ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.35
Committed: Wed Jan 17 00:43:45 2024 UTC (3 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.34: +9 -4 lines
Log Message:
feat(mgf2rad): Made spectra conversion optional with -s command-line flag

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mgf2rad.c,v 2.34 2024/01/05 16:33:36 greg Exp $";
3 #endif
4 /*
5 * Convert MGF (Materials and Geometry Format) to Radiance
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <math.h>
11 #include <string.h>
12
13 #include "platform.h"
14 #include "mgf_parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17 #include "lookup.h"
18
19 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
20
21 #define invert (xf_context != NULL && xf_context->rev)
22
23 double glowdist = FHUGE; /* glow test distance */
24
25 double emult = 1.; /* emitter multiplier */
26
27 FILE *matfp; /* material output file */
28
29 int dospectra = 0; /* output spectral colors? */
30
31
32 extern int r_comment(int ac, char **av);
33 extern int r_color(int ac, char **av);
34 extern int r_cone(int ac, char **av);
35 extern int r_cyl(int ac, char **av);
36 extern int r_sph(int ac, char **av);
37 extern int r_ring(int ac, char **av);
38 extern int r_face(int ac, char **av);
39 extern int r_ies(int ac, char **av);
40 extern void putsided(char *mname);
41 extern char * material(void);
42 extern char * object(void);
43 extern char * addarg(char *op, char *arg);
44 extern void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
45 extern void cvtcolor(COLOR radrgb, C_COLOR *ciec, double intensity);
46 extern char * specolor(COLOR radrgb, C_COLOR *ciec, double intensity);
47
48
49 int
50 main(
51 int argc,
52 char *argv[]
53 )
54 {
55 int i;
56
57 matfp = stdout;
58 /* print out parser version */
59 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
60 /* initialize dispatch table */
61 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
62 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
63 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
64 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
65 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
66 mg_ehand[MG_E_CSPEC] = r_color; /* we get spectra */
67 mg_ehand[MG_E_CCT] = r_color; /* we get color temp's */
68 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
69 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
70 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
71 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
72 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
73 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
74 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
75 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
76 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
77 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
78 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
79 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
80 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
81 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
82 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
83 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
84 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
85 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
86 mg_init(); /* initialize the parser */
87 /* get our options & print header */
88 printf("## %s", argv[0]);
89 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
90 printf(" %s", argv[i]);
91 switch (argv[i][1]) {
92 case 'g': /* glow distance (meters) */
93 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
94 goto userr;
95 glowdist = atof(argv[++i]);
96 printf(" %s", argv[i]);
97 break;
98 case 'e': /* emitter multiplier */
99 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
100 goto userr;
101 emult = atof(argv[++i]);
102 printf(" %s", argv[i]);
103 break;
104 case 'm': /* materials file */
105 matfp = fopen(argv[++i], "a");
106 if (matfp == NULL) {
107 fprintf(stderr, "%s: cannot append\n", argv[i]);
108 exit(1);
109 }
110 printf(" %s", argv[i]);
111 break;
112 case 's': /* spectral color output? */
113 dospectra = !dospectra;
114 break;
115 default:
116 goto userr;
117 }
118 }
119 putchar('\n');
120 if (i == argc) { /* convert stdin */
121 if (mg_load(NULL) != MG_OK)
122 exit(1);
123 if (mg_nunknown)
124 printf("## %s: %u unknown entities\n",
125 argv[0], mg_nunknown);
126 } else /* convert each file */
127 for ( ; i < argc; i++) {
128 printf("## %s %s ##############################\n",
129 argv[0], argv[i]);
130 if (mg_load(argv[i]) != MG_OK)
131 exit(1);
132 if (mg_nunknown) {
133 printf("## %s %s: %u unknown entities\n",
134 argv[0], argv[i], mg_nunknown);
135 mg_nunknown = 0;
136 }
137 }
138 exit(0);
139 userr:
140 fprintf(stderr, "Usage: %s [-s][-g dist][-e mult][-m matf] [file.mgf] ..\n",
141 argv[0]);
142 exit(1);
143 }
144
145
146 int
147 r_comment( /* repeat a comment verbatim */
148 int ac,
149 char **av
150 )
151 {
152 putchar('#'); /* use Radiance comment character */
153 while (--ac) { /* pass through verbatim */
154 putchar(' ');
155 fputs(*++av, stdout);
156 }
157 putchar('\n');
158 return(MG_OK);
159 }
160
161
162 int
163 r_color( /* call color handler & remember name */
164 int ac,
165 char **av
166 )
167 {
168 int rval = c_hcolor(ac, av);
169
170 if (rval == MG_OK)
171 c_ccolor->client_data = c_ccname;
172
173 return(rval);
174 }
175
176
177 int
178 r_cone( /* put out a cone */
179 int ac,
180 char **av
181 )
182 {
183 static int ncones;
184 char *mat;
185 double r1, r2;
186 C_VERTEX *cv1, *cv2;
187 FVECT p1, p2;
188 int inv;
189 /* check argument count and type */
190 if (ac != 5)
191 return(MG_EARGC);
192 if (!isflt(av[2]) || !isflt(av[4]))
193 return(MG_ETYPE);
194 /* get the endpoint vertices */
195 if ((cv1 = c_getvert(av[1])) == NULL ||
196 (cv2 = c_getvert(av[3])) == NULL)
197 return(MG_EUNDEF);
198 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
199 xf_xfmpoint(p2, cv2->p);
200 r1 = xf_scale(atof(av[2])); /* scale radii */
201 r2 = xf_scale(atof(av[4]));
202 inv = r1 < 0.; /* check for inverted cone */
203 if (r1 == 0.) { /* check for illegal radii */
204 if (r2 == 0.)
205 return(MG_EILL);
206 inv = r2 < 0.;
207 } else if (r2 != 0. && inv ^ (r2 < 0.))
208 return(MG_EILL);
209 if (inv) {
210 r1 = -r1;
211 r2 = -r2;
212 }
213 if ((mat = material()) == NULL) /* get material */
214 return(MG_EBADMAT);
215 /* spit the sucker out */
216 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
217 object(), ++ncones);
218 printf("0\n0\n8\n");
219 putv(p1);
220 putv(p2);
221 printf("%18.12g %18.12g\n", r1, r2);
222 return(MG_OK);
223 }
224
225
226 int
227 r_cyl( /* put out a cylinder */
228 int ac,
229 char **av
230 )
231 {
232 static int ncyls;
233 char *mat;
234 double rad;
235 C_VERTEX *cv1, *cv2;
236 FVECT p1, p2;
237 int inv;
238 /* check argument count and type */
239 if (ac != 4)
240 return(MG_EARGC);
241 if (!isflt(av[2]))
242 return(MG_ETYPE);
243 /* get the endpoint vertices */
244 if ((cv1 = c_getvert(av[1])) == NULL ||
245 (cv2 = c_getvert(av[3])) == NULL)
246 return(MG_EUNDEF);
247 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
248 xf_xfmpoint(p2, cv2->p);
249 rad = xf_scale(atof(av[2])); /* scale radius */
250 if ((inv = rad < 0.)) /* check for inverted cylinder */
251 rad = -rad;
252 if ((mat = material()) == NULL) /* get material */
253 return(MG_EBADMAT);
254 /* spit out the primitive */
255 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
256 object(), ++ncyls);
257 printf("0\n0\n7\n");
258 putv(p1);
259 putv(p2);
260 printf("%18.12g\n", rad);
261 return(MG_OK);
262 }
263
264
265 int
266 r_sph( /* put out a sphere */
267 int ac,
268 char **av
269 )
270 {
271 static int nsphs;
272 char *mat;
273 double rad;
274 C_VERTEX *cv;
275 FVECT cent;
276 int inv;
277 /* check argument count and type */
278 if (ac != 3)
279 return(MG_EARGC);
280 if (!isflt(av[2]))
281 return(MG_ETYPE);
282 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
283 return(MG_EUNDEF);
284 xf_xfmpoint(cent, cv->p); /* transform center */
285 rad = xf_scale(atof(av[2])); /* scale radius */
286 if ((inv = rad < 0.)) /* check for inversion */
287 rad = -rad;
288 if ((mat = material()) == NULL) /* get material */
289 return(MG_EBADMAT);
290 /* spit out primitive */
291 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
292 object(), ++nsphs);
293 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
294 cent[0], cent[1], cent[2], rad);
295 return(MG_OK);
296 }
297
298
299 int
300 r_ring( /* put out a ring */
301 int ac,
302 char **av
303 )
304 {
305 static int nrings;
306 char *mat;
307 double r1, r2;
308 C_VERTEX *cv;
309 FVECT cent, norm;
310 /* check argument count and type */
311 if (ac != 4)
312 return(MG_EARGC);
313 if (!isflt(av[2]) || !isflt(av[3]))
314 return(MG_ETYPE);
315 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
316 return(MG_EUNDEF);
317 if (is0vect(cv->n)) /* make sure we have normal */
318 return(MG_EILL);
319 xf_xfmpoint(cent, cv->p); /* transform center */
320 xf_rotvect(norm, cv->n); /* rotate normal */
321 r1 = xf_scale(atof(av[2])); /* scale radii */
322 r2 = xf_scale(atof(av[3]));
323 if ((r1 < 0.) | (r2 <= r1))
324 return(MG_EILL);
325 if ((mat = material()) == NULL) /* get material */
326 return(MG_EBADMAT);
327 /* spit out primitive */
328 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
329 printf("0\n0\n8\n");
330 putv(cent);
331 putv(norm);
332 printf("%18.12g %18.12g\n", r1, r2);
333 return(MG_OK);
334 }
335
336
337 int
338 r_face( /* convert a face */
339 int ac,
340 char **av
341 )
342 {
343 static int nfaces;
344 int myi = invert;
345 char *mat;
346 int i;
347 C_VERTEX *cv;
348 FVECT v;
349
350 /* check argument count and type */
351 if (ac < 4)
352 return(MG_EARGC);
353 if ((mat = material()) == NULL) /* get material */
354 return(MG_EBADMAT);
355 if (ac <= 5) { /* check for smoothing */
356 C_VERTEX *cva[5];
357 for (i = 1; i < ac; i++) {
358 if ((cva[i-1] = c_getvert(av[i])) == NULL)
359 return(MG_EUNDEF);
360 if (is0vect(cva[i-1]->n))
361 break;
362 }
363 if (i < ac)
364 i = ISFLAT;
365 else
366 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
367 cva[0]->n, cva[1]->n, cva[2]->n);
368 if (i == DEGEN)
369 return(MG_OK); /* degenerate (error?) */
370 if (i == RVBENT) {
371 myi = !myi;
372 i = ISBENT;
373 } else if (i == RVFLAT) {
374 myi = !myi;
375 i = ISFLAT;
376 }
377 if (i == ISBENT) { /* smoothed triangles */
378 do_tri(mat, cva[0], cva[1], cva[2], myi);
379 if (ac == 5)
380 do_tri(mat, cva[2], cva[3], cva[0], myi);
381 return(MG_OK);
382 }
383 }
384 /* spit out unsmoothed primitive */
385 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
386 printf("0\n0\n%d\n", 3*(ac-1));
387 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
388 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
389 return(MG_EUNDEF);
390 xf_xfmpoint(v, cv->p);
391 putv(v);
392 }
393 return(MG_OK);
394 }
395
396
397 int
398 r_ies( /* convert an IES luminaire file */
399 int ac,
400 char **av
401 )
402 {
403 int xa0 = 2;
404 char combuf[128];
405 char fname[48];
406 char *oname;
407 char *op;
408 int i;
409 /* check argument count */
410 if (ac < 2)
411 return(MG_EARGC);
412 /* construct output file name */
413 if ((op = strrchr(av[1], '/')) != NULL)
414 op++;
415 else
416 op = av[1];
417 (void)strcpy(fname, op);
418 if ((op = strrchr(fname, '.')) == NULL)
419 op = fname + strlen(fname);
420 (void)strcpy(op, ".rad");
421 /* see if we need to run ies2rad */
422 if (access(fname, 0) == -1) {
423 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
424 op = combuf + 7; /* get -m option (first) */
425 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
426 if (!isflt(av[xa0+1]))
427 return(MG_ETYPE);
428 op = addarg(addarg(op, "-m"), av[xa0+1]);
429 xa0 += 2;
430 }
431 *op++ = ' '; /* build IES filename */
432 i = 0;
433 if (mg_file != NULL &&
434 (oname = strrchr(mg_file->fname,'/')) != NULL) {
435 i = oname - mg_file->fname + 1;
436 (void)strcpy(op, mg_file->fname);
437 }
438 (void)strcpy(op+i, av[1]);
439 if (access(op, 0) == -1) /* check for file existence */
440 return(MG_ENOFILE);
441 system(combuf); /* run ies2rad */
442 if (access(fname, 0) == -1) /* check success */
443 return(MG_EINCL);
444 }
445 printf("\n!xform"); /* put out xform command */
446 oname = object();
447 if (*oname) {
448 printf(" -n ");
449 for (op = oname; op[1]; op++) /* remove trailing separator */
450 putchar(*op);
451 }
452 for (i = xa0; i < ac; i++)
453 printf(" %s", av[i]);
454 if (ac > xa0 && xf_argc > 0)
455 printf(" -i 1");
456 for (i = 0; i < xf_argc; i++)
457 printf(" %s", xf_argv[i]);
458 printf(" %s\n", fname);
459 return(MG_OK);
460 }
461
462
463 void
464 do_tri( /* put out smoothed triangle */
465 char *mat,
466 C_VERTEX *cv1,
467 C_VERTEX *cv2,
468 C_VERTEX *cv3,
469 int iv
470 )
471 {
472 static int ntris;
473 BARYCCM bvecs;
474 RREAL bcoor[3][3];
475 C_VERTEX *cvt;
476 FVECT v1, v2, v3;
477 FVECT n1, n2, n3;
478 int i;
479
480 if (iv) { /* swap vertex order if inverted */
481 cvt = cv1;
482 cv1 = cv3;
483 cv3 = cvt;
484 }
485 xf_xfmpoint(v1, cv1->p);
486 xf_xfmpoint(v2, cv2->p);
487 xf_xfmpoint(v3, cv3->p);
488 /* compute barycentric coords. */
489 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
490 return; /* degenerate triangle! */
491 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
492 printf("4 dx dy dz %s\n0\n", TCALNAME);
493 xf_rotvect(n1, cv1->n);
494 xf_rotvect(n2, cv2->n);
495 xf_rotvect(n3, cv3->n);
496 for (i = 0; i < 3; i++) {
497 bcoor[i][0] = n1[i];
498 bcoor[i][1] = n2[i];
499 bcoor[i][2] = n3[i];
500 }
501 fput_baryc(&bvecs, bcoor, 3, stdout);
502 /* put out triangle */
503 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
504 printf("0\n0\n9\n");
505 putv(v1);
506 putv(v2);
507 putv(v3);
508 }
509
510
511 void
512 putsided(char *mname) /* print out mixfunc for sided material */
513 {
514 fprintf(matfp, "\nvoid mixfunc %s\n", mname);
515 fprintf(matfp, "4 %s void if(Rdot,1,0) .\n0\n0\n", mname);
516 }
517
518
519 char *
520 material(void) /* get (and print) current material */
521 {
522 char *mname = "mat";
523 char *pname;
524 COLOR radrgb, c2;
525 double d;
526
527 if (c_cmname != NULL)
528 mname = c_cmname;
529 if (!c_cmaterial->clock)
530 return(mname); /* already current */
531 /* else update output */
532 c_cmaterial->clock = 0;
533 if (c_cmaterial->ed > .1) { /* emitter */
534 pname = specolor(radrgb, &c_cmaterial->ed_c,
535 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
536 if (glowdist < FHUGE) { /* do a glow */
537 fprintf(matfp, "\n%s glow %s\n0\n0\n", pname, mname);
538 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
539 colval(radrgb,GRN),
540 colval(radrgb,BLU), glowdist);
541 } else {
542 fprintf(matfp, "\n%s light %s\n0\n0\n", pname, mname);
543 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
544 colval(radrgb,GRN),
545 colval(radrgb,BLU));
546 }
547 return(mname);
548 }
549 d = c_cmaterial->rd + c_cmaterial->td +
550 c_cmaterial->rs + c_cmaterial->ts;
551 if ((d < 0.) | (d > 1.))
552 return(NULL);
553 /* check for glass/dielectric */
554 if (c_cmaterial->nr > 1.1 &&
555 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
556 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
557 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
558 cvtcolor(radrgb, &c_cmaterial->ts_c,
559 c_cmaterial->ts + c_cmaterial->rs);
560 if (c_cmaterial->sided) { /* dielectric */
561 colval(radrgb,RED) = pow(colval(radrgb,RED),
562 1./C_1SIDEDTHICK);
563 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
564 1./C_1SIDEDTHICK);
565 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
566 1./C_1SIDEDTHICK);
567 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
568 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
569 colval(radrgb,GRN), colval(radrgb,BLU),
570 c_cmaterial->nr);
571 return(mname);
572 }
573 /* glass */
574 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
575 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
576 colval(radrgb,GRN), colval(radrgb,BLU),
577 c_cmaterial->nr);
578 return(mname);
579 }
580 /* check for trans */
581 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
582 double a5, a6;
583 /* average colors */
584 d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts;
585 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
586 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
587 addcolor(radrgb, c2);
588 cvtcolor(c2, &c_cmaterial->ts_c, c_cmaterial->ts/d);
589 addcolor(radrgb, c2);
590 if (c_cmaterial->rs + c_cmaterial->ts > .0001)
591 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
592 c_cmaterial->ts*c_cmaterial->ts_a) /
593 (c_cmaterial->rs + c_cmaterial->ts);
594 a6 = (c_cmaterial->td + c_cmaterial->ts) /
595 (c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts);
596 if (a6 < .999)
597 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
598 else
599 d = c_cmaterial->td + c_cmaterial->ts;
600 scalecolor(radrgb, d);
601 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
602 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
603 colval(radrgb,GRN), colval(radrgb,BLU));
604 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
605 c_cmaterial->ts/(c_cmaterial->ts + c_cmaterial->td));
606 if (c_cmaterial->sided)
607 putsided(mname);
608 return(mname);
609 }
610 /* check for plastic */
611 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .1*c_cmaterial->rd ||
612 c_isgrey(&c_cmaterial->rs_c))) {
613 pname = specolor(radrgb, &c_cmaterial->rd_c,
614 c_cmaterial->rd/(1.-c_cmaterial->rs));
615 fprintf(matfp, "\n%s plastic %s\n0\n0\n", pname, mname);
616 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
617 colval(radrgb,GRN), colval(radrgb,BLU),
618 c_cmaterial->rs, c_cmaterial->rs_a);
619 if (c_cmaterial->sided)
620 putsided(mname);
621 return(mname);
622 }
623 /* else it's metal */
624 /* compute color */
625 if (c_equiv(&c_cmaterial->rd_c, &c_cmaterial->rs_c)) {
626 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs+c_cmaterial->rd);
627 } else if (c_cmaterial->rd <= .05f) {
628 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs);
629 cvtcolor(c2, &c_cmaterial->rd_c, c_cmaterial->rd);
630 addcolor(radrgb, c2);
631 } else {
632 pname = "void";
633 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
634 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
635 addcolor(radrgb, c2);
636 }
637 fprintf(matfp, "\n%s metal %s\n0\n0\n", pname, mname);
638 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
639 colval(radrgb,GRN), colval(radrgb,BLU),
640 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
641 c_cmaterial->rs_a);
642 if (c_cmaterial->sided)
643 putsided(mname);
644 return(mname);
645 }
646
647
648 void
649 cvtcolor( /* convert a CIE XYZ color to RGB */
650 COLOR radrgb,
651 C_COLOR *ciec,
652 double intensity
653 )
654 {
655 COLOR ciexyz;
656
657 c_ccvt(ciec, C_CSXY); /* get xy representation */
658 ciexyz[1] = intensity;
659 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
660 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
661 cie_rgb(radrgb, ciexyz);
662 }
663
664
665 static int /* new spectrum definition? */
666 newspecdef(C_COLOR *spc)
667 {
668 static LUTAB spc_tab = LU_SINIT(NULL,free);
669 LUENT *lp = lu_find(&spc_tab, (const char *)spc->client_data);
670
671 if (lp == NULL) /* should never happen */
672 return(1);
673 if (lp->data == NULL) { /* new entry */
674 lp->key = (char *)spc->client_data;
675 lp->data = (char *)malloc(sizeof(C_COLOR));
676 } else if (c_equiv(spc, (C_COLOR *)lp->data))
677 return(0); /* unchanged */
678
679 if (lp->data != NULL) /* else remember if we can */
680 *(C_COLOR *)lp->data = *spc;
681 return(1); /* good as new */
682 }
683
684
685 char *
686 specolor( /* check if color has spectra and output accordingly */
687 COLOR radrgb,
688 C_COLOR *clr,
689 double intensity
690 )
691 {
692 static char spname[128];
693 double mult;
694 int cbeg, cend, i;
695
696 if (!dospectra | !(clr->flags & C_CDSPEC)) {
697 cvtcolor(radrgb, clr, intensity);
698 return("void"); /* just use RGB */
699 }
700 setcolor(radrgb, intensity, intensity, intensity);
701 for (cbeg = 0; cbeg < C_CNSS; cbeg++) /* trim zeros off beginning */
702 if (clr->ssamp[cbeg])
703 break;
704 if (cbeg >= C_CNSS) /* should never happen! */
705 return("void");
706 if (clr->client_data != NULL) { /* get name if available */
707 strcpy(spname, (char *)clr->client_data);
708 strcat(spname, "*"); /* make sure it's special */
709 if (!newspecdef(clr)) /* output already? */
710 return(spname);
711 } else
712 strcpy(spname, "spec*");
713 c_ccvt(clr, C_CSEFF); /* else output spectrum prim */
714 for (cend = 0; !clr->ssamp[C_CNSS-1-cend]; cend++)
715 ; /* trim zeros off end */
716 fprintf(matfp, "\nvoid spectrum %s\n0\n0\n", spname);
717 fprintf(matfp, "%d %d %d", C_CNSS+2-cbeg-cend,
718 C_CMINWL+cbeg*C_CWLI, C_CMAXWL-cend*C_CWLI);
719 mult = (C_CNSS*c_dfcolor.eff)/(clr->ssum*clr->eff);
720 for (i = cbeg; i < C_CNSS-cend; i++) {
721 if (!((i-cbeg+1)%6)) fputc('\n', matfp);
722 fprintf(matfp, "\t%.5f", clr->ssamp[i]*mult);
723 }
724 fputc('\n', matfp);
725 return(spname);
726 }
727
728
729 char *
730 object(void) /* return current object name */
731 {
732 static char objbuf[64];
733 int i;
734 char *cp;
735 int len;
736 /* tracked by obj_handler */
737 i = obj_nnames - sizeof(objbuf)/16;
738 if (i < 0)
739 i = 0;
740 for (cp = objbuf; i < obj_nnames &&
741 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
742 i++, *cp++ = '.') {
743 strcpy(cp, obj_name[i]);
744 cp += len;
745 }
746 *cp = '\0';
747 return(objbuf);
748 }
749
750
751 char *
752 addarg( /* add argument and advance pointer */
753 char *op,
754 char *arg
755 )
756 {
757 *op = ' ';
758 while ( (*++op = *arg++) )
759 ;
760 return(op);
761 }