/* Copyright (c) 1994 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Context handlers */ #include #include #include #include "parser.h" #include "lookup.h" /* default context values */ static C_COLOR c_dfcolor = C_DEFCOLOR; static C_MATERIAL c_dfmaterial = C_DEFMATERIAL; static C_VERTEX c_dfvertex = C_DEFVERTEX; /* the unnamed contexts */ static C_COLOR c_uncolor = C_DEFCOLOR; static C_MATERIAL c_unmaterial = C_DEFMATERIAL; static C_VERTEX c_unvertex = C_DEFVERTEX; /* the current contexts */ C_COLOR *c_ccolor = &c_uncolor; C_MATERIAL *c_cmaterial = &c_unmaterial; C_VERTEX *c_cvertex = &c_unvertex; static LUTAB clr_tab = LU_SINIT(free,free); /* color lookup table */ static LUTAB mat_tab = LU_SINIT(free,free); /* material lookup table */ static LUTAB vtx_tab = LU_SINIT(free,free); /* vertex lookup table */ /* CIE 1931 Standard Observer */ static C_COLOR cie_xf = C_CIEX; static C_COLOR cie_yf = C_CIEY; static C_COLOR cie_zf = C_CIEZ; static int setspectrum(); static void mixcolors(); int c_hcolor(ac, av) /* handle color entity */ int ac; register char **av; { double w, wsum; register int i; register LUENT *lp; switch (mg_entity(av[0])) { case MG_E_COLOR: /* get/set color context */ if (ac > 4) return(MG_EARGC); if (ac == 1) { /* set unnamed color context */ c_uncolor = c_dfcolor; c_ccolor = &c_uncolor; return(MG_OK); } lp = lu_find(&clr_tab, av[1]); /* lookup context */ if (lp == NULL) return(MG_EMEM); c_ccolor = (C_COLOR *)lp->data; if (ac == 2) { /* reestablish previous context */ if (c_ccolor == NULL) return(MG_EUNDEF); return(MG_OK); } if (av[2][0] != '=' || av[2][1]) return(MG_ETYPE); if (c_ccolor == NULL) { /* create new color context */ lp->key = (char *)malloc(strlen(av[1])+1); if (lp->key == NULL) return(MG_EMEM); strcpy(lp->key, av[1]); lp->data = (char *)malloc(sizeof(C_COLOR)); if (lp->data == NULL) return(MG_EMEM); c_ccolor = (C_COLOR *)lp->data; c_ccolor->clock = 0; } if (ac == 3) { /* use default template */ i = c_ccolor->clock; *c_ccolor = c_dfcolor; c_ccolor->name = av[1]; c_ccolor->clock = i + 1; return(MG_OK); } lp = lu_find(&clr_tab, av[3]); /* lookup template */ if (lp == NULL) return(MG_EMEM); if (lp->data == NULL) return(MG_EUNDEF); i = c_ccolor->clock; *c_ccolor = *(C_COLOR *)lp->data; c_ccolor->name = av[1]; c_ccolor->clock = i + 1; return(MG_OK); case MG_E_CXY: /* assign CIE XY value */ if (ac != 3) return(MG_EARGC); if (!isflt(av[1]) || !isflt(av[2])) return(MG_ETYPE); c_ccolor->cx = atof(av[1]); c_ccolor->cy = atof(av[2]); c_ccolor->flags = C_CDXY|C_CSXY; if (c_ccolor->cx < 0. | c_ccolor->cy < 0. | c_ccolor->cx + c_ccolor->cy > 1.) return(MG_EILL); c_ccolor->clock++; return(MG_OK); case MG_E_CSPEC: /* assign spectral values */ if (ac < 5) return(MG_EARGC); if (!isint(av[1]) || !isint(av[2])) return(MG_ETYPE); return(setspectrum(c_ccolor, atoi(av[1]), atoi(av[2]), ac-3, av+3)); case MG_E_CMIX: /* mix colors */ if (ac < 5 || (ac-1)%2) return(MG_EARGC); if (!isflt(av[1])) return(MG_ETYPE); wsum = atof(av[1]); if (wsum < 0.) return(MG_EILL); if ((lp = lu_find(&clr_tab, av[2])) == NULL) return(MG_EMEM); if (lp->data == NULL) return(MG_EUNDEF); *c_ccolor = *(C_COLOR *)lp->data; for (i = 3; i < ac; i += 2) { if (!isflt(av[i])) return(MG_ETYPE); w = atof(av[i]); if (w < 0.) return(MG_EILL); if ((lp = lu_find(&clr_tab, av[i+1])) == NULL) return(MG_EMEM); if (lp->data == NULL) return(MG_EUNDEF); mixcolors(c_ccolor, wsum, c_ccolor, w, (C_COLOR *)lp->data); wsum += w; } return(MG_OK); } return(MG_EUNK); } int c_hmaterial(ac, av) /* handle material entity */ int ac; register char **av; { int i; register LUENT *lp; switch (mg_entity(av[0])) { case MG_E_MATERIAL: /* get/set material context */ if (ac > 4) return(MG_EARGC); if (ac == 1) { /* set unnamed material context */ c_unmaterial = c_dfmaterial; c_cmaterial = &c_unmaterial; return(MG_OK); } lp = lu_find(&mat_tab, av[1]); /* lookup context */ if (lp == NULL) return(MG_EMEM); c_cmaterial = (C_MATERIAL *)lp->data; if (ac == 2) { /* reestablish previous context */ if (c_cmaterial == NULL) return(MG_EUNDEF); return(MG_OK); } if (av[2][0] != '=' || av[2][1]) return(MG_ETYPE); if (c_cmaterial == NULL) { /* create new material */ lp->key = (char *)malloc(strlen(av[1])+1); if (lp->key == NULL) return(MG_EMEM); strcpy(lp->key, av[1]); lp->data = (char *)malloc(sizeof(C_MATERIAL)); if (lp->data == NULL) return(MG_EMEM); c_cmaterial = (C_MATERIAL *)lp->data; c_cmaterial->clock = 0; } if (ac == 3) { /* use default template */ i = c_cmaterial->clock; *c_cmaterial = c_dfmaterial; c_cmaterial->name = av[1]; c_cmaterial->clock = i + 1; return(MG_OK); } lp = lu_find(&mat_tab, av[3]); /* lookup template */ if (lp == NULL) return(MG_EMEM); if (lp->data == NULL) return(MG_EUNDEF); i = c_cmaterial->clock; *c_cmaterial = *(C_MATERIAL *)lp->data; c_cmaterial->name = av[1]; c_cmaterial->clock = i + 1; return(MG_OK); case MG_E_RD: /* set diffuse reflectance */ if (ac != 2) return(MG_EARGC); if (!isflt(av[1])) return(MG_ETYPE); c_cmaterial->rd = atof(av[1]); if (c_cmaterial->rd < 0. | c_cmaterial->rd > 1.) return(MG_EILL); c_cmaterial->rd_c = *c_ccolor; c_cmaterial->clock++; return(MG_OK); case MG_E_ED: /* set diffuse emittance */ if (ac != 2) return(MG_EARGC); if (!isflt(av[1])) return(MG_ETYPE); c_cmaterial->ed = atof(av[1]); if (c_cmaterial->ed < 0.) return(MG_EILL); c_cmaterial->ed_c = *c_ccolor; c_cmaterial->clock++; return(MG_OK); case MG_E_TD: /* set diffuse transmittance */ if (ac != 2) return(MG_EARGC); if (!isflt(av[1])) return(MG_ETYPE); c_cmaterial->td = atof(av[1]); if (c_cmaterial->td < 0. | c_cmaterial->td > 1.) return(MG_EILL); c_cmaterial->td_c = *c_ccolor; c_cmaterial->clock++; return(MG_OK); case MG_E_RS: /* set specular reflectance */ if (ac != 3) return(MG_EARGC); if (!isflt(av[1]) || !isflt(av[2])) return(MG_ETYPE); c_cmaterial->rs = atof(av[1]); c_cmaterial->rs_a = atof(av[2]); if (c_cmaterial->rs < 0. | c_cmaterial->rs > 1. | c_cmaterial->rs_a < 0.) return(MG_EILL); c_cmaterial->rs_c = *c_ccolor; c_cmaterial->clock++; return(MG_OK); case MG_E_TS: /* set specular transmittance */ if (ac != 3) return(MG_EARGC); if (!isflt(av[1]) || !isflt(av[2])) return(MG_ETYPE); c_cmaterial->ts = atof(av[1]); c_cmaterial->ts_a = atof(av[2]); if (c_cmaterial->ts < 0. | c_cmaterial->ts > 1. | c_cmaterial->ts_a < 0.) return(MG_EILL); c_cmaterial->ts_c = *c_ccolor; c_cmaterial->clock++; return(MG_OK); } return(MG_EUNK); } int c_hvertex(ac, av) /* handle a vertex entity */ int ac; register char **av; { int i; register LUENT *lp; switch (mg_entity(av[0])) { case MG_E_VERTEX: /* get/set vertex context */ if (ac > 4) return(MG_EARGC); if (ac == 1) { /* set unnamed vertex context */ c_unvertex = c_dfvertex; c_cvertex = &c_unvertex; return(MG_OK); } lp = lu_find(&vtx_tab, av[1]); /* lookup context */ if (lp == NULL) return(MG_EMEM); c_cvertex = (C_VERTEX *)lp->data; if (ac == 2) { /* reestablish previous context */ if (c_cvertex == NULL) return(MG_EUNDEF); return(MG_OK); } if (av[2][0] != '=' || av[2][1]) return(MG_ETYPE); if (c_cvertex == NULL) { /* create new vertex context */ lp->key = (char *)malloc(strlen(av[1])+1); if (lp->key == NULL) return(MG_EMEM); strcpy(lp->key, av[1]); lp->data = (char *)malloc(sizeof(C_VERTEX)); if (lp->data == NULL) return(MG_EMEM); c_cvertex = (C_VERTEX *)lp->data; } if (ac == 3) { /* use default template */ i = c_cvertex->clock; *c_cvertex = c_dfvertex; c_cvertex->name = av[1]; c_cvertex->clock = i + 1; return(MG_OK); } lp = lu_find(&vtx_tab, av[3]); /* lookup template */ if (lp == NULL) return(MG_EMEM); if (lp->data == NULL) return(MG_EUNDEF); i = c_cvertex->clock; *c_cvertex = *(C_VERTEX *)lp->data; c_cvertex->name = av[1]; c_cvertex->clock = i + 1; return(MG_OK); case MG_E_POINT: /* set point */ if (ac != 4) return(MG_EARGC); if (!isflt(av[1]) || !isflt(av[2]) || !isflt(av[3])) return(MG_ETYPE); c_cvertex->p[0] = atof(av[1]); c_cvertex->p[1] = atof(av[2]); c_cvertex->p[2] = atof(av[3]); c_cvertex->clock++; return(MG_OK); case MG_E_NORMAL: /* set normal */ if (ac != 4) return(MG_EARGC); if (!isflt(av[1]) || !isflt(av[2]) || !isflt(av[3])) return(MG_ETYPE); c_cvertex->n[0] = atof(av[1]); c_cvertex->n[1] = atof(av[2]); c_cvertex->n[2] = atof(av[3]); (void)normalize(c_cvertex->n); c_cvertex->clock++; return(MG_OK); } return(MG_EUNK); } void c_clearall() /* empty context tables */ { c_uncolor = c_dfcolor; c_ccolor = &c_uncolor; lu_done(&clr_tab); c_unmaterial = c_dfmaterial; c_cmaterial = &c_unmaterial; lu_done(&mat_tab); c_unvertex = c_dfvertex; c_cvertex = &c_unvertex; lu_done(&vtx_tab); } C_VERTEX * c_getvert(name) /* get a named vertex */ char *name; { register LUENT *lp; if ((lp = lu_find(&vtx_tab, name)) == NULL) return(NULL); return((C_VERTEX *)lp->data); } C_COLOR * c_getcolor(name) /* get a named color */ char *name; { register LUENT *lp; if ((lp = lu_find(&clr_tab, name)) == NULL) return(NULL); return((C_COLOR *)lp->data); } int c_isgrey(clr) /* check if color is grey */ register C_COLOR *clr; { if (!(clr->flags & (C_CSXY|C_CSSPEC))) return(1); /* no settings == grey */ c_ccvt(clr, C_CSXY); return(clr->cx >= .323 && clr->cx <= .343 && clr->cy >= .323 && clr->cy <= .343); } void c_ccvt(clr, fl) /* convert color representations */ register C_COLOR *clr; int fl; { double x, y, z; register int i; if (clr->flags & fl) /* already done */ return; if (!(clr->flags & (C_CSXY|C_CSSPEC))) /* nothing set! */ *clr = c_dfcolor; else if (fl & C_CSXY) { /* cspec -> cxy */ x = y = z = 0.; for (i = 0; i < C_CNSS; i++) { x += cie_xf.ssamp[i] * clr->ssamp[i]; y += cie_yf.ssamp[i] * clr->ssamp[i]; z += cie_zf.ssamp[i] * clr->ssamp[i]; } z += x + y; clr->cx = x / z; clr->cy = y / z; clr->flags |= C_CSXY; } else { /* cxy -> cspec */ z = (cie_xf.ssum + cie_yf.ssum + cie_zf.ssum) / 3.; x = clr->cx * z / cie_xf.ssum; y = clr->cy * z / cie_yf.ssum; z = (1. - clr->cx - clr->cy) * z / cie_zf.ssum; clr->ssum = 0; for (i = 0; i < C_CNSS; i++) clr->ssum += clr->ssamp[i] = x * cie_xf.ssamp[i] + y * cie_yf.ssamp[i] + z * cie_zf.ssamp[i] ; clr->flags |= C_CSSPEC; } } static int setspectrum(clr, wlmin, wlmax, ac, av) /* convert a spectrum */ register C_COLOR *clr; int wlmin, wlmax; int ac; char **av; { double scale; float *va; register int i; int wl, pos; double wl0, wlstep; if (wlmin < C_CMINWL || wlmin >= wlmax || wlmax > C_CMAXWL) return(MG_EILL); if ((va = (float *)malloc(ac*sizeof(float))) == NULL) return(MG_EMEM); scale = 0.; /* get values and maximum */ for (i = 0; i < ac; i++) { if (!isflt(av[i])) return(MG_ETYPE); va[i] = atof(av[i]); if (va[i] < 0.) return(MG_EILL); if (va[i] > scale) scale = va[i]; } if (scale == 0.) return(MG_EILL); scale = C_CMAXV / scale; clr->ssum = 0; /* convert to our spacing */ wl0 = wlmin; wlstep = (double)(wlmax - wlmin)/(ac-1); pos = 0; for (i = 0, wl = C_CMINWL; i < C_CNSS; i++, wl += C_CWLI) if (wl < wlmin || wl > wlmax) clr->ssamp[i] = 0; else { while (wl0 + wlstep < wl+FTINY) { wl0 += wlstep; pos++; } if (wl+FTINY >= wl0 && wl-FTINY <= wl0) clr->ssamp[i] = scale*va[pos]; else /* interpolate if necessary */ clr->ssamp[i] = scale / wlstep * ( va[pos]*(wl0+wlstep - wl) + va[pos+1]*(wl - wl0) ); clr->ssum += clr->ssamp[i]; } clr->flags = C_CDSPEC|C_CSSPEC; clr->clock++; free((MEM_PTR)va); return(MG_OK); } static void mixcolors(cres, w1, c1, w2, c2) /* mix two colors according to weights given */ register C_COLOR *cres, *c1, *c2; double w1, w2; { double scale; float cmix[C_CNSS]; register int i; if ((c1->flags|c2->flags) & C_CDSPEC) { /* spectral mixing */ c_ccvt(c1, C_CSSPEC); c_ccvt(c2, C_CSSPEC); w1 /= (double)c1->ssum; w2 /= (double)c2->ssum; scale = 0.; for (i = 0; i < C_CNSS; i++) { cmix[i] = w1*c1->ssamp[i] + w2*c2->ssamp[i]; if (cmix[i] > scale) scale = cmix[i]; } scale = C_CMAXV / scale; cres->ssum = 0; for (i = 0; i < C_CNSS; i++) cres->ssum += cres->ssamp[i] = scale*cmix[i] + .5; cres->flags = C_CDSPEC|C_CSSPEC; } else { /* CIE xy mixing */ c_ccvt(c1, C_CSXY); c_ccvt(c2, C_CSXY); scale = 1. / (w1/c1->cy + w2/c2->cy); cres->cx = (c1->cx*w1/c1->cy + c2->cx*w2/c2->cy) * scale; cres->cy = (w1 + w2) * scale; cres->flags = C_CDXY|C_CSXY; } cres->clock++; /* record the change */ }