color

SYNOPSIS

cspec l_min l_max o1 o2 ... oN

DESCRIPTION

Assign a relative spectrum measured between l_min and l_max nanometers at evenly spaced
intervals. The first value, o1 corresponds to the measurement at l_min, and the last value, oN
corresponds to the measurement at l_max. Values in between are separated by (l_max-
l_min)/(N-1) nanometers. All values should be non-negative unless defining a component for
complementary color mixing, and the spectrum outside of the specified range is assumed to be
zero. (The visible range is 380 to 780 nm.) The actual units and scale of the measurements do
not matter, since the total will be normalized according to whatever the color is modifying (e.g.
photometric reflectance or emittance).

EXAMPLE

Color measured at 10 nm increments from 400 to 700
m reddish_cloth =

c
cspec 400 700 28.62 27.96 27.86 28.28 29.28 30.49 31.61 \

32.27 32.26 31.83 31.13 30.07 29.14 29.03 29.69 \
30.79 32.30 33.90 34.56 34.32 33.85 33.51 33.30 \
33.43 34.06 35.26 37.04 39.41 42.55 46.46 51.00

rd 0.3210

SEE ALSO

c,�� cct,��� cmix,����� cxy���

MGF February 1996 Version 1.1

Color Entities - 20 - CCT

NAME

cct - set the current color to a black body spectrum

SYNOPSIS

cct temperature

DESCRIPTION

The cct��� entity sets the current color to the spectrum of an ideal black body radiating at tempera-
ture degrees Kelvin. This is often the most convenient way to set the color of an incandescent
light source, but it is not recommended for fluorescent lamps or other materials that do not fit a
black body spectrum.

EXAMPLE

Define an incandescent source material at 3000 degrees K
m incand3000k =

c
cct 3000

ed 1500

SEE ALSO

c,�� cmix,����� cspec,����� cxy���

MGF February 1996 Version 1.1

Color Entities - 21 - CMIX

NAME

cmix - mix two or more named colors to make the current color

SYNOPSIS

cmix w1 c1 w2 c2 ...

DESCRIPTION

The cmix����� entity sums together two or more named colors using specified weighting coefficients,
which correspond to the relative photometric brightness of each. As in all color specifications,
the result is normalized so the absolute scale of the weights does not matter, only their relative
values.

If any of the colors is a spectral quantity (i.e. from a cspec����� or cct��� entity), then all the colors are
first converted to spectral quantities. This is done with an approximation for CIE (x,y) chromati-
cities, which may be problematic depending on their values. In general, it is safest to add
together colors that are either all spectral quantities or all CIE quantities.

EXAMPLE

Define RGB primaries for a standard color monitor
c R =

cxy 0.640 0.330
c G =

cxy 0.290 0.600
c B =

cxy 0.150 0.060
Mix them together in appropriate amounts for white
c white =

cmix 0.265 R 0.670 G 0.065 B

SEE ALSO

c,�� cct,��� cspec,����� cxy���

MGF February 1996 Version 1.1

Material Entities - 22 - M

NAME

m - get or set the current material context

SYNOPSIS

m [id [= [template]]]

DESCRIPTION

If the m�� keyword is given by itself, then it establishes the unnamed material context, which is a
perfect two-sided black absorber. This context may be modified, but the changes will not be
saved.

If the keyword is followed by an identifier id, then it reestablishes a previous context. If the
specified context was never defined, an error will result.

If the entity is given with an identifier followed by an equals sign (’=’), then a new context is
established, and cleared to the default material. (Note that the equals sign must be separated from
other arguments by white space to be properly recognized.) If the equals sign is followed by a
second identifier template, then this previously defined material will be used as a source of
default values instead. This may be used to establish a material alias, or to modify an existing
material and give it a new name.

The sum of the diffuse and specular reflectances and transmittances must not be greater than one
(with no negative values, obviously). These values are assumed to be measured at normal
incidence. If an index of refraction is given, this may modify the balance between diffuse and
specular reflectance at other incident angles. If the material is one-sided (see sides���� entity), then it
may be a dielectric interface. In this case, the specular transmittance given is that which would
be measured at normal incidence for a pane of the material 5 mm thick. This is important for
figuring the actual transmittance for non-planar geometries assuming a uniformly absorbing
medium. (Diffuse transmittance will not be affected by thickness.) If the index of refraction has
an imaginary part, then the surface is a metal and this implies other properties as well. The
default index of refraction is that of a vacuum, i.e. (1,0).

EXAMPLE

Define a blue enamel paint
m blue_enamel =

c
cxy 0.2771 0.2975

rd 0.5011
c
rs 0.0100 0.0350

Assign blue_enamel to be the color of the south wall
m swall_mat = blue_enamel
...
South wall face
m swall_mat
f sv1 sv2 sv3 sv4

SEE ALSO

ed,��� ir,�� rd,��� rs,�� sides,����� td,��� ts��

MGF February 1996 Version 1.1

Material Entities - 23 - SIDES

NAME

sides - set the number of sides for the current material

SYNOPSIS

sides { 1 | 2 }

DESCRIPTION

The sides���� entity is used to set the number of sides for the current material. If a surface is two-
sided, then it will appear identical when viewed from either the front or the back. If a surface is
one-sided, then it appears invisible when viewed from the back side. This means that a transmit-
ting object will affect the light coming in through the front surface and ignore the characteristics
of the back surface, unless the index of refraction is set. If the index of refraction is set, then the
object will act as a solid piece of dielectric material. In either case, the transmission properties of
the exiting surface should be the same as the incident surface for the model to be physically valid.

The default number of sides is two.

EXAMPLE

Describe a blue crystal ball
m blue_crystal =

ir 1.650000 0
Solid dielectrics must use one-sided materials

sides 1
c
rs 0.0602 0
c

cxy 0.3127 0.2881
ts 0.6425 0

v sc =
p 10 15 1.5

sph sc .02

SEE ALSO

ed,��� ir,�� m,��� rd,��� rs,�� td,��� ts��

MGF February 1996 Version 1.1

Material Entities - 24 - RD

NAME

rd - set the diffuse reflectance for the current material

SYNOPSIS

rd rho_d

DESCRIPTION

Set the diffuse reflectance for the current material to rho_d using the current color to determine
the spectral characteristics. This is the fraction of visible light that is reflected from a surface
equally in all directions according to Lambert’s law, and is often called the "Lambertian com-
ponent." Photometric reflectance is measured according to v(lambda) response function of the
1931 CIE standard 2 degree observer, and assumes an equal-energy white light source. The value
must be between zero and one, and may be further restricted by the luminosity of the selected
color. (I.e. it is impossible to have a violet material with a photometric reflectance close to one
since the eye is less sensitive in this part of the spectrum.)

The default diffuse reflectance is zero.

EXAMPLE

An off-white paint with 70% reflectance
m flat_white70 =

c
cxy .3632 .3420

rd .70

SEE ALSO

c,�� ed,��� ir,�� m,��� rs,�� sides,����� td,��� ts��

MGF February 1996 Version 1.1

Material Entities - 25 - TD

NAME

td - set the diffuse transmittance for the current material

SYNOPSIS

td tau_d

DESCRIPTION

Set the diffuse transmittance for the current material to tau_d using the current color to determine
the spectral characteristics. This is the fraction of visible light that is transmitted through a sur-
face equally in all (transmitted) directions. Like reflectance, transmittance is measured according
to the standard v(lambda) curve, and assumes an equal-energy white light source. It is probably
not possible to create a material with a diffuse transmittance above 50%, since well-diffused light
will be reflected as well.

The default diffuse transmittance is zero.

EXAMPLE

Model a perfect spherical diffuser, i.e. light hitting either side will be scattered equally in all directions
m wonderland_diffuser =

c
td .5
rd .5

SEE ALSO

c,�� ed,��� ir,�� m,��� rd,��� rs,�� sides,����� ts��

MGF February 1996 Version 1.1

Material Entities - 26 - ED

NAME

ed - set the diffuse emittance for the current material

SYNOPSIS

ed epsilon_d

DESCRIPTION

Set the diffuse emittance for the current material to epsilon_d lumens per square meter using the
current color to determine the spectral characteristics. Note that this is emittance rather than exi-
tance, and therefore does not include reflected or transmitted light, which is a function of the
other material settings and the illuminated environment.

The total lumen output of a convex emitting object is the radiating area of that object multiplied
by its emittance. Therefore, one can compute the appropriate epsilon_d value for an emitter by
dividing the total lumen output by the radiating area (in square meters).

The default emittance is zero.

EXAMPLE

A 100-watt incandescent bulb (1600 lumens) modeled as a sphere
m

c
cct 3000

ed 87712
v cent =

p 0 0 0
sph cent .0381

SEE ALSO

c,�� ir,�� m,��� rd,��� rs,�� sides,����� td,��� ts��

MGF February 1996 Version 1.1

Material Entities - 27 - RS

NAME

rs - set the specular reflectance for the current material

SYNOPSIS

rs rho_s alpha_r

DESCRIPTION

Set the specular reflectance for the current material to rho_s using the current color to determine
the spectral characteristics. The surface roughness parameter is set to alpha_r, which is the RMS
height of surface variations over the autocorrelation distance (equivalent to RMS facet slope). A
roughness value of zero means a perfectly smooth surface, and values greater than 0.2 are
unusual. (See application notes section 6.1.2 for a comparison between the roughness parameter
and Phong specular power.)

The default specular reflectance is zero.

EXAMPLE

Define a slightly rough brass metallic surface
m rough_brass =

c
cxy .3820 .4035

30% specular, 9% diffuse
rs .30 .08
rd .09

SEE ALSO

c,�� ed,��� ir,�� m,��� rd,��� sides,����� td,��� ts��

MGF February 1996 Version 1.1

Material Entities - 28 - TS

NAME

ts - set the specular transmittance for the current material

SYNOPSIS

ts tau_s alpha_t

DESCRIPTION

Set the specular transmittance for the current material to tau_s using the current color to deter-
mine the spectral characteristics. The effective surface roughness is set to alpha_t. Rays will be
transmitted with the same distribution as they would have been reflected with if this roughness
value were given to the rs�� entity.

The default specular transmittance is zero.

EXAMPLE

Define a green glass material (58% transmittance)
m glass =

sides 2
ir 1.52 0
c
rs 0.0725 0
c

cxy .23 .38
ts 0.5815 0

Define an uncolored translucent plastic (40% transmittance)
m translucent =

sides 2
ir 1.4 0
c
rs .045 0
ts .40 .05

SEE ALSO

c,�� ed,��� ir,�� m,��� rd,��� rs,�� sides,����� td��

MGF February 1996 Version 1.1

Material Entities - 29 - IR

NAME

ir - set the complex index of refraction for the current material

SYNOPSIS

ir n_real n_imag

DESCRIPTION

Set the index of refraction for the current material to (n_real,n_imag). If the material is a dielec-
tric (as opposed to metallic), then n_imag should be zero. For solid dielectric objects, the
material should be made one-sided. If it is being used for thin objects, then a two-sided material
is appropriate. (See the sides���� entity.)

The default index of refraction is that of a vacuum, (1,0).

EXAMPLE

Define polished aluminum material
m polished_aluminum =

Complex index of refraction (from physics table)
ir .770058 6.08351
c
rs .75 0

SEE ALSO

c,�� ed,��� m,��� rd,��� rs,�� sides,����� td,��� ts��

MGF February 1996 Version 1.1

Vertex Entities - 30 - V

NAME

v - get or set the current vertex context

SYNOPSIS

v [id [= [template]]]

DESCRIPTION

If the v� keyword is given by itself, then it establishes the unnamed vertex context, which is the
origin with no normal. This context may be modified, but the changes will not be saved. (The
unnamed vertex is never used except as a source of default values since all geometric entities call
their vertices by name.)

If the keyword is followed by an identifier id, then it reestablishes a previous context. If the
specified context was never defined, an error will result.

If the entity is given with an identifier followed by an equals sign (’=’), then a new context is
established, and cleared to the default vertex (the origin). (Note that the equals sign must be
separated from other arguments by white space to be properly recognized.) If the equals sign is
followed by a second identifier template, then this previously defined vertex will be used as a
source of default values instead. This may be used to establish a vertex alias, or to modify an
existing vertex and give it a new name.

A non-zero vertex normal must be given for certain entities, specifically ring���� and torus���� require a
normal direction. An f� or fh�� entity will interpolate vertex normals if given, and use the polygon
plane normal otherwise. See the prism����� entry for an explanation of how it interprets and uses ver-
tex normals. The other entities ignore vertex normals if present.

The actual position and normal direction for a vertex is determined at the time of use by a
geometric entity. Specifically, the transformation in effect at the time the vertex is defined is
irrelevant. The only transformation that matters is the one that is applied to the geometry itself.
This prevents double-transformation of vertices and allows one set of vertices to be used for mul-
tiple purposes, e.g. the front and back sides of a drawer.

EXAMPLE

Make a capped cylinder
v end1 =

p 0 0 0
n 0 0 -1

v end2 =
p 0 0 1

cyl end1 1.2 end2
Forgot normal for end2
v end2

n 0 0 1
ring end1 0 1.2
ring end2 0 1.2

SEE ALSO

cone,����� cyl,��� f,�� fh,��� n,�� p,�� prism,������ ring,���� sph,���� torus����

MGF February 1996 Version 1.1

Vertex Entities - 31 - P

NAME

p - set the point location for the current vertex

SYNOPSIS

p px py pz

DESCRIPTION

Set the 3-dimensional position for the current vertex to (px,py,pz). The actual position of the ver-
tex will be determined by the transformation in effect at the time the vertex is applied to a
geometric surface entity. The transform current when the position is set is irrelevant.

The default vertex position is the origin, (0,0,0).

EXAMPLE

Make a small circle of 6 spheres
v scent =

p 1 0 0
xf -a 6 -rz 60

sph scent .05
xf

SEE ALSO

cone,����� cyl,��� f,�� fh,��� n,�� prism,������ ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Vertex Entities - 32 - N

NAME

n - set the surface normal direction for the current vertex

SYNOPSIS

n dx dy dz

DESCRIPTION

Set the 3-dimensional surface normal for the current vertex to the normalized vector along
(dx,dy,dz). If this vector is zero, then the surface normal is effectively unset. The actual surface
normal orientation of the vertex will be determined by the transformation in effect at the time the
vertex is applied to a geometric surface entity. The current transform when the normal is set is
irrelevant.

The default vertex normal is the zero vector (i.e. no normal).

EXAMPLE

Make a chain of 10 interlocking doughnuts
v tcent =

p 0 0 0
n 0 1 0

xf -a 10 -rx 90 -t .2 0 0
torus tcent .1 .2

xf

SEE ALSO

f,�� fh,��� p,�� prism,������ ring,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 33 - F

NAME

f - create an N-sided polygonal face

SYNOPSIS

f v1 v2 ... vN

DESCRIPTION

Create a polygonal face made of the current material by connecting the named vertices in order,
and connecting the last vertex to the first. There must be at least three vertices, and if any vertex
is undefined, an error will result.

The surface orientation is determined by the right-hand rule; when the curl of the fingers follows
the given order of the vertices, the surface normal points in the thumb direction. Face vertices
should be coplanar, though this is difficult to guarantee in a 3-dimensional specification.

If any vertices have associated surface normals, they will be used instead of the average plane
normal, though it is safest to specify either all normals or no normals, and to stick with triangles
when normals are used. Also, specified normals should point in the general direction of the sur-
face for best results.

There is no explicit representation of holes in this entity, but see the fh�� entity for an alternative
specification.

A hole may be represented implicitly in a face entity by connecting vertices to form "seams." For
example, a wall with a window in it might look as shown in Figure 1. In many systems, the wall
itself would be represented with the first list of vertices, (v1,v2,v3,v4) and the hole associated
with that wall as a second set of vertices (v5,v6,v7,v8). Using the face entity, we must give the
whole thing as a single polygon, connecting the vertices so as to create a "seam," as shown in
Figure 2. This could be written as "f v1 v2 v3 v4 v5 v6 v7 v8 v5 v4".

It is very important that the order of the hole be opposite to the order of the outer perimeter, oth-
erwise the polygon will be "twisted" on top of itself. Note also that the seam was traversed in
both directions, once going from v4 to v5, and again returning from v5 to v4. This is a necessary
condition for a proper seam.

The choice of vertices to make into a seam is somewhat arbitrary, but some rendering systems
may not give sane results if you cross over a hole with part of your seam. If we had chosen to
create the seam between v2 and v5 in the above example instead of v4 and v5, the seam would
cross our hole and may not render correctly†.

����������������
†For systems that are sensitive to this, it is probably safest for their MGF loader/translator to re-expresses
seams in terms of holes again, which can be done easily so long as vertices are shared in the fashion shown.

MGF February 1996 Version 1.1

v1 v4

v3v2

v8 v5

v6v7

v1
v4

v3v2

v8 v5

v6v7

Figure 1. A wall face with a hole for a window.

Figure 2. Connections between vertices. Note
that edges coincide along "seam" between v4
and v5.

Geometric Entities - 34 - F

MGF February 1996 Version 1.1

Geometric Entities - 35 - F

EXAMPLE

Make a pyramid
v apex =

p 1 1 1
v base0 =

p 0 0 0
v base1 =

p 0 2 0
v base2 =

p 2 2 0
v base3 =

p 2 0 0
Bottom
f base0 base1 base2 base3
Sides
f base0 apex base1
f base1 apex base2
f base2 apex base3
f base3 apex base0

SEE ALSO

cone,����� cyl,��� fh,��� m,��� prism,������ ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 36 - FH

NAME

fh - create a polygonal face with explicit holes

SYNOPSIS

fh p1 p2 ... - h1.1 h1.2 ... - h2.1 h2.2 ...

DESCRIPTION

Create a polygonal face with optional holes made of the current material. The first contour is the
outer perimeter, with vertices given in counter-clockwise order as seen from the front side (the
same as the f� entity). A hole is indicated by a hyphen (’-’) followed by the hole’s vertices, given
in clockwise order as seen from the front side. Multiple hole contours are separated by additional
hyphens. There must be at least three vertices for each contour, and the last vertex is implicitly
connected to the first. If any vertex is undefined, an error will result.

If any vertices have associated surface normals, they will be used instead of the average plane
normal, though it is safest to specify either all normals or no normals, and to stick with triangles
when normals are used. Also, specified normals should point in the general direction of the sur-
face for best results.

Vertices should not be shared between any two contours. I.e., a hole should not share a vertex or
edge with the perimeter or another hole, or incorrect rendering may result.

EXAMPLE

Make a wall with a window using an explicit hole.
(See Figures 1 and 2.)
fh v1 v2 v3 v4 - v5 v6 v7 v8

SEE ALSO

cone,����� cyl,��� f,�� m,��� prism,������ ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 37 - SPH

NAME

sph - create a sphere

SYNOPSIS

sph vc rad

DESCRIPTION

Create a sphere made of the current material with its center at the named vertex vc and a radius of
rad. If the vertex is undefined an error will result.

The surface normal is usually directed outward, but will be directed inward if the given radius is
negative. (This typically matters only for one-sided materials.) A zero radius is illegal.

EXAMPLE

Create a thick glass sphere with a hollow inside
m glass =

sides 1
ir 1.52 0
c
rs .06 0
ts .88 0

v cent =
p 0 0 1.1

The outer shell
sph cent .1
The inner bubble
sph cent -.08

SEE ALSO

cone,����� cyl,��� f,�� fh,��� m,��� prism,������ ring,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 38 - CYL

NAME

cyl - create an open-ended, truncated right cylinder

SYNOPSIS

cyl v1 rad v2

DESCRIPTION

Create a truncated right cylinder of radius rad using the current material, starting at the named
vertex v1 and continuing to v2. The ends will be open, but may be capped using the ring���� entity if
desired.

The surface normal will usually be directed outward, but may be directed inward by giving a
negative value for rad. A zero radius is illegal, and v1 cannot equal v2.

EXAMPLE

A stylus with one rounded and one pointed end
o stylus

v vtip0 =
p 0 0 0

v vtip1 =
p 0 0 .005

v vend =
p 0 0 .05

cyl vtip1 .0015 vend
sph vend .0015
cone vtip0 0 vtip1 .0015

o

SEE ALSO

cone,����� f,�� fh,��� m,��� prism,������ ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 39 - CONE

NAME

cone - create an open-ended, truncated right cone

SYNOPSIS

cone v1 rad1 v2 rad2

DESCRIPTION

Create a truncated right cone using the current material. The starting radius is rad1 at v1 and the
ending radius is is rad2 at v2. The ends will be open, but may be capped using the ring���� entity if
desired.

The surface normal will usually be directed outward, but may be directed inward by giving nega-
tive values for both radii. (It is illegal for the signs of the two radii to disagree.) One but not
both radii may be zero, indicating that the cone comes to a point.

Although it is not strictly forbidden to have equal cone radii, the cyl��� entity should be used in such
cases. Likewise, the ring���� entity must be used if v1 and v2 are equal.

EXAMPLE

A parasol
o parasol

v v1 =
p 0 0 0

v v2 =
p 0 0 .75

v v3 =
p 0 0 .7

m handle_mat
cyl v1 .002 v2
m parasol_paper
cyl v2 0 v3 .33

o

SEE ALSO

cyl,��� f,�� fh,��� m,��� prism,������ ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 40 - PRISM

NAME

prism - create a closed right prism

SYNOPSIS

prism v1 v2 ... vN length

DESCRIPTION

Create a closed right prism using the current material. One end face will be enclosed by the
named vertices, and the opposite end face will be a mirror image at a distance length from the
original. The edges will be extruded into N quadrilaterals connecting the two end faces.

The order of vertices determines the original face orientation according to the right-hand rule as
explained for the f� entity. Normally, the prism is extruded in the direction opposite to the origi-
nal surface normal, resulting in faces that all point outward. If the specified length is negative,
the prism will be extruded above the original face and all surface normals will point inward.

If the vertices have associated normals, they are applied to the side faces only, and should gen-
erally point in the appropriate direction (i.e. in or out depending on whether length is negative or
positive).

EXAMPLE

Make a unit cube starting at the origin and \
extending to the positive octant

v cv0 =
p 0 0 0

v cv1 =
p 0 1 0

v cv2 =
p 1 1 0

v cv3 =
p 1 0 0

Right hand rule has original face looking in -Z direction
prism cv0 cv1 cv2 cv3 1

SEE ALSO

cyl,��� cone,����� f,�� fh,��� m,��� ring,���� sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 41 - RING

NAME

ring - create a circular ring with inner and outer radii

SYNOPSIS

ring vc rmin rmax

DESCRIPTION

Create a circular face of the current material centered on the named vertex vc with an inner radius
of rmin and an outer radius of rmax. The surface orientation is determined by the normal vector
associated with vc. If this vertex is undefined or has no normal, an error will result. The
minimum radius may be equal to but not less than zero, and the maximum radius must be strictly
greater than the minimum.

EXAMPLE

The proverbial brass ring
o brass_ring

m brass
v end1 =

p 0 -.005 0
n 0 -1 0

v end2 =
p 0 .005 0
n 0 1 0

ring end1 .02 .03
cyl end1 .03 end2
ring end2 .02 .03
cyl end2 -.02 end1

o

SEE ALSO

cyl,��� cone,����� f,�� fh,��� m,��� prism,������ sph,���� torus,����� v�

MGF February 1996 Version 1.1

Geometric Entities - 42 - TORUS

NAME

torus - create a regular torus

SYNOPSIS

torus vc rmin rmax

DESCRIPTION

Create a torus of the current material centered on the named vertex vc with an inner radius of
rmin and an outer radius of rmax. The plane of the torus will be perpendicular to the normal vec-
tor associated with vc. If this vertex is undefined or has no normal, an error will result.

If a torus with an inward facing surface normal is desired, rmin and rmax may be negative. The
minimum radius may be zero, but may not be negative when rmax is positive or vice versa. The
magnitude or rmax must always be strictly greater than that of rmin.

EXAMPLE

The proverbial brass ring -- easy grip version
o brass_ring

m brass
v center =

p 0 0 0
n 0 1 0

torus center .02 .03
o

SEE ALSO

cyl,��� cone,����� f,�� fh,��� m,��� prism,������ ring,���� sph,���� v�

MGF February 1996 Version 1.1

- 43 -

4. MGF Translators

Initially, there are six translators for MGF data, and three of these are distributed with the MGF
parser itself, mgfilt, mgf2inv and 3ds2mgf. Two of the other translators, mgf2rad and rad2mgf
convert between MGF and the Radiance scene description language, and are distributed for free
with the rest of the Radiance package†. The sixth translator, mgf2meta, converts to a 2-
dimensional line plot, and is also distributed with Radiance.

Mgfilt is a simple but useful utility that takes MGF on its input and produces MGF on its output.
It uses the parser to convert entities that are not wanted or understood, and produces only the
requested ones. This is useful for seeing what exactly a program must understand when it sup-
ports a given set of entities, and may serve as a substitute for linking to the parser library for pro-
grammers who wish to interpret the ASCII input directly but without all the unwanted entities. In
future releases of MGF, this utility will also be handy for taking new entities and producing older
versions of MGF for translators that have not yet been updated properly.

Mgf2inv converts from MGF to Inventor or VRML format. Some information is lost, because
these formats do not support physical light sources or materials.

3ds2mgf converts from 3D Studio binary format to MGF. Care must be taken to correct for
errors in the material descriptions, since 3D Studio is completely non-physical.

����������������
†Radiance is available by anonymous ftp from hobbes.lbl.gov and nestor.epfl.ch, or by WWW from
"http://radsite.lbl.gov/radiance/HOME.html"

MGF February 1996 Version 1.1

Translators - 44 - MGFILT

NAME

mgfilt - get usable MGF entities from input

SYNOPSIS

mgfilt version [input..]
or
mgfilt e1,e2,.. [input..]

DESCRIPTION

Mgfilt takes one or more MGF input files and converts all the entities to the types listed. In the
first form, a single integer is given for the version of MGF that is to be produced. Since MGF is
in its first major release, this is not yet a useful form, but it will be when the second major release
comes out. This has the necessary side-effect of expanding all included files. (See the i� entity.)

In the second form, mgfilt produces only the entities listed in the first argument, which must be
comma-separated. The listed entity order is not important, but all entities given must be defined
in the current version of MGF. Unknown entities will be summarily discarded on the input, and a
warning message will be printed to the standard error.

EXAMPLES

To take an MGF version 3 file and send it to a version 2 translator:

mgfilt 2 input.mgf | mgf2rad > input.rad

To take an MGF file and produce only flat polygonal faces with no materials:

mgfilt f,v,p,xf input.mgf > flatpoly.mgf

SEE ALSO

i, mgf2inv, mgf2rad, rad2mgf

MGF February 1996 Version 1.1

Translators - 45 - MGF2INV

NAME

mgf2inv - convert from MGF to Inventor or VRML format

SYNOPSIS

mgf2inv [-1|-2|-vrml] [input..]

DESCRIPTION

Mgf2inv takes one or more MGF input files and converts it to Inventor or VRML format. If the
−1 option is used, then Inventor 1.0 ASCII output is produced. If the −2 option is used, then
Inventor 2.0 ASCII output is produced. (This is the default.) If the −vrml option is used, then
VRML 1.0 ASCII output is produced.

This converter does not work properly for light sources, since the output formats do not support
IES-type luminaires with recorded distributions. Also, some material information may be lost
because Inventor lacks a physically valid reflectance model.

EXAMPLES

To take an MGF file and convert it to VRML format:

mgf2inv -vrml myscene.mgf > myscene.iv

SEE ALSO

mgf2rad(1), mgfilt(1), 3ds2mgf(1), rad2mgf(1)

MGF February 1996 Version 1.1

Translators - 46 - 3DS2MGF

NAME

3ds2mgf - convert 3D Studio binary file to Materials and Geometry Format

SYNOPSIS

3ds2mgf input [output] [-lMatlib][-xObjname][-sAngle][-aAnimfile][-fN]

DESCRIPTION

3ds2mgf converts a 3D Studio binary scene description to the Materials and Geometry Format
(MGF). If no output file name is given, the input root name will be taken as the output root, and
an "mgf" extension will be added. This file will contain any light sources and materials, and an
include statement for a similarly named file ending in "inc", which will contain the MGF
geometry of all the translated 3DS meshes.

The MGF material names and properties for the surfaces will be those assigned in 3D Studio,
unless they are named in one or more MGF material libraries given in a -l option.

The -x option may be used to exclude a named object from the output.

The -s option may be used to adjust automatic mesh smoothing such that adjacent triangle faces
with less than the given angle between them (in degrees) will be smoothed. A value of zero turns
smoothing off. The default value is 60 degrees.

The -a option may be used to specify a 3D Studio animation file, and together with the -f option,
3ds2mgf will generate a scene description for the specified frame.

Note that there are no spaces between the options and their arguments.

LIMITATIONS

Obviously, since 3D Studio has no notion of physical materials, the translation to MGF material
descriptions is very ad hoc, and it will usually be necessary to edit the materials and light sources
in the output file or replace materials with proper entries from a material library using the -l
option.

With smoothing turned on (i.e., a non-zero value for the -s option), vertices in the MGF output
will not be linked in a proper mesh for each object. This is due to the way the automatic smooth-
ing code was originally written, and is too difficult to repair. If a good mesh is needed, then
smoothing must be turned off.

EXAMPLES

To convert a 3D Studio robot model to MGF without smoothing. (Output will be put into
"robot.mgf" and "robot.inc".)

3ds2mgf robot.3ds -s0

To convert a DC10 jet model to MGF using a hand-created material library:

3ds2mgf dc10.3ds -ldc10mat.mgf

AUTHORS

Steve Anger, Jeff Bowermaster and Greg Ward
Extended from 3ds2pov 1.8.

SEE ALSO

mgf2inv(1), mgf2meta(1), mgf2rad(1)

MGF February 1996 Version 1.1

Translators - 47 - MGF2RAD

NAME

mgf2rad - convert Materials and Geometry Format file to RADIANCE description

SYNOPSIS

mgf2rad [−m matfile][−e mult][−g dist] [input..]

DESCRIPTION

Mgf2rad converts one or more Materials and Geometry Format (MGF) files to a RADIANCE
scene description. By definition, all output dimensions are in meters. The material names and
properties for the surfaces will be those assigned in MGF. Any materials not defined in MGF
will result in an error during translation. Light sources are described inline as IES luminaire files,
and mgf2rad calls the program ies2rad(1) to translate these files. If an IES file in turn contains
an MGF description of the local fixture geometry, this may result in a recursive call to mgf2rad,
which is normal and should be transparent. The only side-effect of this additional translation is
the appearance of other RADIANCE scene and data files produced automatically by ies2rad.

The −m option may be used to put all the translated materials into a separate RADIANCE file.
This is not always advisable, as any given material name may be reused at different points in the
MGF description, and writing them to a separate file loses the contextual association between
materials and surfaces. As long as unique material names are used throughout the MGF descrip-
tion and material properties are not redefined, there will be no problem. Note that this is the only
way to get all the translated materials into a single file, since no output is produced for unrefer-
enced materials; i.e. translating just the MGF materials does not work.

The −e option may be used to multiply all the emission values by the given mult factor. The −g
option may be used to establish a glow distance (in meters) for all emitting surfaces. These two
options are employed principally by ies2rad, and are not generally useful to most users.

EXAMPLES

To translate two MGF files into one RADIANCE materials file and one geometry file:

mgf2rad -m materials.rad building1.mgf building2.mgf > building1+2.rad

To create an octree directly from two MGF files and one RADIANCE file:

oconv ’\!mgf2rad materials.mgf scene.mgf’ source.rad > scene.oct

FILES

tmesh.cal Used to smooth polygonal geometry
*.rad RADIANCE source descriptions created by ies2rad
*.dat RADIANCE source data created by ies2rad
source.cal Used for IES source coordinates

AUTHOR

Greg Ward

SEE ALSO

ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)

MGF February 1996 Version 1.1

Translators - 48 - RAD2MGF

NAME

rad2mgf - convert RADIANCE scene description to Materials and Geometry Format

SYNOPSIS

rad2mgf [−dU] [input..]

DESCRIPTION

Rad2mgf converts one or more RADIANCE scene files to the Materials and Geometry Format
(MGF). Input units are specified with the −mU option, where U is one of ’m’ (meters), ’c’ (cen-
timeters), ’f’ (feet) or ’i’ (inches). The assumed unit is meters, which is the required output unit
for MGF (thus the need to know). If the input dimensions are in none of these units, then the user
should apply xform(1) with the −s option to bring the units into line prior to translation.

The MGF material names and properties for the surfaces will be those assigned in RADIANCE.
If a referenced material has not been defined, then its name will be invoked in the MGF output
without definition, and the description will be incomplete.

LIMITATIONS

Although MGF supports all of the geometric types and the most common material types used in
RADIANCE, there is currently no support for advanced BRDF materials, patterns, textures or
mixtures. Also, the special types "source" and "antimatter" are not supported, and all light source
materials are converted to simple diffuse emitters (except "illum" materials, which are converted
to their alternates). These primitives are reproduced as comments in the output and must be
replaced manually if necessary.

The RADIANCE "instance" type is treated specially. Rad2mgf converts each instance to an
MGF include statement, using the corresponding transformation and a file name derived from the
octree name. (The original octree suffix is replaced by ".mgf".) For this to work, the user must
separately create the referenced MGF files from the original RADIANCE descriptions. The
description file names can usually be determined using the getinfo(1) command run on the
octrees in question.

EXAMPLES

To convert three RADIANCE files (in feet) to one MGF file:

mgf2rad -df file1.rad file2.rad file3.rad > scene.mgf

To translate a RADIANCE materials file to MGF:

mgf2rad materials.rad > materials.mgf

AUTHOR

Greg Ward

SEE ALSO

getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)

MGF February 1996 Version 1.1

Translators - 49 - MGF2META

NAME

mgf2meta - convert Materials and Geometry Format file to Metafile graphics

SYNOPSIS

mgf2meta [-t threshold] {x|y|z} xmin xmax ymin ymax zmin zmax [input..]

DESCRIPTION

Mgf2meta converts one or more Materials and Geometry Format (MGF) files to a 2-D ortho-
graphic projection along the selected axis in the metafile(1) graphics format. All geometry is
clipped to the specified bounding box, and the resulting orientation is as follows:

Projection Orientation
======= ========
x Y-axis right, Z-axis up
y Z-axis right, X-axis up
z X-axis right, Z-axis up

If multiple input files are given, the first file prints in black, the second prints in red, the third in
green and the fourth in blue. If more than four input files are given, they cycle through the colors
again in three other line types: dashed, dotted and dot-dashed.

The −t option may be used to randomly throw out line segments that are shorter than the given
threshold (given as a fraction of the plot width). Segments are included with a probability equal
to the square of the line length over the square of the threshold. This can greatly reduce the
number of lines in the drawing (and therefore improve the drawing speed) with only a modest
loss in quality. A typical value for this parameter is 0.005.

All MGF material information is ignored on the input.

EXAMPLES

To project two MGF files along the Z-axis and display them under X11:

mgf2meta z 0 10 0 15 0 9 building1.mgf building2.mgf | x11meta

To convert a RADIANCE scene to a line drawing in RADIANCE picture format:

rad2mgf scene.rad | mgf2meta x ‘getbbox -h scene.rad‘ | meta2tga | ra_t8 -r > scene.pic

AUTHOR

Greg Ward

SEE ALSO

getbbox(1), meta2tga(1), metafile(5), mgf2rad(1), pflip(1), protate(1), psmeta(1), ra_t8(1),
rad2mgf(1), t4014(1), x11meta(1)

MGF February 1996 Version 1.1

- 50 -

5. MGF Parser Library

The principal motivation for creating a standard parser library for MGF is to make it easy for
software developers to offer some base level of compliance. The key to making MGF easy to
support in fact is the parser, which has the ability to express higher order entities in terms of
lower order ones. For example, tori are part of the MGF specification, but if a given program or
translator does not support them, the parser will convert them to cones. If cones are not sup-
ported either, it will convert them further into smoothed polygons. If smoothing (vertex normal
information) is not supported, it will be ignored and the program will just get flat polygons. This
is done in such a way that future versions of the standard may include new entities that old
software does not even have to know about, and they will be converted appropriately. Forward
compatibility is thus built right into the parser loading mechanism itself -- the programmer sim-
ply links to the new code and the new standard is supported without any further changes.

Language

The provided MGF parser is written in ANSI-C. This language was chosen for reasons of porta-
bility and efficiency. Almost all systems support some form of ANSI-compatible C, and many
languages can cross-link to C libraries without modification. Backward compatibility to Ker-
nighan and Ritchie C is achieved by compiling with the -DNOPROTO flag.

All of the data structures and prototypes needed for the library are in the header file "parser.h".
This file is the best resource for the parser and is updated with each MGF release.

Mechanism

The parser works by a simple callback mechanism to routines that actually interpret the indivi-
dual entities. Some of these routines will belong to the calling program, and some will be entity
support routines included in the library itself. There is a global array of function pointers, called
mg_ehand. It is defined thus:

extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv);

Before parsing begins, this dispatch table is initialized to point to the routines that will handle
each supported entity. Every entity handler has the same basic prototype, which is the same as
the main function, i.e:

extern int handler(int argc, char **argv);

The first argument is the number of words in the MGF entity (counting the entity itself) and the
second argument is an array of nul-terminated strings with the entity and its arguments. The
function should return zero or one of the error codes defined in "parser.h". A non-zero return
value causes the parser to abort, returning the error up through its call stack to the entry function,
usually mg_load.

A special function pointer for undefined entities is defined as follows:

extern int (*mg_uhand)(int argc, char **argv);

By default, this points to the library function mg_defuhand, which prints an error message on the
first unknown entity and keeps a count from then on, which is stored in the global unsigned
integer mg_nunknown. If the mg_uhand pointer is assigned a value of NULL instead, parsing
will abort at the first unrecognized entity. The reason this is not the default action is that ignoring
unknown entities offers a certain base level of forward compatibility. Ignoring things one does
not understand is not the best approach, but it is usually better than quitting with an error message
if the input is in fact valid, but is a later version of the standard. The real solution is to update the
interpreter by linking to a new version of the parser, or use a new version of the mgfilt command
to convert the new MGF input to an older standard.

MGF February 1996 Version 1.1

- 51 -

The mg_uhand pointer may also be used to customize the language for a particular application by
adding entities, though this is discouraged because it tends to weaken the standard.

The skeletal framework for an MGF loader or translator is to assign function pointers to the
mg_ehand array, call the parser initialization function mg_init, then call the file loader function
mg_load once for each input file. This will in turn make calls back to the functions assigned to
mg_ehand. To give a simple example, let us look at a translator that understands only flat polyg-
onal faces, putting out vertex locations immediately after each "face" keyword:

#include <stdio.h>
#include "parser.h"

int
myfaceh(ac, av) /* face handling routine */
int ac;
char **av;
{

C_VERTEX *vp; /* vertex structure pointer */
FVECT vert; /* vertex point location */
int i;

if (ac < 4) /* check # arguments */
return(MG_EARGC);

printf("face\n"); /* begin face output */
for (i = 1; i < ac; i++) {

if ((vp = c_getvert(av[i])) == NULL) /* vertex from name */
return(MG_EUNDEF);

xf_xfmpoint(vert, vp->p); /* apply transform */
printf("%15.9f %15.9f %15.9f\n",

vert[0], vert[1], vert[2]); /* output vertex */
}
printf(";\n"); /* end of face output */
return(MG_OK); /* normal exit */

}

main(argc, argv) /* translate MGF file(s) */
int argc;
char **argv;
{

int i;
/* initialize dispatch table */

mg_ehand[MG_E_FACE] = myfaceh; /* ours */
mg_ehand[MG_E_VERTEX] = c_hvertex; /* parser lib */
mg_ehand[MG_E_POINT] = c_hvertex; /* parser lib */
mg_ehand[MG_E_XF] = xf_handler; /* parser lib */
mg_init(); /* initialize parser */
for (i = 1; i < argc; i++) /* load each file argument */

if (mg_load(argv[i]) != MG_OK) /* and check for error */
exit(1);

exit(0); /* all done! */
}

Hopefully, this example demonstrates just how easy it is to write an MGF translator. Of course,
translators get more complicated the more entity types they support, but the point is that one does
not have to support every entity -- the parser handles what the translator does not. Also, the
library includes many general entity handlers, further reducing the burden on the programmer.

MGF February 1996 Version 1.1

- 52 -

This same principle means that it is not necessary to modify an existing program to accommodate
a new version of MGF -- one need only link to the new parser library to comply with the new
standard.

Division of Labor

As seen in the previous example, there are two parser routines that are normally called directly in
an MGF translator or loader program. The first is mg_init, which takes no arguments but relies
on the program having initialized those parts of the global mg_ehand array it cares about. The
second routine is mg_load, which is called once on each input file. (A third routine, mg_clear,
may be called to free the parser data structures after each file or after all files, if the program plans
to continue rather than exit.)

The rest of the routines in a translator or loader program are called indirectly through the
mg_ehand dispatch table, and they are the ones that do the real work of supporting the MGF enti-
ties. In addition to converting or discarding entities that the calling program does not know or
care about, the parser library includes a set of context handlers that greatly simplify the transla-
tion process. There are three handlers for each of the three named contexts and their constituents,
and two handlers for the two hierarchical context entities. To use these handlers, one simply sets
the appropriate positions in the mg_ehand dispatch table to point to these functions. Additional
functions and global data structures provide convenient access to the relevant contexts, and all of
these are detailed in the following manual pages.

MGF February 1996 Version 1.1

Basic Parser Routines - 53 - MG_INIT

NAME

mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers

SYNOPSIS

#include "parser.h"

void mg_init(void)

int mg_defuhand(int argc, char **argv)

extern int (*mg_ehand[MG_NENTITIES])(int argc, char **argv)

extern int (*mg_uhand)(int argc, char **argv)

extern unsigned mg_nunknown

DESCRIPTION

The parser dispatch table, mg_ehand is initially set to all NULL pointers, and it is the duty of the
calling program to assign entity handler functions to each of the supported entity positions in the
array. The entities are given in the include file "parser.h" as the following:

#define MG_E_COMMENT 0 /* # */
#define MG_E_COLOR 1 /* c */
#define MG_E_CCT 2 /* cct */
#define MG_E_CONE 3 /* cone */
#define MG_E_CMIX 4 /* cmix */
#define MG_E_CSPEC 5 /* cspec */
#define MG_E_CXY 6 /* cxy */
#define MG_E_CYL 7 /* cyl */
#define MG_E_ED 8 /* ed */
#define MG_E_FACE 9 /* f */
#define MG_E_INCLUDE 10 /* i */
#define MG_E_IES 11 /* ies */
#define MG_E_IR 12 /* ir */
#define MG_E_MATERIAL 13 /* m */
#define MG_E_NORMAL 14 /* n */
#define MG_E_OBJECT 15 /* o */
#define MG_E_POINT 16 /* p */
#define MG_E_PRISM 17 /* prism */
#define MG_E_RD 18 /* rd */
#define MG_E_RING 19 /* ring */
#define MG_E_RS 20 /* rs */
#define MG_E_SIDES 21 /* sides */
#define MG_E_SPH 22 /* sph*/
#define MG_E_TD 23 /* td */
#define MG_E_TORUS 24 /* torus */
#define MG_E_TS 25 /* ts */
#define MG_E_VERTEX 26 /* v */
#define MG_E_XF 27 /* xf */

#define MG_NENTITIES 28 /* total # entities */

Once the mg_ehand array has been set by the program, the mg_init routine must be called to
complete the initialization process. This should be done once and only once per invocation,
before any other parser routines are called.

MGF February 1996 Version 1.1

Basic Parser Routines - 54 - MG_INIT

The mg_uhand variable points to the current handler for unknown entities encountered on the
input. Its default value points to the mg_defuhand function, which simply increments the global
variable mg_nunknown, printing a warning message on the standard error on the first offense.
(This message may be avoided by incrementing mg_nunknown before processing begins.) If
mg_uhand is assigned a value of NULL, then an unknown entity will return an MG_EUNK error,
which will cause the parser to abort. (See the mg_load page for a list of errors.) If the
mg_uhand pointer is assigned to another function, that function will receive any unknown enti-
ties and their arguments, and the parsing will abort if the new function returns a non-zero error
value. This offers a convenient way to customize the language by adding non-standard entities.

DIAGNOSTICS

If an inconsistent set of entities has been set for support, the mg_init routine will print an infor-
mative message to standard error and abort the calling program with a call to exit. This is nor-
mally unacceptable behavior for a library routine, but since such an error indicates a fault with
the calling program itself, recovery is impossible.

SEE ALSO

mg_load, mg_handle

MGF February 1996 Version 1.1

Basic Parser Routines - 55 - MG_LOAD

NAME

mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures

SYNOPSIS

#include "parser.h"

int mg_load(char *filename)

void mg_clear(void)

extern MG_FCTXT *mg_file

extern char *mg_err[MG_NERRS]

DESCRIPTION

The mg_load function loads the named file, or standard input if filename is the NULL pointer.
Calls back to the appropriate MGF handler routines are made through the mg_ehand dispatch
table.

The global mg_file variable points to the current file context structure, which may be useful for
the interpretation of certain entities, such as ies,��� which must know the directory path of the
enclosing file. This structure is of the defined type MG_FCTXT, given in "parser.h" as:

typedef struct mg_fctxt {
char fname[96]; /* file name */
FILE *fp; /* stream pointer */
int fid; /* unique file context id */
char inpline[4096]; /* input line */
int lineno; /* line number */
struct mg_fctxt *prev; /* previous context */

} MG_FCTXT;

DIAGNOSTICS

If an error is encountered during parsing, mg_load will print an appropriate error message to the
standard error stream and return one of the non-zero values from "parser.h" listed below:

#define MG_OK 0 /* normal return value */
#define MG_EUNK 1 /* unknown entity */
#define MG_EARGC 2 /* wrong number of arguments */
#define MG_ETYPE 3 /* argument type error */
#define MG_EILL 4 /* illegal argument value */
#define MG_EUNDEF 5 /* undefined reference */
#define MG_ENOFILE 6 /* cannot open input file */
#define MG_EINCL 7 /* error in included file */
#define MG_EMEM 8 /* out of memory */
#define MG_ESEEK 9 /* file seek error */
#define MG_EBADMAT 10 /* bad material specification */
#define MG_ELINE 11 /* input line too long */
#define MG_ECNTXT 12 /* unmatched context close */

#define MG_NERRS 13

If it is inappropriate to send output to standard error, the calling program should use the routines
listed under mg_open for better control over the parsing process.

MGF February 1996 Version 1.1

Basic Parser Routines - 56 - MG_LOAD

The mg_err array contains error messages corresponding to each of the values listed above in the
native country’s language.

SEE ALSO

mg_fgetpos, mg_handle, mg_init, mg_open

MGF February 1996 Version 1.1

Basic Parser Routines - 57 - MG_OPEN

NAME

mg_open, mg_read, mg_parse, mg_close - MGF file loading subroutines

SYNOPSIS

#include "parser.h"

int mg_open(MG_FCTXT *fcp, char *filename)

int mg_read(void)

int mg_parse(void)

void mg_close(void)

DESCRIPTION

Most loaders and translators will call the mg_load routine to handle the above operations, but
some programs or entity handlers require tighter control over the loading process.

The mg_open routine takes an uninitialized MG_FCTXT structure and a file name as its argu-
ments. If filename is the NULL pointer, the standard input is "opened." The fcp structure will be
set by mg_open prior to its return, and the global mg_file pointer will be assigned to point to it.
This variable must not be destroyed until after the file is closed with a call to mg_close. (See the
mg_load page for a definition of mg_file and the MG_FCTXT type.)

The mg_read function reads the next input line from the current file, returning the number of
characters in the line, or zero if the end of file is reached or there is a file error. If the value
returned equals MG_MAXLINE-1, then the input line was too long, and you should return an
MG_ELINE error. The function keeps track of the line number in the current file context
mg_file, which also contains the line that was read.

The mg_parse function breaks the current line in the mg_file structure into words and calls the
appropriate handler routine, if any. Blank lines and unsupported entities cause a quick return.

The mg_close routine closes the current input file (unless it is the standard input) and returns to
the previous file context (if any).

DIAGNOSTICS

The mg_open function returns MG_OK (0) normally, or MG_ENOFILE if the open fails for
some reason.

The mg_parse function returns MG_OK if the current line was successfully interpreted, or one of
the defined error values if there is a problem. (See the mg_load page for the defined error
values.)

SEE ALSO

mg_fgetpos, mg_handle, mg_init, mg_load

MGF February 1996 Version 1.1

Basic Parser Routines - 58 - MG_FGETPOS

NAME

mg_fgetpos, mg_fgoto - get current file position and seek to pointer

SYNOPSIS

#include "parser.h"

void mg_fgetpos(MG_FPOS *pos)

int mg_fgoto(MG_FPOS *pos)

DESCRIPTION

The mg_fgetpos gets the current MGF file position and loads it into the passed MG_FPOS struc-
ture, pos.

The mg_fgoto function seeks to the position pos, taken from a previous call to mg_fgetpos.

DIAGNOSTICS

If mg_fgoto is passed an illegal pointer or one that does not correspond to the current mg_file
context, it will return the MG_ESEEK error value. Normally, it returns MG_OK (0).

SEE ALSO

mg_load, mg_open

MGF February 1996 Version 1.1

Basic Parser Routines - 59 - MG_HANDLE

NAME

mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance and control

SYNOPSIS

int mg_handle(int en, int ac, char *av)

int mg_entity(char *name)

extern char mg_ename[MG_NENTITIES][MG_MAXELEN]

extern int mg_nqcdivs

DESCRIPTION

The mg_handle routine may be used to pass entities back to the parser to be redirected through
the mg_ehand dispatch table. This method is recommended rather than calling through
mg_ehand directly, since the parser sometimes has its own support routines that it needs to call
for specific entities. The first argument, en, is the corresponding entity number, or -1 if
mg_handle should figure it out from the first av argument.

The mg_entity function gets an entity number from its name, using a hash table on the
mg_ename list.

The mg_ename table contains the string names corresponding to each MGF entity in the desig-
nated order. (See the mg_init page for the list of MGF entities.)

The global integer variable mg_nqcdivs tells the parser how many subdivisions to use per quarter
circle (90 degrees) when tesselating curved geometry. The default value is 5, and it may be reset
at any time by the calling program.

DIAGNOSTICS

The mg_handle function returns MG_OK if the entity is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of error values.)

The mg_entity function returns -1 if the passed name does not appear in the mg_ename list.

SEE ALSO

mg_init, mg_load, mg_open

MGF February 1996 Version 1.1

Basic Parser Routines - 60 - ISINT, ISFLT, ISNAME

NAME

isint, isflt, isname - determine if string fits integer or real format, or is legal identifier

SYNOPSIS

int isint(char *str)

int isflt(char *str)

int isname(char *str)

DESCRIPTION

The isint function checks to see if the passed string str matches a decimal integer format (posi-
tive or negative), and returns 1 or 0 based on whether it does or does not.

The isflt function checks to see if the passed string str matches a floating point format (positive
or negative with optional exponent), and returns 1 or 0 based on whether it does or does not.

The isname function checks to see if the passed string str is a legal identifier name. In MGF, a
legal identifier must begin with a letter and contain only visible ASCII characters (those between
decimal 33 and 127 inclusive). The one caveat to this is that names may begin with one or more
underscores (’_’), but this is a trick employed by the parser to maintain a separate name space
from the user, and is not legal usage otherwise.

Note that a string that matches an integer format is also a valid floating point value. Conversely,
a string that is not a floating point number cannot be a valid integer.

These routines are useful for checking arguments passed to entity handlers that certain types in
certain positions. If an invalid argument is passed, the handler should return an MG_ETYPE
error.

SEE ALSO

mg_init, mg_load

MGF February 1996 Version 1.1

Entity Support Routines - 61 - C_HVERTEX

NAME

c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support

SYNOPSIS

#include "parser.h"

int c_hvertex(int argc, char **argv)

C_VERTEX *c_getvert(char *name)

extern char *c_vname

extern C_VERTEX *c_cvertex

DESCRIPTION

The c_hvertex function handles the MGF vertex entities, v,�� p� and n.�� If either p� or n� is supported,
then v� must be also. The assignments are normally made to the mg_ehand array prior to parser
initialization, like so:

mg_ehand[MG_E_VERTEX] = c_hvertex; /* support "v" entity */
mg_ehand[MG_E_POINT] = c_hvertex; /* support "p" entity */
mg_ehand[MG_E_NORMAL] = c_hvertex; /* support "n" entity */
/* other entity handler assignments... */
mg_init(); /* initialize parser */

If vertex normals are not understood by any of the program-supported entities, then the
MG_E_NORMAL entry may be left with its original NULL assignment.

The c_getvert call takes the name of a defined vertex and returns a pointer to its C_VERTEX
structure, defined in "parser.h" as:

typedef FLOAT FVECT[3]; /* a 3-d real vector */

typedef struct {
int clock; /* incremented each change -- resettable */
char *client_data; /* pointer to private client data */
FVECT p, n; /* point and normal */

} C_VERTEX; /* vertex context */

The clock member will be incremented each time the value gets changed by a p� or n� entity, and
may be reset by the controlling program if desired. This is a convenient way to keep track of
whether or not a vertex has changed since its last use. To link identical vertices, one must also
check that the current transform has not changed, which is uniquely identified by the global
xf_context->xid variable, but only if one is using the parser library’s transform handler. (See the
xf_handler page.) The client_data pointer may be used to index private application data for ver-
tex linking, etc. This pointer is initialized to NULL when the context is created, and otherwise
ignored by the parser library.

It is possible but not recommended to alter the shared contents of the vertex structure returned by
c_getvert. Normally it is read during the interpretation of entities using named vertices.

The name of the current vertex is given by the global c_cvname variable, which is set to NULL if
the unnamed vertex is current. The current vertex value is pointed to by the global variable
c_cvertex, which should never be NULL.

MGF February 1996 Version 1.1

Entity Support Routines - 62 - C_HVERTEX

DIAGNOSTICS

The c_hvertex function returns MG_OK (0) if the vertex is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of errors.)

The c_getvert function returns NULL if the specified vertex name is undefined, at which point
the calling function should return an MG_EUNDEF error.

SEE ALSO

c_hcolor, c_hmaterial, mg_init, mg_load, xf_handler

MGF February 1996 Version 1.1

Entity Support Routines - 63 - C_HCOLOR

NAME

c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey - color entity support

SYNOPSIS

#include "parser.h"

int c_hcolor(int argc, char **argv)

C_COLOR *c_getcolor(char *name)

extern char *c_ccname

extern C_COLOR *c_ccolor

void c_ccvt(C_COLOR *cvp, int cflags)

int c_isgrey(C_COLOR *cvp)

DESCRIPTION

The c_hcolor function supports the MGF entities, c,�� cxy,���� cspec,����� cct��� and cmix.����� It is an error to
support any of the color field entities without supporting the c� entity itself. The assignments are
normally made to the mg_ehand array prior to parser initialization, like so:

mg_ehand[MG_E_COLOR] = c_hcolor; /* support "c" entity */
mg_ehand[MG_E_CXY] = c_hcolor; /* support "cxy" entity */
mg_ehand[MG_E_CSPEC] = c_hcolor; /* support "cspec" entity */
mg_ehand[MG_E_CCT] = c_hcolor; /* support "cct" entity */
mg_ehand[MG_E_CMIX] = c_hcolor; /* support "cmix" entity */
/* other entity handler assignments... */
mg_init(); /* initialize parser */

If the loader/translator has no use for spectral data, the entries for cspec����� and cct��� may be left with
their original NULL assignments and these entities will be re-expressed appropriately as tris-
timulus values.

The c_getcolor function takes the name of a defined color and returns a pointer to its C_COLOR
structure, defined in "parser.h" as:

#define C_CMINWL 380 /* minimum wavelength */
#define C_CMAXWL 780 /* maximum wavelength */
#define C_CNSS 41 /* number of spectral samples */
#define C_CWLI ((C_CMAXWL-C_CMINWL)/(C_CNSS-1))
#define C_CMAXV 10000 /* nominal maximum sample value */
#define C_CLPWM (683./C_CMAXV) /* peak lumens/watt multiplier */

typedef struct {
int clock; /* incremented each change */
char *client_data; /* pointer to private client data */
short flags; /* what’s been set */
short ssamp[C_CNSS]; /* spectral samples, min wl to max */
long ssum; /* straight sum of spectral values */
float cx, cy; /* xy chromaticity value */
float eff; /* efficacy (lumens/watt) */

} C_COLOR; /* color context */

The clock member will be incremented each time the value gets changed by a color field entity,
and may be reset by the calling program if desired. This is a convenient way to keep track of
whether or not a color has changed since its last use. The client_data pointer may be used to

MGF February 1996 Version 1.1

Entity Support Routines - 64 - C_HCOLOR

index private application data. This pointer is initialized to NULL when the context is created,
and otherwise ignored by the parser library. The flags member indicates which color representa-
tions have been assigned, and is an inclusive OR of one or more of the following:

#define C_CSSPEC 01 /* flag if spectrum is set */
#define C_CDSPEC 02 /* flag if defined w/ spectrum */
#define C_CSXY 04 /* flag if xy is set */
#define C_CDXY 010 /* flag if defined w/ xy */
#define C_CSEFF 020 /* flag if efficacy set */

It is possible but not recommended to alter the contents of the color structure returned by
c_getcolor. Normally, this routine is never called directly, since there are no entities that access
colors by name other than c.��

The global variable c_ccname points to the name of the current color, or NULL if it is unnamed.
The variable c_ccolor points to the current color value, which should never be NULL.

The c_ccvt routine takes a C_COLOR structure and a set of desired flag settings and computes
the missing color representation(s).

The c_isgrey function returns 1 if the passed color is very close to neutral grey, or 0 otherwise.

DIAGNOSTICS

The c_hcolor function returns MG_OK (0) if the color is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of errors.)

The c_getcolor function returns NULL if the specified color name is undefined, at which point
the calling function should return an MG_EUNDEF error.

SEE ALSO

c_hmaterial, c_hvertex, mg_init, mg_load

MGF February 1996 Version 1.1

Entity Support Routines - 65 - C_HMATERIAL

NAME

c_hmaterial, c_getmaterial, c_cmname, c_cmaterial - material entity support

SYNOPSIS

#include "parser.h"

int c_hmaterial(int argc, char **argv)

C_MATERIAL *c_getmaterial(char *name)

extern char *c_cmname

extern C_MATERIAL *c_cmaterial

DESCRIPTION

The c_hmaterial function supports the MGF entities, m,��� ed,��� ir,�� rd,��� rs,�� sides,����� td,��� and ts.�� It is an
error to support any of the material field entities without supporting the m�� entity itself. The
assignments are normally made to the mg_ehand array prior to parser initialization, like so:

mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* support "m" entity */
mg_ehand[MG_E_ED] = c_hmaterial; /* support "ed" entity */
mg_ehand[MG_E_IR] = c_hmaterial; /* support "ir" entity */
mg_ehand[MG_E_RD] = c_hmaterial; /* support "rd" entity */
mg_ehand[MG_E_RS] = c_hmaterial; /* support "rs" entity */
mg_ehand[MG_E_SIDES] = c_hmaterial; /* support "sides" entity */
mg_ehand[MG_E_TD] = c_hmaterial; /* support "td" entity */
mg_ehand[MG_E_TS] = c_hmaterial; /* support "ts" entity */
/* other entity handler assignments... */
mg_init(); /* initialize parser */

Any of the above entities besides m�� may be unsupported, but the parser will not attempt to
include their effect into other members, e.g. an unsupported rs�� component will not be added back
into the rd�� member. It is therefore safer to support all of the relevant material entities and make
final approximations from the complete C_MATERIAL structure.

The c_getmaterial function takes the name of a defined material and returns a pointer to its
C_MATERIAL structure, defined in "parser.h" as:

MGF February 1996 Version 1.1

Entity Support Routines - 66 - C_HMATERIAL

#define C_1SIDEDTHICK 0.005 /* assumed thickness of 1-sided mat. */

typedef struct {
int clock; /* incremented each change -- resettable */
char *client_data; /* pointer to private client data */
int sided; /* 1 if surface is 1-sided, 0 for 2-sided */
float nr, ni; /* index of refraction, real and imaginary */
float rd; /* diffuse reflectance */
C_COLOR rd_c; /* diffuse reflectance color */
float td; /* diffuse transmittance */
C_COLOR td_c; /* diffuse transmittance color */
float ed; /* diffuse emittance */
C_COLOR ed_c; /* diffuse emittance color */
float rs; /* specular reflectance */
C_COLOR rs_c; /* specular reflectance color */
float rs_a; /* specular reflectance roughness */
float ts; /* specular transmittance */
C_COLOR ts_c; /* specular transmittance color */
float ts_a; /* specular transmittance roughness */

} C_MATERIAL; /* material context */

The clock member will be incremented each time the value gets changed by a material field
entity, and may be reset by the calling program if desired. This is a convenient way to keep track
of whether or not a material has changed since its last use. The client_data pointer may be used
to index private application data. This pointer is initialized to NULL when the context is created,
and otherwise ignored by the parser library.

All reflectance and transmittance values correspond to normal incidence, and may vary as a func-
tion of angle depending on the index of refraction. A solid object is normally represented with a
one-sided material. A two-sided material is most appropriate for thin surfaces, though it may be
used also when the surface normal orientations in a model are unreliable.

If a transparent or translucent surface is one-sided, then the absorption will change as a function
of distance through the material, and a single value for diffuse or specular transmittance is ambi-
guous. We therefore define a standard thickness, C_1SIDEDTHICK, which is the object thick-
ness to which the given values correspond, so that one may compute the isotropic absorptance of
the material.

It is possible but not recommended to alter the contents of the material structure returned by
c_getmaterial. Normally, this routine is never called directly, since there are no entities that
access materials by name other than m.���

The global variable c_cmname points to the name of the current material, or NULL if it is
unnamed. The variable c_cmaterial points to the current material value, which should never be
NULL.

DIAGNOSTICS

The c_hmaterial function returns MG_OK (0) if the color is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of errors.)

The c_getmaterial function returns NULL if the specified material name is undefined, at which
point the calling function should return an MG_EUNDEF error.

MGF February 1996 Version 1.1

Entity Support Routines - 67 - C_HMATERIAL

SEE ALSO

c_hcolor, c_hvertex, mg_init, mg_load

MGF February 1996 Version 1.1

Entity Support Routines - 68 - OBJ_HANDLER

NAME

obj_handler, obj_clear, obj_nnames, obj_name - object name support

SYNOPSIS

int obj_handler(int argc, char **argv)

void obj_clear(void)

extern int obj_nnames

extern char **obj_name

DESCRIPTION

The obj_handler routine should be assigned to the MG_E_OBJECT entry of the parser’s
mg_ehand array prior to calling mg_load if the loader/translator wishes to support hierarchical
object names.

The obj_clear function may be used to clear the object name stack and free any associated
memory, but this is usually not necessary since o� begin and end entities are normally balanced in
the input.

The global obj_nnames variable indicates the number of names currently in the object stack, and
the obj_name list contains the name strings in the same order as they were encountered on the
input. (I.e. the most recently pushed name is last.)

DIAGNOSTICS

The obj_handler function returns MG_OK (0) if the color is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of errors.)

SEE ALSO

mg_init, mg_load, xf_handler

MGF February 1996 Version 1.1

Entity Support Routines - 69 - XF_HANDLER

NAME

xf_handler, xf_clear, xf_context, xf_argend - transformation support

SYNOPSIS

int xf_handler(int argc, char **argv)

void xf_clear(void)

extern XF_SPEC *xf_context

extern char **xf_argend

DESCRIPTION

The xf_handler routine should be assigned to the MG_E_XF entry of the parser’s mg_ehand
array prior to calling mg_load if the loader/translator wishes to support hierarchical transforma-
tions. (Note that all MGF geometric entities require this support.)

The xf_clear function may be used to clear the transform stack and free any associated memory,
but this is usually not necessary since xf�� begin and end entities are normally balanced in the
input.

The global xf_context variable points to the current transformation context, which is of the type
XF_SPEC, described in "parser.h":

typedef struct xf_spec {
long xid; /* unique transform id */
short xac; /* context argument count */
short rev; /* boolean true if vertices reversed */
XF xf; /* cumulative transformation */
struct xf_array *xarr; /* transformation array pointer */
struct xf_spec *prev; /* previous transformation context */

} XF_SPEC; /* followed by argument buffer */

The xid member is a identifier associated with this transformation, which should be the same for
identical transformations, as an aid to vertex sharing. (See also the c_hvertex page.) The xac
member indicates the total number of transform arguments, and is used to indicate the position of
the first argument relative to the last one pointed to by the global xf_argend variable.

The first transform argument starts at xf_argv, which is a macro defined in "parser.h" as:

#define xf_argv (xf_argend - xf_context->xac)

Note that accessing this macro will result in a segmentation violation if the current context is
NULL, so one should first test the second macro xf_argc against zero. This macro is defined as:

#define xf_argc (xf_context==NULL ? 0 : xf_context->xac)

Normally, neither of these macros will be used, since there are routines for transforming points,
vectors and scalars directly based on the current transformation context. (See the xf_xfmpoint
page for details.)

The rev member of the XF_SPEC structure indicates whether or not this transform reverses the
order of polygon vertices. This member will be 1 if the transformation mirrors about an odd
number of coordinate axes, thus inverting faces. The usual thing to do in this circumstance is to
interpret the vertex arguments in the reverse order, so as to bring the face back to its original
orientation in the new position.

The xf member contains the transformation scalefactor (in xf.sca) and 4x4 homogeneous matrix
(in xf.xfm), but these will usually not be accessed directly. Likewise, the xarr and prev

MGF February 1996 Version 1.1

Entity Support Routines - 70 - XF_HANDLER

members point to data that should not be needed by the calling program.

DIAGNOSTICS

The xf_handler function returns MG_OK (0) if the color is handled correctly, or one of the
predefined error values if there is a problem. (See the mg_load page for a list of errors.)

SEE ALSO

mg_init, mg_load, obj_handler, xf_xfmpoint

MGF February 1996 Version 1.1

Entity Support Routines - 71 - XF_XFMPOINT

NAME

xf_xfmpoint, xf_xfmvect, xf_rotvect, xf_scale - apply current transformation

SYNOPSIS

void xf_xfmpoint(FVECT pnew, FVECT pold)

void xf_xfmvect(FVECT vnew, FVECT vold)

void xf_rotvect(FVECT nnew, FVECT nold)

double xf_scale(double sold)

DESCRIPTION

The xf_xfmpoint routine applies the current transformation defined by xf_context to the point
pold, scaling, rotating and moving it to its proper location, which is put in pnew. (As for
xf_xfmvect and xf_rotvect, the two arguments may point to the same vector.)

The xf_xfmvect routine applies the current transformation to the vector vold, scaling and rotating
it to its proper location, which is put in vnew. The only difference between xf_xfmpoint and
xf_xfmvect is that in the latter, the final translation is not applied.

The xf_rotvect routine rotates the vector nold using the current transformation, and stores the
result in nnew. No translation or scaling is applied, which is the appropriate action for surface
normal vectors for example.

The xf_scale function takes a scalar argument sold and applies the current scale factor, returning
the result.

SEE ALSO

xf_handler

MGF February 1996 Version 1.1

- 72 -

6. Application Notes

6.1. Relation to Standard Practices in Computer Graphics

For those coming from a computer graphics background, some of the choices in the material
model may seem strange or even capricious. Why not simply stick with RGB colors and a Phong
specular component like everyone else? What is the point in choosing the number of sides to a
material?

In the real world, a surface can have only one side, defining the interface between one volume
and another. Many object-space rendering packages (e.g. z-buffer algorithms) take advantage of
this fact by culling back-facing polygons and thus saving as much as 50% of the preprocessing
time. However, many models rely on an approximation whereby a single surface is used to
represent a very thin volume, such as a pane of glass, and this also can provide significant calcu-
lational savings in an image-space algorithm (such as ray-tracing). Also, many models are
created in such a way that the front vs. back information is lost or confused, so that the back side
of one or more surfaces may have to serve as the front side during rendering. (AutoCAD is one
easily identified culprit in this department.) Since both types of surface models are useful and
any rendering algorithm may ultimately be applied, MGF provides a way to specify sidedness
rather than picking one interpretation or the other.

The problem with RGB is that there is no accepted standard, and even if we were to set one it
would either be impossible to realize (i.e. impossible to create phosphors with the chosen colors)
or it would have a gamut that excludes many saturated colors. The CIE color system was very
carefully conceived and developed, and is the standard to which all photometric measurements
adhere. It is therefore the logical choice in any standard format, though it has been too often
ignored by the computer graphics community.

Regarding Phong shading, this was never a physical model and making it behave basic laws of
reciprocity and energy balance is difficult. More to the point, specular power has almost nothing
to do with surface microstructure, and is difficult to set properly even if every physical charac-
teristic of a material has been carefully measured. This is the ultimate indictment of any physical
model -- that it is incapable of reproducing any measurement whatsoever.

Admittedly, the compliment of diffuse and specular component plus surface roughness and index
of refraction used in MGF is less than a perfect model, but it is serviceable for most materials and
relatively simple to incorporate into a rendering algorithm. In the long term, MGF shall probably
include full spectral scattering functions, though the sheer quantity of data involved makes this
burdensome from both the measurement side and the simulation side.

6.1.1. Converting between Phong Specular Power and Gaussian Roughness

So-called specular reflection and transmission are modeled using a Gaussian distribution of sur-
face facets. The roughness parameters to the rs�� and ts�� entities specify the root-mean-squared
(RMS) surface facet slope, which varies from 0 for a perfectly smooth surface to around .2 for a
fairly rough one. The effect this will have on the reflected component distribution is well-
defined, but predicting the behavior of the transmitted component requires further assumptions.
We assume that the surface scatters light passing through it just as much as it scatters reflected
light. This assumption is approximately correct for a two-sided transparent material with an
index of refraction of 1.5 (like glass) and both sides having the given RMS facet slope.

Oftentimes, one is translating from a Phong exponent on the cosine of the half-vector-to-normal
angle to the more physical but less familiar Gaussian model of MGF. The hardest part is translat-
ing the specular power to a roughness value. For this, we recommend the following approxima-
tion:

roughness = sqrt(2/specular_power)

MGF February 1996 Version 1.1

- 73 -

It is not a perfect correlation, but it is about as close as one can get.

6.1.2. Converting between RGB and CIE Colors

Unlike most graphics languages, MGF does not use an RGB color model, simply because there is
no recognized definition for this model. It is based on computer monitor phosphors, which vary
from one CRT to the next. (There is an RGB standard defined in the TV industry, but this has a
rather poor correlation to most computer monitors and it is impossible to express many real-
world colors within its limited gamut.)

MGF uses two alternative, well-defined standards, spectral power distributions and the 1931 CIE
2 degree standard observer. With the CIE standard, any viewable color may be exactly
represented as an (x,y) chromaticity value. Unfortunately, the interaction between colors (i.e.
colored light sources and interreflections) cannot be specified exactly with any finite coordinate
set, including CIE chromaticities. So, MGF offers the ability to give reflectance, transmittance or
emittance as a function of wavelength over the visible spectrum. This function is still discretized,
but at a user-selectable resolution. Furthermore, spectral colors may be mixed, providing (nearly)
arbitrary basis functions, which can produce more accurate results in some cases and are merely a
convenience for translation in others.

Conversion back and forth between CIE chromaticity coordinates and spectral samples is pro-
vided within the MGF parser. Unfortunately, conversion to and from RGB values depends on a
particular RGB definition, and as we have said, there is no recognized standard. We therefore
recommend that you decide yourself what chromaticity values to use for each RGB primary, and
adopt the following code to convert between CIE and RGB coordinates.

#ifdef NTSC
#define CIE_x_r 0.670 /* standard NTSC primaries */
#define CIE_y_r 0.330
#define CIE_x_g 0.210
#define CIE_y_g 0.710
#define CIE_x_b 0.140
#define CIE_y_b 0.080
#define CIE_x_w 0.3333 /* monitor white point */
#define CIE_y_w 0.3333
#else
#define CIE_x_r 0.640 /* nominal CRT primaries */
#define CIE_y_r 0.330
#define CIE_x_g 0.290
#define CIE_y_g 0.600
#define CIE_x_b 0.150
#define CIE_y_b 0.060
#define CIE_x_w 0.3333 /* monitor white point */
#define CIE_y_w 0.3333
#endif

#define CIE_D (CIE_x_r*(CIE_y_g - CIE_y_b) + \
CIE_x_g*(CIE_y_b - CIE_y_r) + \
CIE_x_b*(CIE_y_r - CIE_y_g))

#define CIE_C_rD ((1./CIE_y_w) * \
(CIE_x_w*(CIE_y_g - CIE_y_b) - \
CIE_y_w*(CIE_x_g - CIE_x_b) + \
CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g))

#define CIE_C_gD ((1./CIE_y_w) * \
(CIE_x_w*(CIE_y_b - CIE_y_r) - \
CIE_y_w*(CIE_x_b - CIE_x_r) - \

MGF February 1996 Version 1.1

- 74 -

CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r))
#define CIE_C_bD ((1./CIE_y_w) * \

(CIE_x_w*(CIE_y_r - CIE_y_g) - \
CIE_y_w*(CIE_x_r - CIE_x_g) + \
CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r))

#define CIE_rf (CIE_y_r*CIE_C_rD/CIE_D)
#define CIE_gf (CIE_y_g*CIE_C_gD/CIE_D)
#define CIE_bf (CIE_y_b*CIE_C_bD/CIE_D)

float xyz2rgbmat[3][3] = { /* XYZ to RGB */
{(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g)/CIE_C_rD,
(CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b)/CIE_C_rD,
(CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g)/CIE_C_rD},
{(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b)/CIE_C_gD,
(CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r)/CIE_C_gD,
(CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b)/CIE_C_gD},
{(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r)/CIE_C_bD,
(CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g)/CIE_C_bD,
(CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r)/CIE_C_bD}

};

float rgb2xyzmat[3][3] = { /* RGB to XYZ */
{CIE_x_r*CIE_C_rD/CIE_D,CIE_x_g*CIE_C_gD/CIE_D,CIE_x_b*CIE_C_bD/CIE_D},
{CIE_y_r*CIE_C_rD/CIE_D,CIE_y_g*CIE_C_gD/CIE_D,CIE_y_b*CIE_C_bD/CIE_D},
{(1.-CIE_x_r-CIE_y_r)*CIE_C_rD/CIE_D,
(1.-CIE_x_g-CIE_y_g)*CIE_C_gD/CIE_D,
(1.-CIE_x_b-CIE_y_b)*CIE_C_bD/CIE_D}

};

cie_rgb(rgbcolor, ciecolor) /* convert CIE to RGB */
register float *rgbcolor, *ciecolor;
{

register int i;

for (i = 0; i < 3; i++) {
rgbcolor[i] = xyz2rgbmat[i][0]*ciecolor[0] +

xyz2rgbmat[i][1]*ciecolor[1] +
xyz2rgbmat[i][2]*ciecolor[2] ;

if (rgbcolor[i] < 0.0) /* watch for negative values */
rgbcolor[i] = 0.0;

}
}

rgb_cie(ciecolor, rgbcolor) /* convert RGB to CIE */
register float *ciecolor, *rgbcolor;
{

register int i;

for (i = 0; i < 3; i++)
ciecolor[i] =rgb2xyzmat[i][0]*rgbcolor[0] +

rgb2xyzmat[i][1]*rgbcolor[1] +

MGF February 1996 Version 1.1

- 75 -

rgb2xyzmat[i][2]*rgbcolor[2] ;
}

An alternative to adopting the above code is to use the MGF "cmix" entity to convert from RGB
directly by naming the three primaries in terms of their chromaticities, e.g:

c R =
cxy 0.640 0.330

c G =
cxy 0.290 0.600

c B =
cxy 0.150 0.060

Then, converting from RGB to MGF colors is as simple as multiplying each component by its
relative luminance in a cmix statement, for instance:

c white =
cmix 0.265 R 0.670 G 0.065 B

For the chosen RGB standard, the above specification would result a pure white. The reason the
coefficients are not all 1 as you might expect is that cmix uses relative luminance as the standard
for its weights. Since blue is less luminous for the same energy than red, which is in turn less
luminous than green, the weights cannot be the same to achieve an even spectral balance. Unfor-
tunately, computing these relative weights is not straightforward, though it is given in the above
macros as CIE_rf, CIE_gf and CIE_bf. (The common factors in these macros may of course be
removed since cmix����� weights are all relative.) Alternatively, one could measure the actual full
scale luminance of the phosphors with a luminance probe and get the same relative values.

6.2. Relation to IESNA LM-63 and Luminaire Catalogs

Recently, the Illuminating Engineering Society of North America (IESNA) adopted MGF as the
official standard for representing luminaire geometry and materials. The way this works in an
IES luminaire data file is through the addition of a keyword called LUMINOUSGEOMETRY,
which is given on a line in the header portion of a file (before the TILT specification) like so:

[LUMINOUSGEOMETRY] mgf_file

The given MGF file must exist relative to the directory containing the IES file (i.e. the same
stipulations and restrictions on pathnames apply as for the MGF i� entity). Furthermore, the posi-
tion of the MGF geometry must be such that the gross geometric specification of emitting sur-
faces in the IES file completely blocks or encloses the luminous portions of the MGF description.
Specifically, any ray traced towards the MGF geometry must strike the IES gross geometry
before it strikes any luminous surface in the MGF description. This provides a convenient way of
preventing overcounting in the illumination calculation, while still allowing for accurate fixture
appearance.

To give two examples, let us consider first a recessed can, followed by a hanging direct/indirect
fluorescent fixture.

The most appropriate IES geometric specification for the emitting area of a can light would be a
circular disk. Since the IES gross geometry gives only the diameter of the disk, the actual 3-
dimensional placement is implicitly defined as having a center at the origin, with the radiating
disk facing in the negative Z direction (nadir, downwards). The MGF geometry would then be
placed such that any luminous portion was above this disk, and no portion of it would obstruct
the IES geometry. The most sensible position therefore has the IES disk flush with the MGF can
opening, as shown in Figure 3.

MGF February 1996 Version 1.1

Origin
IES geometry

MGF geometryZ

Origin

Z

MGF geometry

IES geometry

Figure 3. Geometric representation of can
downlight fixture, and placement of IES simple
geometry.

Figure 4. A hanging direct/indirect fixture and
the surrounding IES simple geometry.

MGF February 1996 Version 1.1

- 75 -

- 77 -

In the case of a direct/indirect fluorescent fixture, light will exit both the top and the bottom sides,
and the IES geometry must enclose the radiating portion of the fixture entirely. It is acceptable to
have additional MGF geometry above the fixture so long as it does not radiate, which is what we
must do if we wish to include the support rods, as shown in Figure 4.

Note that the origin is always in the exact center of the IES geometry.

Not all fixtures will fit the simple IES geometry specification so nicely. For odd-shaped fixtures,
it may be necessary to use an IES geometry that does not match the radiating area terribly well in
order that it completely block or enclose the required MGF specification.

The unit of length in the MGF file is always meters, regardless of the units specified in the
enclosing IES file. However, any and all multipliers applied to the candlepower data in the IES
file will also be applied to the emittance of surfaces in the MGF specification, so that one MGF
file may serve similar luminaires that differ in their total output.

7. Credits

The MGF language grew out of a joint investigation into physical representations for rendering
undertaken by the author (Greg Ward of LBL) and Holly Rushmeier of the National Institute of
Standards and Technology. After deciding that a complete and robust specification was an
extreme challenge, we shelved the project for another time. A few months later, the author spoke
with Ian Ashdown and Robert Shakespeare, who are both members of the IES Computing Com-
mittee, about the need for extending the existing data standard to include luminaire geometry and
near-field photometry. We then moved forward as a team towards a somewhat less ambitious
approach to physical materials and geometry that had the advantage of simplicity and the possi-
bility of support with a standard parser library. The author went to work over the next two
months on the detailed design of the language and an ANSI-C parser, with regular feedback from
the other three team members. Several months and several versions later, we arrived at release
1.0, which is the occasion of this document’s creation.

Funding for this work... would be nice.

MGF February 1996 Version 1.1

	Introduction
	Entities
	Transformations
	Example

	MGF Entity Reference
	# - a comment
	o - begin or end object context
	xf - begin or end transformation context
	i - include MGF data file
	ies - include IESNA luminaire file
	c - get or set the color context
	cxy - set the CIE (x,y) chromaticity
	cspect - set the relative color spectrum
	cct - set the correlated color temperture
	cmix - mix two or more named colors
	m - get or set the material context
	sides - set the number of sides
	rd - set the diffuse reflectance
	td - set the diffuse transmittance
	ed - set the diffuse emittance
	rs - set the specular reflectance
	ts - set the specular transmittance
	ir - set the compex index of refraction
	v - get or set the vertex context
	p - set the point location
	n - set the surface normal
	f - create an N-sided polygonal face
	fh - create a face with explicit holes
	sph - create a sphere
	cyl - create a cylinder
	cone - create a cone
	prism - create a prism
	ring - create a circular ring
	torus - create a regular torus

	MGF Translators
	mgfilt - get usable MGF entities from input
	mgf2inv - convert MGF to VRML
	3ds2mgf - convert 3D Studio to MGF
	mgf2rad - convert MGF to Radiance
	rad2mgf - convert Radiance to MGF
	mgf2meta - convert MGF to line plot

	MGF Parser Library
	mg_init, mg_ehand, mg_uhand - initialize MGF entity handlers
	mg_load, mg_clear, mg_file, mg_err - load MGF file, clear data structures
	mg_open, mg_read, mg_parse, mg_close - MGF file loading
	mg_fgetpos, mg_fgoto - get current file position and seek
	mg_handle, mg_entity, mg_ename, mg_nqcdivs - entity assistance
	isint, isflt, isname - determine if string fits format
	c_hvertex, c_getvert, c_cvname, c_cvertex - vertex entity support
	c_hcolor, c_getcolor, c_ccname, c_ccolor, c_ccvt, c_isgrey - color entity support
	c_hmaterial, c_getmaterial, c_cmname, c_cmaterial - material entity support
	obj_handler, obj_clear, obj_nnames, obj_name - object name support
	xf_handler, xf_clear, xf_context, xf_argend - transformation support
	xf_xfmpoint, xf_xfmvect, xf_rotvect, xf_scale - apply current transformation

	Application Notes
	Converting between RGB & CIE Colors
	Credits

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 75
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

