ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgflib/mgf2rad.c
Revision: 1.3
Committed: Thu Jun 26 00:58:09 2003 UTC (20 years, 10 months ago) by schorsch
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P1, rad4R0, rad3R6, rad3R6P1, rad3R8, rad3R9, rad3R7P2
Changes since 1.2: +2 -2 lines
Log Message:
Abstracted process and path handling for Windows.
Renamed FLOAT to RREAL because of conflict on Windows.
Added conditional compiles for some signal handlers.

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 schorsch 1.3 static const char RCSid[] = "$Id: mgf2rad.c,v 1.2 2003/02/28 20:11:29 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Convert MGF (Materials and Geometry Format) to Radiance
6     */
7    
8     #include <stdio.h>
9     #include <stdlib.h>
10     #include <math.h>
11     #include <string.h>
12     #include "mgflib/parser.h"
13     #include "color.h"
14     #include "tmesh.h"
15    
16     #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
17    
18     #define invert (xf_context != NULL && xf_context->rev)
19    
20     double glowdist = FHUGE; /* glow test distance */
21    
22     double emult = 1.; /* emitter multiplier */
23    
24     FILE *matfp; /* material output file */
25    
26     int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
27     char *material(), *object(), *addarg();
28    
29    
30     main(argc, argv) /* convert files to stdout */
31     int argc;
32     char *argv[];
33     {
34     int i;
35    
36     matfp = stdout;
37     /* print out parser version */
38     printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
39     /* initialize dispatch table */
40     mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
41     mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
42     mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
43     mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
44     mg_ehand[MG_E_CSPEC] = c_hcolor; /* they get spectra */
45     mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
46     mg_ehand[MG_E_CCT] = c_hcolor; /* they get color temp's */
47     mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
48     mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
49     mg_ehand[MG_E_FACE] = r_face; /* we do faces */
50     mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
51     mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
52     mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
53     mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
54     mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
55     mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
56     mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
57     mg_ehand[MG_E_RING] = r_ring; /* we do rings */
58     mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
59     mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
60     mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
61     mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
62     mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
63     mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
64     mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
65     mg_init(); /* initialize the parser */
66     /* get our options & print header */
67     printf("## %s", argv[0]);
68     for (i = 1; i < argc && argv[i][0] == '-'; i++) {
69     printf(" %s", argv[i]);
70     switch (argv[i][1]) {
71     case 'g': /* glow distance (meters) */
72     if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
73     goto userr;
74     glowdist = atof(argv[++i]);
75     printf(" %s", argv[i]);
76     break;
77     case 'e': /* emitter multiplier */
78     if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
79     goto userr;
80     emult = atof(argv[++i]);
81     printf(" %s", argv[i]);
82     break;
83     case 'm': /* materials file */
84     matfp = fopen(argv[++i], "a");
85     if (matfp == NULL) {
86     fprintf(stderr, "%s: cannot append\n", argv[i]);
87     exit(1);
88     }
89     printf(" %s", argv[i]);
90     break;
91     default:
92     goto userr;
93     }
94     }
95     putchar('\n');
96     if (i == argc) { /* convert stdin */
97     if (mg_load(NULL) != MG_OK)
98     exit(1);
99     if (mg_nunknown)
100     printf("## %s: %u unknown entities\n",
101     argv[0], mg_nunknown);
102     } else /* convert each file */
103     for ( ; i < argc; i++) {
104     printf("## %s %s ##############################\n",
105     argv[0], argv[i]);
106     if (mg_load(argv[i]) != MG_OK)
107     exit(1);
108     if (mg_nunknown) {
109     printf("## %s %s: %u unknown entities\n",
110     argv[0], argv[i], mg_nunknown);
111     mg_nunknown = 0;
112     }
113     }
114     exit(0);
115     userr:
116     fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
117     argv[0]);
118     exit(1);
119     }
120    
121    
122     int
123     r_comment(ac, av) /* repeat a comment verbatim */
124     register int ac;
125     register char **av;
126     {
127     putchar('#'); /* use Radiance comment character */
128     while (--ac) { /* pass through verbatim */
129     putchar(' ');
130     fputs(*++av, stdout);
131     }
132     putchar('\n');
133     return(MG_OK);
134     }
135    
136    
137     int
138     r_cone(ac, av) /* put out a cone */
139     int ac;
140     char **av;
141     {
142     static int ncones;
143     char *mat;
144     double r1, r2;
145     C_VERTEX *cv1, *cv2;
146     FVECT p1, p2;
147     int inv;
148     /* check argument count and type */
149     if (ac != 5)
150     return(MG_EARGC);
151     if (!isflt(av[2]) || !isflt(av[4]))
152     return(MG_ETYPE);
153     /* get the endpoint vertices */
154     if ((cv1 = c_getvert(av[1])) == NULL ||
155     (cv2 = c_getvert(av[3])) == NULL)
156     return(MG_EUNDEF);
157     xf_xfmpoint(p1, cv1->p); /* transform endpoints */
158     xf_xfmpoint(p2, cv2->p);
159     r1 = xf_scale(atof(av[2])); /* scale radii */
160     r2 = xf_scale(atof(av[4]));
161     inv = r1 < 0.; /* check for inverted cone */
162     if (r1 == 0.) { /* check for illegal radii */
163     if (r2 == 0.)
164     return(MG_EILL);
165     inv = r2 < 0.;
166     } else if (r2 != 0. && inv ^ r2 < 0.)
167     return(MG_EILL);
168     if (inv) {
169     r1 = -r1;
170     r2 = -r2;
171     }
172     if ((mat = material()) == NULL) /* get material */
173     return(MG_EBADMAT);
174     /* spit the sucker out */
175     printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
176     object(), ++ncones);
177     printf("0\n0\n8\n");
178     putv(p1);
179     putv(p2);
180     printf("%18.12g %18.12g\n", r1, r2);
181     return(MG_OK);
182     }
183    
184    
185     int
186     r_cyl(ac, av) /* put out a cylinder */
187     int ac;
188     char **av;
189     {
190     static int ncyls;
191     char *mat;
192     double rad;
193     C_VERTEX *cv1, *cv2;
194     FVECT p1, p2;
195     int inv;
196     /* check argument count and type */
197     if (ac != 4)
198     return(MG_EARGC);
199     if (!isflt(av[2]))
200     return(MG_ETYPE);
201     /* get the endpoint vertices */
202     if ((cv1 = c_getvert(av[1])) == NULL ||
203     (cv2 = c_getvert(av[3])) == NULL)
204     return(MG_EUNDEF);
205     xf_xfmpoint(p1, cv1->p); /* transform endpoints */
206     xf_xfmpoint(p2, cv2->p);
207     rad = xf_scale(atof(av[2])); /* scale radius */
208     if ((inv = rad < 0.)) /* check for inverted cylinder */
209     rad = -rad;
210     if ((mat = material()) == NULL) /* get material */
211     return(MG_EBADMAT);
212     /* spit out the primitive */
213     printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
214     object(), ++ncyls);
215     printf("0\n0\n7\n");
216     putv(p1);
217     putv(p2);
218     printf("%18.12g\n", rad);
219     return(MG_OK);
220     }
221    
222    
223     int
224     r_sph(ac, av) /* put out a sphere */
225     int ac;
226     char **av;
227     {
228     static int nsphs;
229     char *mat;
230     double rad;
231     C_VERTEX *cv;
232     FVECT cent;
233     int inv;
234     /* check argument count and type */
235     if (ac != 3)
236     return(MG_EARGC);
237     if (!isflt(av[2]))
238     return(MG_ETYPE);
239     if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
240     return(MG_EUNDEF);
241     xf_xfmpoint(cent, cv->p); /* transform center */
242     rad = xf_scale(atof(av[2])); /* scale radius */
243     if ((inv = rad < 0.)) /* check for inversion */
244     rad = -rad;
245     if ((mat = material()) == NULL) /* get material */
246     return(MG_EBADMAT);
247     /* spit out primitive */
248     printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
249     object(), ++nsphs);
250     printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
251     cent[0], cent[1], cent[2], rad);
252     return(MG_OK);
253     }
254    
255    
256     int
257     r_ring(ac, av) /* put out a ring */
258     int ac;
259     char **av;
260     {
261     static int nrings;
262     char *mat;
263     double r1, r2;
264     C_VERTEX *cv;
265     FVECT cent, norm;
266     /* check argument count and type */
267     if (ac != 4)
268     return(MG_EARGC);
269     if (!isflt(av[2]) || !isflt(av[3]))
270     return(MG_ETYPE);
271     if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
272     return(MG_EUNDEF);
273     if (is0vect(cv->n)) /* make sure we have normal */
274     return(MG_EILL);
275     xf_xfmpoint(cent, cv->p); /* transform center */
276     xf_rotvect(norm, cv->n); /* rotate normal */
277     r1 = xf_scale(atof(av[2])); /* scale radii */
278     r2 = xf_scale(atof(av[3]));
279     if (r1 < 0. | r2 <= r1)
280     return(MG_EILL);
281     if ((mat = material()) == NULL) /* get material */
282     return(MG_EBADMAT);
283     /* spit out primitive */
284     printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
285     printf("0\n0\n8\n");
286     putv(cent);
287     putv(norm);
288     printf("%18.12g %18.12g\n", r1, r2);
289     return(MG_OK);
290     }
291    
292    
293     int
294     r_face(ac, av) /* convert a face */
295     int ac;
296     char **av;
297     {
298     static int nfaces;
299     int myi = invert;
300     char *mat;
301     register int i;
302     register C_VERTEX *cv;
303     FVECT v;
304     int rv;
305     /* check argument count and type */
306     if (ac < 4)
307     return(MG_EARGC);
308     if ((mat = material()) == NULL) /* get material */
309     return(MG_EBADMAT);
310     if (ac <= 5) { /* check for smoothing */
311     C_VERTEX *cva[5];
312     for (i = 1; i < ac; i++) {
313     if ((cva[i-1] = c_getvert(av[i])) == NULL)
314     return(MG_EUNDEF);
315     if (is0vect(cva[i-1]->n))
316     break;
317     }
318     if (i < ac)
319     i = ISFLAT;
320     else
321     i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
322     cva[0]->n, cva[1]->n, cva[2]->n);
323     if (i == DEGEN)
324     return(MG_OK); /* degenerate (error?) */
325     if (i == RVBENT) {
326     myi = !myi;
327     i = ISBENT;
328     } else if (i == RVFLAT) {
329     myi = !myi;
330     i = ISFLAT;
331     }
332     if (i == ISBENT) { /* smoothed triangles */
333     do_tri(mat, cva[0], cva[1], cva[2], myi);
334     if (ac == 5)
335     do_tri(mat, cva[2], cva[3], cva[0], myi);
336     return(MG_OK);
337     }
338     }
339     /* spit out unsmoothed primitive */
340     printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
341     printf("0\n0\n%d\n", 3*(ac-1));
342     for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
343     if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
344     return(MG_EUNDEF);
345     xf_xfmpoint(v, cv->p);
346     putv(v);
347     }
348     return(MG_OK);
349     }
350    
351    
352     int
353     r_ies(ac, av) /* convert an IES luminaire file */
354     int ac;
355     char **av;
356     {
357     int xa0 = 2;
358     char combuf[128];
359     char fname[48];
360     char *oname;
361     register char *op;
362     register int i;
363     /* check argument count */
364     if (ac < 2)
365     return(MG_EARGC);
366     /* construct output file name */
367     if ((op = strrchr(av[1], '/')) != NULL)
368     op++;
369     else
370     op = av[1];
371     (void)strcpy(fname, op);
372     if ((op = strrchr(fname, '.')) == NULL)
373     op = fname + strlen(fname);
374     (void)strcpy(op, ".rad");
375     /* see if we need to run ies2rad */
376     if (access(fname, 0) == -1) {
377     (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
378     op = combuf + 7; /* get -m option (first) */
379     if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
380     if (!isflt(av[xa0+1]))
381     return(MG_ETYPE);
382     op = addarg(addarg(op, "-m"), av[xa0+1]);
383     xa0 += 2;
384     }
385     *op++ = ' '; /* build IES filename */
386     i = 0;
387     if (mg_file != NULL &&
388     (oname = strrchr(mg_file->fname,'/')) != NULL) {
389     i = oname - mg_file->fname + 1;
390     (void)strcpy(op, mg_file->fname);
391     }
392     (void)strcpy(op+i, av[1]);
393     if (access(op, 0) == -1) /* check for file existence */
394     return(MG_ENOFILE);
395     system(combuf); /* run ies2rad */
396     if (access(fname, 0) == -1) /* check success */
397     return(MG_EINCL);
398     }
399     printf("\n!xform"); /* put out xform command */
400     oname = object();
401     if (*oname) {
402     printf(" -n ");
403     for (op = oname; op[1]; op++) /* remove trailing separator */
404     putchar(*op);
405     }
406     for (i = xa0; i < ac; i++)
407     printf(" %s", av[i]);
408     if (ac > xa0 && xf_argc > 0)
409     printf(" -i 1");
410     for (i = 0; i < xf_argc; i++)
411     printf(" %s", xf_argv[i]);
412     printf(" %s\n", fname);
413     return(MG_OK);
414     }
415    
416    
417     do_tri(mat, cv1, cv2, cv3, iv) /* put out smoothed triangle */
418     char *mat;
419     C_VERTEX *cv1, *cv2, *cv3;
420     int iv;
421     {
422     static int ntris;
423     BARYCCM bvecs;
424 schorsch 1.3 RREAL bcoor[3][3];
425 greg 1.1 C_VERTEX *cvt;
426     FVECT v1, v2, v3;
427     FVECT n1, n2, n3;
428     register int i;
429    
430     if (iv) { /* swap vertex order if inverted */
431     cvt = cv1;
432     cv1 = cv3;
433     cv3 = cvt;
434     }
435     xf_xfmpoint(v1, cv1->p);
436     xf_xfmpoint(v2, cv2->p);
437     xf_xfmpoint(v3, cv3->p);
438     /* compute barycentric coords. */
439     if (comp_baryc(&bvecs, v1, v2, v3) < 0)
440     return; /* degenerate triangle! */
441     printf("\n%s texfunc T-nor\n", mat); /* put out texture */
442     printf("4 dx dy dz %s\n0\n", TCALNAME);
443     xf_rotvect(n1, cv1->n);
444     xf_rotvect(n2, cv2->n);
445     xf_rotvect(n3, cv3->n);
446     for (i = 0; i < 3; i++) {
447     bcoor[i][0] = n1[i];
448     bcoor[i][1] = n2[i];
449     bcoor[i][2] = n3[i];
450     }
451     put_baryc(&bvecs, bcoor, 3);
452     /* put out triangle */
453     printf("\nT-nor polygon %st%d\n", object(), ++ntris);
454     printf("0\n0\n9\n");
455     putv(v1);
456     putv(v2);
457     putv(v3);
458     }
459    
460    
461     char *
462     material() /* get (and print) current material */
463     {
464     char *mname = "mat";
465     COLOR radrgb, c2;
466     double d;
467     register int i;
468    
469     if (c_cmname != NULL)
470     mname = c_cmname;
471     if (!c_cmaterial->clock)
472     return(mname); /* already current */
473     /* else update output */
474     c_cmaterial->clock = 0;
475     if (c_cmaterial->ed > .1) { /* emitter */
476     cvtcolor(radrgb, &c_cmaterial->ed_c,
477     emult*c_cmaterial->ed/(PI*WHTEFFICACY));
478     if (glowdist < FHUGE) { /* do a glow */
479     fprintf(matfp, "\nvoid glow %s\n0\n0\n", mname);
480     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
481     colval(radrgb,GRN),
482     colval(radrgb,BLU), glowdist);
483     } else {
484     fprintf(matfp, "\nvoid light %s\n0\n0\n", mname);
485     fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
486     colval(radrgb,GRN),
487     colval(radrgb,BLU));
488     }
489     return(mname);
490     }
491     d = c_cmaterial->rd + c_cmaterial->td +
492     c_cmaterial->rs + c_cmaterial->ts;
493     if (d < 0. | d > 1.)
494     return(NULL);
495     /* check for glass/dielectric */
496     if (c_cmaterial->nr > 1.1 &&
497     c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
498     c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
499     c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
500     cvtcolor(radrgb, &c_cmaterial->ts_c,
501     c_cmaterial->ts + c_cmaterial->rs);
502     if (c_cmaterial->sided) { /* dielectric */
503     colval(radrgb,RED) = pow(colval(radrgb,RED),
504     1./C_1SIDEDTHICK);
505     colval(radrgb,GRN) = pow(colval(radrgb,GRN),
506     1./C_1SIDEDTHICK);
507     colval(radrgb,BLU) = pow(colval(radrgb,BLU),
508     1./C_1SIDEDTHICK);
509     fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
510     fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
511     colval(radrgb,GRN), colval(radrgb,BLU),
512     c_cmaterial->nr);
513     return(mname);
514     }
515     /* glass */
516     fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
517     fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
518     colval(radrgb,GRN), colval(radrgb,BLU),
519     c_cmaterial->nr);
520     return(mname);
521     }
522     /* check for trans */
523     if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
524     double ts, a5, a6;
525    
526     if (c_cmaterial->sided) {
527     ts = sqrt(c_cmaterial->ts); /* approximate */
528     a5 = .5;
529     } else {
530     ts = c_cmaterial->ts;
531     a5 = 1.;
532     }
533     /* average colors */
534     d = c_cmaterial->rd + c_cmaterial->td + ts;
535     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
536     cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
537     addcolor(radrgb, c2);
538     cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
539     addcolor(radrgb, c2);
540     if (c_cmaterial->rs + ts > .0001)
541     a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
542     ts*a5*c_cmaterial->ts_a) /
543     (c_cmaterial->rs + ts);
544     a6 = (c_cmaterial->td + ts) /
545     (c_cmaterial->rd + c_cmaterial->td + ts);
546     if (a6 < .999)
547     d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
548     else
549     d = c_cmaterial->td + ts;
550     scalecolor(radrgb, d);
551     fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
552     fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
553     colval(radrgb,GRN), colval(radrgb,BLU));
554     fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
555     ts/(ts + c_cmaterial->td));
556     return(mname);
557     }
558     /* check for plastic */
559     if (c_cmaterial->rs < .1) {
560     cvtcolor(radrgb, &c_cmaterial->rd_c,
561     c_cmaterial->rd/(1.-c_cmaterial->rs));
562     fprintf(matfp, "\nvoid plastic %s\n0\n0\n", mname);
563     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
564     colval(radrgb,GRN), colval(radrgb,BLU),
565     c_cmaterial->rs, c_cmaterial->rs_a);
566     return(mname);
567     }
568     /* else it's metal */
569     /* average colors */
570     cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
571     cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
572     addcolor(radrgb, c2);
573     fprintf(matfp, "\nvoid metal %s\n0\n0\n", mname);
574     fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
575     colval(radrgb,GRN), colval(radrgb,BLU),
576     c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
577     c_cmaterial->rs_a);
578     return(mname);
579     }
580    
581    
582     cvtcolor(radrgb, ciec, intensity) /* convert a CIE XYZ color to RGB */
583     COLOR radrgb;
584     register C_COLOR *ciec;
585     double intensity;
586     {
587     static COLOR ciexyz;
588    
589     c_ccvt(ciec, C_CSXY); /* get xy representation */
590     ciexyz[1] = intensity;
591     ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
592     ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
593     cie_rgb(radrgb, ciexyz);
594     }
595    
596    
597     char *
598     object() /* return current object name */
599     {
600     static char objbuf[64];
601     register int i;
602     register char *cp;
603     int len;
604     /* tracked by obj_handler */
605     i = obj_nnames - sizeof(objbuf)/16;
606     if (i < 0)
607     i = 0;
608     for (cp = objbuf; i < obj_nnames &&
609     cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
610     i++, *cp++ = '.') {
611     strcpy(cp, obj_name[i]);
612     cp += len;
613     }
614     *cp = '\0';
615     return(objbuf);
616     }
617    
618    
619     char *
620     addarg(op, arg) /* add argument and advance pointer */
621     register char *op, *arg;
622     {
623     *op = ' ';
624     while (*++op = *arg++)
625     ;
626     return(op);
627     }