ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.5
Committed: Fri Jul 1 10:20:19 1994 UTC (29 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +2 -2 lines
Log Message:
changed context names from struct members to extern variables

File Contents

# Content
1 /* Copyright (c) 1994 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Convert MGF (Materials and Geometry Format) to Radiance
9 */
10
11 #include <stdio.h>
12 #include <math.h>
13 #include <string.h>
14 #include "mgflib/parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17
18 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
19
20 double glowdist = FHUGE; /* glow test distance */
21
22 double emult = 1.; /* emmitter multiplier */
23
24 int r_comment(), r_cone(), r_cyl(), r_face(), r_ies(), r_ring(), r_sph();
25 char *material(), *object(), *addarg();
26
27
28 main(argc, argv) /* convert files to stdout */
29 int argc;
30 char *argv[];
31 {
32 int i, rv;
33 /* initialize dispatch table */
34 mg_ehand[MG_E_COMMENT] = r_comment;
35 mg_ehand[MG_E_COLOR] = c_hcolor;
36 mg_ehand[MG_E_CONE] = r_cone;
37 mg_ehand[MG_E_CMIX] = c_hcolor;
38 mg_ehand[MG_E_CSPEC] = c_hcolor;
39 mg_ehand[MG_E_CXY] = c_hcolor;
40 mg_ehand[MG_E_CYL] = r_cyl;
41 mg_ehand[MG_E_ED] = c_hmaterial;
42 mg_ehand[MG_E_FACE] = r_face;
43 mg_ehand[MG_E_IES] = r_ies;
44 mg_ehand[MG_E_MATERIAL] = c_hmaterial;
45 mg_ehand[MG_E_NORMAL] = c_hvertex;
46 mg_ehand[MG_E_OBJECT] = obj_handler;
47 mg_ehand[MG_E_POINT] = c_hvertex;
48 mg_ehand[MG_E_RD] = c_hmaterial;
49 mg_ehand[MG_E_RING] = r_ring;
50 mg_ehand[MG_E_RS] = c_hmaterial;
51 mg_ehand[MG_E_SPH] = r_sph;
52 mg_ehand[MG_E_TD] = c_hmaterial;
53 mg_ehand[MG_E_TS] = c_hmaterial;
54 mg_ehand[MG_E_VERTEX] = c_hvertex;
55 mg_ehand[MG_E_XF] = xf_handler;
56 mg_init(); /* initialize the parser */
57 /* get options & print header */
58 printf("## %s", argv[0]);
59 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
60 printf(" %s", argv[i]);
61 switch (argv[i][1]) {
62 case 'g': /* glow distance (meters) */
63 if (argv[i][2] || badarg(argc-i, argv+i, "f"))
64 goto userr;
65 glowdist = atof(argv[++i]);
66 printf(" %s", argv[i]);
67 break;
68 case 'e': /* emitter multiplier */
69 if (argv[i][2] || badarg(argc-i, argv+i, "f"))
70 goto userr;
71 emult = atof(argv[++i]);
72 printf(" %s", argv[i]);
73 break;
74 default:
75 goto userr;
76 }
77 }
78 putchar('\n');
79 if (i == argc) { /* convert stdin */
80 if ((rv = mg_load(NULL)) != MG_OK)
81 exit(1);
82 } else /* convert each file */
83 for ( ; i < argc; i++) {
84 printf("## %s %s ##############################\n",
85 argv[0], argv[i]);
86 if ((rv = mg_load(argv[i])) != MG_OK)
87 exit(1);
88 }
89 exit(0);
90 userr:
91 fprintf(stderr, "Usage: %s [-g dist][-m mult] [file.mgf] ..\n",
92 argv[0]);
93 exit(1);
94 }
95
96
97 int
98 r_comment(ac, av) /* repeat a comment verbatim */
99 register int ac;
100 register char **av;
101 {
102 fputs("\n#", stdout); /* use Radiance comment character */
103 while (--ac) {
104 putchar(' ');
105 fputs(*++av, stdout);
106 }
107 putchar('\n');
108 return(MG_OK);
109 }
110
111
112 int
113 r_cone(ac, av) /* put out a cone */
114 int ac;
115 char **av;
116 {
117 static int ncones;
118 char *mat;
119 double r1, r2;
120 C_VERTEX *cv1, *cv2;
121 FVECT p1, p2;
122 int inv;
123
124 if (ac != 5)
125 return(MG_EARGC);
126 if (!isflt(av[2]) || !isflt(av[4]))
127 return(MG_ETYPE);
128 if ((cv1 = c_getvert(av[1])) == NULL ||
129 (cv2 = c_getvert(av[3])) == NULL)
130 return(MG_EUNDEF);
131 xf_xfmpoint(p1, cv1->p);
132 xf_xfmpoint(p2, cv2->p);
133 r1 = xf_scale(atof(av[2]));
134 r2 = xf_scale(atof(av[4]));
135 inv = r1 < 0.;
136 if (r1 == 0.) {
137 if (r2 == 0.)
138 return(MG_EILL);
139 inv = r2 < 0.;
140 } else if (r2 != 0. && inv ^ r2 < 0.)
141 return(MG_EILL);
142 if (inv) {
143 r1 = -r1;
144 r2 = -r2;
145 }
146 if ((mat = material()) == NULL)
147 return(MG_EBADMAT);
148 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
149 object(), ++ncones);
150 printf("0\n0\n8\n");
151 putv(p1);
152 putv(p2);
153 printf("%18.12g %18.12g\n", r1, r2);
154 return(MG_OK);
155 }
156
157
158 int
159 r_cyl(ac, av) /* put out a cylinder */
160 int ac;
161 char **av;
162 {
163 static int ncyls;
164 char *mat;
165 double rad;
166 C_VERTEX *cv1, *cv2;
167 FVECT p1, p2;
168 int inv;
169
170 if (ac != 4)
171 return(MG_EARGC);
172 if (!isflt(av[2]))
173 return(MG_ETYPE);
174 if ((cv1 = c_getvert(av[1])) == NULL ||
175 (cv2 = c_getvert(av[3])) == NULL)
176 return(MG_EUNDEF);
177 xf_xfmpoint(p1, cv1->p);
178 xf_xfmpoint(p2, cv2->p);
179 rad = xf_scale(atof(av[2]));
180 if ((inv = rad < 0.))
181 rad = -rad;
182 if ((mat = material()) == NULL)
183 return(MG_EBADMAT);
184 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
185 object(), ++ncyls);
186 printf("0\n0\n7\n");
187 putv(p1);
188 putv(p2);
189 printf("%18.12g\n", rad);
190 return(MG_OK);
191 }
192
193
194 int
195 r_sph(ac, av) /* put out a sphere */
196 int ac;
197 char **av;
198 {
199 static int nsphs;
200 char *mat;
201 double rad;
202 C_VERTEX *cv;
203 FVECT cent;
204 int inv;
205
206 if (ac != 3)
207 return(MG_EARGC);
208 if (!isflt(av[2]))
209 return(MG_ETYPE);
210 if ((cv = c_getvert(av[1])) == NULL)
211 return(MG_EUNDEF);
212 xf_xfmpoint(cent, cv->p);
213 rad = xf_scale(atof(av[2]));
214 if ((inv = rad < 0.))
215 rad = -rad;
216 if ((mat = material()) == NULL)
217 return(MG_EBADMAT);
218 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
219 object(), ++nsphs);
220 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
221 cent[0], cent[1], cent[2], rad);
222 return(MG_OK);
223 }
224
225
226 int
227 r_ring(ac, av) /* put out a ring */
228 int ac;
229 char **av;
230 {
231 static int nrings;
232 char *mat;
233 double r1, r2;
234 C_VERTEX *cv;
235 FVECT cent, norm;
236
237 if (ac != 4)
238 return(MG_EARGC);
239 if (!isflt(av[2]) || !isflt(av[3]))
240 return(MG_ETYPE);
241 if ((cv = c_getvert(av[1])) == NULL)
242 return(MG_EUNDEF);
243 if (is0vect(cv->n))
244 return(MG_EILL);
245 xf_xfmpoint(cent, cv->p);
246 xf_rotvect(norm, cv->n);
247 r1 = xf_scale(atof(av[2]));
248 r2 = xf_scale(atof(av[3]));
249 if (r1 < 0. | r2 <= r1)
250 return(MG_EILL);
251 if ((mat = material()) == NULL)
252 return(MG_EBADMAT);
253 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
254 printf("0\n0\n8\n");
255 putv(cent);
256 putv(norm);
257 printf("%18.12g %18.12g\n", r1, r2);
258 return(MG_OK);
259 }
260
261
262 int
263 r_face(ac, av) /* convert a face */
264 int ac;
265 char **av;
266 {
267 static int nfaces;
268 char *mat;
269 register int i;
270 register C_VERTEX *cv;
271 FVECT v;
272 int rv;
273
274 if (ac < 4)
275 return(MG_EARGC);
276 if ((mat = material()) == NULL)
277 return(MG_EBADMAT);
278 if (ac <= 5) { /* check for surface normals */
279 for (i = 1; i < ac; i++) {
280 if ((cv = c_getvert(av[i])) == NULL)
281 return(MG_EUNDEF);
282 if (is0vect(cv->n))
283 break;
284 }
285 if (i == ac) { /* break into triangles */
286 do_tri(mat, av[1], av[2], av[3]);
287 if (ac == 5)
288 do_tri(mat, av[3], av[4], av[1]);
289 return(MG_OK);
290 }
291 }
292 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
293 printf("0\n0\n%d\n", 3*(ac-1));
294 for (i = 1; i < ac; i++) {
295 if ((cv = c_getvert(av[i])) == NULL)
296 return(MG_EUNDEF);
297 xf_xfmpoint(v, cv->p);
298 putv(v);
299 }
300 return(MG_OK);
301 }
302
303
304 r_ies(ac, av) /* convert an IES luminaire file */
305 int ac;
306 char **av;
307 {
308 int xa0 = 2;
309 char combuf[72];
310 char fname[48];
311 char *oname;
312 register char *op;
313 register int i;
314
315 if (ac < 2)
316 return(MG_EARGC);
317 (void)strcpy(combuf, "ies2rad");
318 op = combuf + 7;
319 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
320 if (!isflt(av[xa0+1]))
321 return(MG_ETYPE);
322 op = addarg(addarg(op, "-m"), av[xa0+1]);
323 xa0 += 2;
324 }
325 if (access(av[1], 0) == -1)
326 return(MG_ENOFILE);
327 *op++ = ' '; /* IES filename goes last */
328 (void)strcpy(op, av[1]);
329 system(combuf); /* run ies2rad */
330 /* now let's find the output file */
331 if ((op = strrchr(av[1], '/')) == NULL)
332 op = av[1];
333 (void)strcpy(fname, op);
334 if ((op = strrchr(fname, '.')) == NULL)
335 op = fname + strlen(fname);
336 (void)strcpy(op, ".rad");
337 if (access(fname, 0) == -1)
338 return(MG_EINCL);
339 /* put out xform command */
340 printf("\n!xform");
341 oname = object();
342 if (*oname) {
343 printf(" -n ");
344 for (op = oname; op[1]; op++) /* remove trailing separator */
345 putchar(*op);
346 }
347 for (i = xa0; i < ac; i++)
348 printf(" %s", av[i]);
349 if (ac > xa0 && xf_argc > 0)
350 printf(" -i 1");
351 for (i = 0; i < xf_argc; i++)
352 printf(" %s", xf_argv[i]);
353 printf(" %s\n", fname);
354 return(MG_OK);
355 }
356
357
358 do_tri(mat, vn1, vn2, vn3) /* put out smoothed triangle */
359 char *mat, *vn1, *vn2, *vn3;
360 {
361 static int ntris;
362 BARYCCM bvecs;
363 FLOAT bcoor[3][3];
364 C_VERTEX *cv1, *cv2, *cv3;
365 FVECT v1, v2, v3;
366 FVECT n1, n2, n3;
367 register int i;
368 /* the following is repeat code, so assume it's OK */
369 cv1 = c_getvert(vn1);
370 cv2 = c_getvert(vn2);
371 cv3 = c_getvert(vn3);
372 xf_xfmpoint(v1, cv1->p);
373 xf_xfmpoint(v2, cv2->p);
374 xf_xfmpoint(v3, cv3->p);
375 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
376 return; /* degenerate triangle! */
377 printf("\n%s texfunc T-nor\n", mat);
378 printf("4 dx dy dz %s\n0\n", TCALNAME);
379 xf_rotvect(n1, cv1->n);
380 xf_rotvect(n2, cv2->n);
381 xf_rotvect(n3, cv3->n);
382 for (i = 0; i < 3; i++) {
383 bcoor[i][0] = n1[i];
384 bcoor[i][1] = n2[i];
385 bcoor[i][2] = n3[i];
386 }
387 put_baryc(&bvecs, bcoor, 3);
388 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
389 printf("0\n0\n9\n");
390 putv(v1);
391 putv(v2);
392 putv(v3);
393 }
394
395
396 char *
397 material() /* get (and print) current material */
398 {
399 char *mname = "mat";
400 COLOR radrgb, c2;
401 double d;
402 register int i;
403
404 if (c_cmname != NULL)
405 mname = c_cmname;
406 if (!c_cmaterial->clock)
407 return(mname); /* already current */
408 /* else update output */
409 c_cmaterial->clock = 0;
410 if (c_cmaterial->ed > .1) { /* emitter */
411 cvtcolor(radrgb, &c_cmaterial->ed_c,
412 emult*c_cmaterial->ed/WHTEFFICACY);
413 if (glowdist < FHUGE) { /* do a glow */
414 printf("\nvoid glow %s\n0\n0\n", mname);
415 printf("4 %f %f %f %f\n", colval(radrgb,RED),
416 colval(radrgb,GRN),
417 colval(radrgb,BLU), glowdist);
418 } else {
419 printf("\nvoid light %s\n0\n0\n", mname);
420 printf("3 %f %f %f\n", colval(radrgb,RED),
421 colval(radrgb,GRN),
422 colval(radrgb,BLU));
423 }
424 return(mname);
425 }
426 d = c_cmaterial->rd + c_cmaterial->td +
427 c_cmaterial->rs + c_cmaterial->ts;
428 if (d <= 0. | d >= 1.)
429 return(NULL);
430 /* check for trans */
431 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
432 double ts, a5, a6;
433
434 ts = sqrt(c_cmaterial->ts); /* because we use 2 sides */
435 /* average colors */
436 d = c_cmaterial->rd + c_cmaterial->td + ts;
437 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
438 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
439 addcolor(radrgb, c2);
440 cvtcolor(c2, &c_cmaterial->ts_c, ts/d);
441 addcolor(radrgb, c2);
442 if (c_cmaterial->rs + ts > .0001)
443 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
444 ts*.5*c_cmaterial->ts_a) /
445 (c_cmaterial->rs + ts);
446 a6 = (c_cmaterial->td + ts) /
447 (c_cmaterial->rd + c_cmaterial->td + ts);
448 if (a6 < .999) {
449 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
450 scalecolor(radrgb, d);
451 }
452 printf("\nvoid trans %s\n0\n0\n", mname);
453 printf("7 %f %f %f\n", colval(radrgb,RED),
454 colval(radrgb,GRN), colval(radrgb,BLU));
455 printf("\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
456 ts/(ts + c_cmaterial->td));
457 return(mname);
458 }
459 /* check for plastic */
460 if (c_cmaterial->rs < .01 || c_isgrey(&c_cmaterial->rs_c)) {
461 if (c_cmaterial->rs > .999)
462 cvtcolor(radrgb, &c_cmaterial->rd_c, 1.);
463 else
464 cvtcolor(radrgb, &c_cmaterial->rd_c,
465 c_cmaterial->rd/(1.-c_cmaterial->rs));
466 printf("\nvoid plastic %s\n0\n0\n", mname);
467 printf("5 %f %f %f %f %f\n", colval(radrgb,RED),
468 colval(radrgb,GRN), colval(radrgb,BLU),
469 c_cmaterial->rs, c_cmaterial->rs_a);
470 return(mname);
471 }
472 /* else it's metal */
473 d = c_cmaterial->rd + c_cmaterial->rs; /* average colors */
474 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
475 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs/d);
476 addcolor(radrgb, c2);
477 if (c_cmaterial->rs < .999) {
478 d = c_cmaterial->rd/(1. - c_cmaterial->rs);
479 scalecolor(radrgb, d);
480 }
481 printf("\nvoid metal %s\n0\n0\n", mname);
482 printf("5 %f %f %f %f %f\n", colval(radrgb,RED),
483 colval(radrgb,GRN), colval(radrgb,BLU),
484 c_cmaterial->rs, c_cmaterial->rs_a);
485 return(mname);
486 }
487
488
489 cvtcolor(radrgb, ciec, intensity) /* convert a CIE color to Radiance */
490 COLOR radrgb;
491 register C_COLOR *ciec;
492 double intensity;
493 {
494 static COLOR ciexyz;
495
496 c_ccvt(ciec, C_CSXY); /* get xy representation */
497 ciexyz[1] = intensity;
498 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
499 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
500 cie_rgb(radrgb, ciexyz);
501 }
502
503
504 char *
505 object() /* return current object name */
506 {
507 static char objbuf[64];
508 register int i;
509 register char *cp;
510 int len;
511
512 i = obj_nnames - sizeof(objbuf)/16;
513 if (i < 0)
514 i = 0;
515 for (cp = objbuf; i < obj_nnames &&
516 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
517 i++, *cp++ = '.') {
518 strcpy(cp, obj_name[i]);
519 cp += len;
520 }
521 *cp = '\0';
522 return(objbuf);
523 }
524
525
526 char *
527 addarg(op, arg) /* add argument and advance pointer */
528 register char *op, *arg;
529 {
530 *op = ' ';
531 while (*++op = *arg++)
532 ;
533 return(op);
534 }