ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/mgf2rad.c
Revision: 2.33
Committed: Thu Jan 4 01:55:42 2024 UTC (4 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.32: +113 -29 lines
Log Message:
feat(mgf2rad): Now handles spectral color translation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: mgf2rad.c,v 2.32 2021/04/15 23:51:04 greg Exp $";
3 #endif
4 /*
5 * Convert MGF (Materials and Geometry Format) to Radiance
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <math.h>
11 #include <string.h>
12
13 #include "platform.h"
14 #include "mgf_parser.h"
15 #include "color.h"
16 #include "tmesh.h"
17 #include "lookup.h"
18
19 #define putv(v) printf("%18.12g %18.12g %18.12g\n",(v)[0],(v)[1],(v)[2])
20
21 #define invert (xf_context != NULL && xf_context->rev)
22
23 double glowdist = FHUGE; /* glow test distance */
24
25 double emult = 1.; /* emitter multiplier */
26
27 FILE *matfp; /* material output file */
28
29
30 extern int r_comment(int ac, char **av);
31 extern int r_color(int ac, char **av);
32 extern int r_cone(int ac, char **av);
33 extern int r_cyl(int ac, char **av);
34 extern int r_sph(int ac, char **av);
35 extern int r_ring(int ac, char **av);
36 extern int r_face(int ac, char **av);
37 extern int r_ies(int ac, char **av);
38 extern void putsided(char *mname);
39 extern char * material(void);
40 extern char * object(void);
41 extern char * addarg(char *op, char *arg);
42 extern void do_tri(char *mat, C_VERTEX *cv1, C_VERTEX *cv2, C_VERTEX *cv3, int iv);
43 extern void cvtcolor(COLOR radrgb, C_COLOR *ciec, double intensity);
44 extern char * specolor(COLOR radrgb, C_COLOR *ciec, double intensity);
45
46
47 int
48 main(
49 int argc,
50 char *argv[]
51 )
52 {
53 int i;
54
55 matfp = stdout;
56 /* print out parser version */
57 printf("## Translated from MGF Version %d.%d\n", MG_VMAJOR, MG_VMINOR);
58 /* initialize dispatch table */
59 mg_ehand[MG_E_COMMENT] = r_comment; /* we pass comments */
60 mg_ehand[MG_E_COLOR] = c_hcolor; /* they get color */
61 mg_ehand[MG_E_CONE] = r_cone; /* we do cones */
62 mg_ehand[MG_E_CMIX] = c_hcolor; /* they mix colors */
63 mg_ehand[MG_E_CXY] = c_hcolor; /* they get chromaticities */
64 mg_ehand[MG_E_CSPEC] = r_color; /* we get spectra */
65 mg_ehand[MG_E_CCT] = r_color; /* we get color temp's */
66 mg_ehand[MG_E_CYL] = r_cyl; /* we do cylinders */
67 mg_ehand[MG_E_ED] = c_hmaterial; /* they get emission */
68 mg_ehand[MG_E_FACE] = r_face; /* we do faces */
69 mg_ehand[MG_E_IES] = r_ies; /* we do IES files */
70 mg_ehand[MG_E_IR] = c_hmaterial; /* they get refractive index */
71 mg_ehand[MG_E_MATERIAL] = c_hmaterial; /* they get materials */
72 mg_ehand[MG_E_NORMAL] = c_hvertex; /* they get normals */
73 mg_ehand[MG_E_OBJECT] = obj_handler; /* they track object names */
74 mg_ehand[MG_E_POINT] = c_hvertex; /* they get points */
75 mg_ehand[MG_E_RD] = c_hmaterial; /* they get diffuse refl. */
76 mg_ehand[MG_E_RING] = r_ring; /* we do rings */
77 mg_ehand[MG_E_RS] = c_hmaterial; /* they get specular refl. */
78 mg_ehand[MG_E_SIDES] = c_hmaterial; /* they get # sides */
79 mg_ehand[MG_E_SPH] = r_sph; /* we do spheres */
80 mg_ehand[MG_E_TD] = c_hmaterial; /* they get diffuse trans. */
81 mg_ehand[MG_E_TS] = c_hmaterial; /* they get specular trans. */
82 mg_ehand[MG_E_VERTEX] = c_hvertex; /* they get vertices */
83 mg_ehand[MG_E_XF] = xf_handler; /* they track transforms */
84 mg_init(); /* initialize the parser */
85 /* get our options & print header */
86 printf("## %s", argv[0]);
87 for (i = 1; i < argc && argv[i][0] == '-'; i++) {
88 printf(" %s", argv[i]);
89 switch (argv[i][1]) {
90 case 'g': /* glow distance (meters) */
91 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
92 goto userr;
93 glowdist = atof(argv[++i]);
94 printf(" %s", argv[i]);
95 break;
96 case 'e': /* emitter multiplier */
97 if (argv[i][2] || badarg(argc-i-1, argv+i+1, "f"))
98 goto userr;
99 emult = atof(argv[++i]);
100 printf(" %s", argv[i]);
101 break;
102 case 'm': /* materials file */
103 matfp = fopen(argv[++i], "a");
104 if (matfp == NULL) {
105 fprintf(stderr, "%s: cannot append\n", argv[i]);
106 exit(1);
107 }
108 printf(" %s", argv[i]);
109 break;
110 default:
111 goto userr;
112 }
113 }
114 putchar('\n');
115 if (i == argc) { /* convert stdin */
116 if (mg_load(NULL) != MG_OK)
117 exit(1);
118 if (mg_nunknown)
119 printf("## %s: %u unknown entities\n",
120 argv[0], mg_nunknown);
121 } else /* convert each file */
122 for ( ; i < argc; i++) {
123 printf("## %s %s ##############################\n",
124 argv[0], argv[i]);
125 if (mg_load(argv[i]) != MG_OK)
126 exit(1);
127 if (mg_nunknown) {
128 printf("## %s %s: %u unknown entities\n",
129 argv[0], argv[i], mg_nunknown);
130 mg_nunknown = 0;
131 }
132 }
133 exit(0);
134 userr:
135 fprintf(stderr, "Usage: %s [-g dist][-e mult][-m matf] [file.mgf] ..\n",
136 argv[0]);
137 exit(1);
138 }
139
140
141 int
142 r_comment( /* repeat a comment verbatim */
143 int ac,
144 char **av
145 )
146 {
147 putchar('#'); /* use Radiance comment character */
148 while (--ac) { /* pass through verbatim */
149 putchar(' ');
150 fputs(*++av, stdout);
151 }
152 putchar('\n');
153 return(MG_OK);
154 }
155
156
157 int
158 r_color( /* call color handler & remember name */
159 int ac,
160 char **av
161 )
162 {
163 int rval = c_hcolor(ac, av);
164
165 if (rval == MG_OK)
166 c_ccolor->client_data = c_ccname;
167
168 return(rval);
169 }
170
171
172 int
173 r_cone( /* put out a cone */
174 int ac,
175 char **av
176 )
177 {
178 static int ncones;
179 char *mat;
180 double r1, r2;
181 C_VERTEX *cv1, *cv2;
182 FVECT p1, p2;
183 int inv;
184 /* check argument count and type */
185 if (ac != 5)
186 return(MG_EARGC);
187 if (!isflt(av[2]) || !isflt(av[4]))
188 return(MG_ETYPE);
189 /* get the endpoint vertices */
190 if ((cv1 = c_getvert(av[1])) == NULL ||
191 (cv2 = c_getvert(av[3])) == NULL)
192 return(MG_EUNDEF);
193 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
194 xf_xfmpoint(p2, cv2->p);
195 r1 = xf_scale(atof(av[2])); /* scale radii */
196 r2 = xf_scale(atof(av[4]));
197 inv = r1 < 0.; /* check for inverted cone */
198 if (r1 == 0.) { /* check for illegal radii */
199 if (r2 == 0.)
200 return(MG_EILL);
201 inv = r2 < 0.;
202 } else if (r2 != 0. && inv ^ (r2 < 0.))
203 return(MG_EILL);
204 if (inv) {
205 r1 = -r1;
206 r2 = -r2;
207 }
208 if ((mat = material()) == NULL) /* get material */
209 return(MG_EBADMAT);
210 /* spit the sucker out */
211 printf("\n%s %s %sc%d\n", mat, inv ? "cup" : "cone",
212 object(), ++ncones);
213 printf("0\n0\n8\n");
214 putv(p1);
215 putv(p2);
216 printf("%18.12g %18.12g\n", r1, r2);
217 return(MG_OK);
218 }
219
220
221 int
222 r_cyl( /* put out a cylinder */
223 int ac,
224 char **av
225 )
226 {
227 static int ncyls;
228 char *mat;
229 double rad;
230 C_VERTEX *cv1, *cv2;
231 FVECT p1, p2;
232 int inv;
233 /* check argument count and type */
234 if (ac != 4)
235 return(MG_EARGC);
236 if (!isflt(av[2]))
237 return(MG_ETYPE);
238 /* get the endpoint vertices */
239 if ((cv1 = c_getvert(av[1])) == NULL ||
240 (cv2 = c_getvert(av[3])) == NULL)
241 return(MG_EUNDEF);
242 xf_xfmpoint(p1, cv1->p); /* transform endpoints */
243 xf_xfmpoint(p2, cv2->p);
244 rad = xf_scale(atof(av[2])); /* scale radius */
245 if ((inv = rad < 0.)) /* check for inverted cylinder */
246 rad = -rad;
247 if ((mat = material()) == NULL) /* get material */
248 return(MG_EBADMAT);
249 /* spit out the primitive */
250 printf("\n%s %s %scy%d\n", mat, inv ? "tube" : "cylinder",
251 object(), ++ncyls);
252 printf("0\n0\n7\n");
253 putv(p1);
254 putv(p2);
255 printf("%18.12g\n", rad);
256 return(MG_OK);
257 }
258
259
260 int
261 r_sph( /* put out a sphere */
262 int ac,
263 char **av
264 )
265 {
266 static int nsphs;
267 char *mat;
268 double rad;
269 C_VERTEX *cv;
270 FVECT cent;
271 int inv;
272 /* check argument count and type */
273 if (ac != 3)
274 return(MG_EARGC);
275 if (!isflt(av[2]))
276 return(MG_ETYPE);
277 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
278 return(MG_EUNDEF);
279 xf_xfmpoint(cent, cv->p); /* transform center */
280 rad = xf_scale(atof(av[2])); /* scale radius */
281 if ((inv = rad < 0.)) /* check for inversion */
282 rad = -rad;
283 if ((mat = material()) == NULL) /* get material */
284 return(MG_EBADMAT);
285 /* spit out primitive */
286 printf("\n%s %s %ss%d\n", mat, inv ? "bubble" : "sphere",
287 object(), ++nsphs);
288 printf("0\n0\n4 %18.12g %18.12g %18.12g %18.12g\n",
289 cent[0], cent[1], cent[2], rad);
290 return(MG_OK);
291 }
292
293
294 int
295 r_ring( /* put out a ring */
296 int ac,
297 char **av
298 )
299 {
300 static int nrings;
301 char *mat;
302 double r1, r2;
303 C_VERTEX *cv;
304 FVECT cent, norm;
305 /* check argument count and type */
306 if (ac != 4)
307 return(MG_EARGC);
308 if (!isflt(av[2]) || !isflt(av[3]))
309 return(MG_ETYPE);
310 if ((cv = c_getvert(av[1])) == NULL) /* get center vertex */
311 return(MG_EUNDEF);
312 if (is0vect(cv->n)) /* make sure we have normal */
313 return(MG_EILL);
314 xf_xfmpoint(cent, cv->p); /* transform center */
315 xf_rotvect(norm, cv->n); /* rotate normal */
316 r1 = xf_scale(atof(av[2])); /* scale radii */
317 r2 = xf_scale(atof(av[3]));
318 if ((r1 < 0.) | (r2 <= r1))
319 return(MG_EILL);
320 if ((mat = material()) == NULL) /* get material */
321 return(MG_EBADMAT);
322 /* spit out primitive */
323 printf("\n%s ring %sr%d\n", mat, object(), ++nrings);
324 printf("0\n0\n8\n");
325 putv(cent);
326 putv(norm);
327 printf("%18.12g %18.12g\n", r1, r2);
328 return(MG_OK);
329 }
330
331
332 int
333 r_face( /* convert a face */
334 int ac,
335 char **av
336 )
337 {
338 static int nfaces;
339 int myi = invert;
340 char *mat;
341 int i;
342 C_VERTEX *cv;
343 FVECT v;
344
345 /* check argument count and type */
346 if (ac < 4)
347 return(MG_EARGC);
348 if ((mat = material()) == NULL) /* get material */
349 return(MG_EBADMAT);
350 if (ac <= 5) { /* check for smoothing */
351 C_VERTEX *cva[5];
352 for (i = 1; i < ac; i++) {
353 if ((cva[i-1] = c_getvert(av[i])) == NULL)
354 return(MG_EUNDEF);
355 if (is0vect(cva[i-1]->n))
356 break;
357 }
358 if (i < ac)
359 i = ISFLAT;
360 else
361 i = flat_tri(cva[0]->p, cva[1]->p, cva[2]->p,
362 cva[0]->n, cva[1]->n, cva[2]->n);
363 if (i == DEGEN)
364 return(MG_OK); /* degenerate (error?) */
365 if (i == RVBENT) {
366 myi = !myi;
367 i = ISBENT;
368 } else if (i == RVFLAT) {
369 myi = !myi;
370 i = ISFLAT;
371 }
372 if (i == ISBENT) { /* smoothed triangles */
373 do_tri(mat, cva[0], cva[1], cva[2], myi);
374 if (ac == 5)
375 do_tri(mat, cva[2], cva[3], cva[0], myi);
376 return(MG_OK);
377 }
378 }
379 /* spit out unsmoothed primitive */
380 printf("\n%s polygon %sf%d\n", mat, object(), ++nfaces);
381 printf("0\n0\n%d\n", 3*(ac-1));
382 for (i = 1; i < ac; i++) { /* get, transform, print each vertex */
383 if ((cv = c_getvert(av[myi ? ac-i : i])) == NULL)
384 return(MG_EUNDEF);
385 xf_xfmpoint(v, cv->p);
386 putv(v);
387 }
388 return(MG_OK);
389 }
390
391
392 int
393 r_ies( /* convert an IES luminaire file */
394 int ac,
395 char **av
396 )
397 {
398 int xa0 = 2;
399 char combuf[128];
400 char fname[48];
401 char *oname;
402 char *op;
403 int i;
404 /* check argument count */
405 if (ac < 2)
406 return(MG_EARGC);
407 /* construct output file name */
408 if ((op = strrchr(av[1], '/')) != NULL)
409 op++;
410 else
411 op = av[1];
412 (void)strcpy(fname, op);
413 if ((op = strrchr(fname, '.')) == NULL)
414 op = fname + strlen(fname);
415 (void)strcpy(op, ".rad");
416 /* see if we need to run ies2rad */
417 if (access(fname, 0) == -1) {
418 (void)strcpy(combuf, "ies2rad");/* build ies2rad command */
419 op = combuf + 7; /* get -m option (first) */
420 if (ac-xa0 >= 2 && !strcmp(av[xa0], "-m")) {
421 if (!isflt(av[xa0+1]))
422 return(MG_ETYPE);
423 op = addarg(addarg(op, "-m"), av[xa0+1]);
424 xa0 += 2;
425 }
426 *op++ = ' '; /* build IES filename */
427 i = 0;
428 if (mg_file != NULL &&
429 (oname = strrchr(mg_file->fname,'/')) != NULL) {
430 i = oname - mg_file->fname + 1;
431 (void)strcpy(op, mg_file->fname);
432 }
433 (void)strcpy(op+i, av[1]);
434 if (access(op, 0) == -1) /* check for file existence */
435 return(MG_ENOFILE);
436 system(combuf); /* run ies2rad */
437 if (access(fname, 0) == -1) /* check success */
438 return(MG_EINCL);
439 }
440 printf("\n!xform"); /* put out xform command */
441 oname = object();
442 if (*oname) {
443 printf(" -n ");
444 for (op = oname; op[1]; op++) /* remove trailing separator */
445 putchar(*op);
446 }
447 for (i = xa0; i < ac; i++)
448 printf(" %s", av[i]);
449 if (ac > xa0 && xf_argc > 0)
450 printf(" -i 1");
451 for (i = 0; i < xf_argc; i++)
452 printf(" %s", xf_argv[i]);
453 printf(" %s\n", fname);
454 return(MG_OK);
455 }
456
457
458 void
459 do_tri( /* put out smoothed triangle */
460 char *mat,
461 C_VERTEX *cv1,
462 C_VERTEX *cv2,
463 C_VERTEX *cv3,
464 int iv
465 )
466 {
467 static int ntris;
468 BARYCCM bvecs;
469 RREAL bcoor[3][3];
470 C_VERTEX *cvt;
471 FVECT v1, v2, v3;
472 FVECT n1, n2, n3;
473 int i;
474
475 if (iv) { /* swap vertex order if inverted */
476 cvt = cv1;
477 cv1 = cv3;
478 cv3 = cvt;
479 }
480 xf_xfmpoint(v1, cv1->p);
481 xf_xfmpoint(v2, cv2->p);
482 xf_xfmpoint(v3, cv3->p);
483 /* compute barycentric coords. */
484 if (comp_baryc(&bvecs, v1, v2, v3) < 0)
485 return; /* degenerate triangle! */
486 printf("\n%s texfunc T-nor\n", mat); /* put out texture */
487 printf("4 dx dy dz %s\n0\n", TCALNAME);
488 xf_rotvect(n1, cv1->n);
489 xf_rotvect(n2, cv2->n);
490 xf_rotvect(n3, cv3->n);
491 for (i = 0; i < 3; i++) {
492 bcoor[i][0] = n1[i];
493 bcoor[i][1] = n2[i];
494 bcoor[i][2] = n3[i];
495 }
496 fput_baryc(&bvecs, bcoor, 3, stdout);
497 /* put out triangle */
498 printf("\nT-nor polygon %st%d\n", object(), ++ntris);
499 printf("0\n0\n9\n");
500 putv(v1);
501 putv(v2);
502 putv(v3);
503 }
504
505
506 void
507 putsided(char *mname) /* print out mixfunc for sided material */
508 {
509 fprintf(matfp, "\nvoid mixfunc %s\n", mname);
510 fprintf(matfp, "4 %s void if(Rdot,1,0) .\n0\n0\n", mname);
511 }
512
513
514 char *
515 material(void) /* get (and print) current material */
516 {
517 char *mname = "mat";
518 char *pname;
519 COLOR radrgb, c2;
520 double d;
521
522 if (c_cmname != NULL)
523 mname = c_cmname;
524 if (!c_cmaterial->clock)
525 return(mname); /* already current */
526 /* else update output */
527 c_cmaterial->clock = 0;
528 if (c_cmaterial->ed > .1) { /* emitter */
529 pname = specolor(radrgb, &c_cmaterial->ed_c,
530 emult*c_cmaterial->ed/(PI*WHTEFFICACY));
531 if (glowdist < FHUGE) { /* do a glow */
532 fprintf(matfp, "\n%s glow %s\n0\n0\n", pname, mname);
533 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
534 colval(radrgb,GRN),
535 colval(radrgb,BLU), glowdist);
536 } else {
537 fprintf(matfp, "\n%s light %s\n0\n0\n", pname, mname);
538 fprintf(matfp, "3 %f %f %f\n", colval(radrgb,RED),
539 colval(radrgb,GRN),
540 colval(radrgb,BLU));
541 }
542 return(mname);
543 }
544 d = c_cmaterial->rd + c_cmaterial->td +
545 c_cmaterial->rs + c_cmaterial->ts;
546 if ((d < 0.) | (d > 1.))
547 return(NULL);
548 /* check for glass/dielectric */
549 if (c_cmaterial->nr > 1.1 &&
550 c_cmaterial->ts > .25 && c_cmaterial->rs <= .125 &&
551 c_cmaterial->td <= .01 && c_cmaterial->rd <= .01 &&
552 c_cmaterial->rs_a <= .01 && c_cmaterial->ts_a <= .01) {
553 cvtcolor(radrgb, &c_cmaterial->ts_c,
554 c_cmaterial->ts + c_cmaterial->rs);
555 if (c_cmaterial->sided) { /* dielectric */
556 colval(radrgb,RED) = pow(colval(radrgb,RED),
557 1./C_1SIDEDTHICK);
558 colval(radrgb,GRN) = pow(colval(radrgb,GRN),
559 1./C_1SIDEDTHICK);
560 colval(radrgb,BLU) = pow(colval(radrgb,BLU),
561 1./C_1SIDEDTHICK);
562 fprintf(matfp, "\nvoid dielectric %s\n0\n0\n", mname);
563 fprintf(matfp, "5 %g %g %g %f 0\n", colval(radrgb,RED),
564 colval(radrgb,GRN), colval(radrgb,BLU),
565 c_cmaterial->nr);
566 return(mname);
567 }
568 /* glass */
569 fprintf(matfp, "\nvoid glass %s\n0\n0\n", mname);
570 fprintf(matfp, "4 %f %f %f %f\n", colval(radrgb,RED),
571 colval(radrgb,GRN), colval(radrgb,BLU),
572 c_cmaterial->nr);
573 return(mname);
574 }
575 /* check for trans */
576 if (c_cmaterial->td > .01 || c_cmaterial->ts > .01) {
577 double a5, a6;
578 /* average colors */
579 d = c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts;
580 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd/d);
581 cvtcolor(c2, &c_cmaterial->td_c, c_cmaterial->td/d);
582 addcolor(radrgb, c2);
583 cvtcolor(c2, &c_cmaterial->ts_c, c_cmaterial->ts/d);
584 addcolor(radrgb, c2);
585 if (c_cmaterial->rs + c_cmaterial->ts > .0001)
586 a5 = (c_cmaterial->rs*c_cmaterial->rs_a +
587 c_cmaterial->ts*c_cmaterial->ts_a) /
588 (c_cmaterial->rs + c_cmaterial->ts);
589 a6 = (c_cmaterial->td + c_cmaterial->ts) /
590 (c_cmaterial->rd + c_cmaterial->td + c_cmaterial->ts);
591 if (a6 < .999)
592 d = c_cmaterial->rd/(1. - c_cmaterial->rs)/(1. - a6);
593 else
594 d = c_cmaterial->td + c_cmaterial->ts;
595 scalecolor(radrgb, d);
596 fprintf(matfp, "\nvoid trans %s\n0\n0\n", mname);
597 fprintf(matfp, "7 %f %f %f\n", colval(radrgb,RED),
598 colval(radrgb,GRN), colval(radrgb,BLU));
599 fprintf(matfp, "\t%f %f %f %f\n", c_cmaterial->rs, a5, a6,
600 c_cmaterial->ts/(c_cmaterial->ts + c_cmaterial->td));
601 if (c_cmaterial->sided)
602 putsided(mname);
603 return(mname);
604 }
605 /* check for plastic */
606 if (c_cmaterial->rs < .1 && (c_cmaterial->rs < .1*c_cmaterial->rd ||
607 c_isgrey(&c_cmaterial->rs_c))) {
608 pname = specolor(radrgb, &c_cmaterial->rd_c,
609 c_cmaterial->rd/(1.-c_cmaterial->rs));
610 fprintf(matfp, "\n%s plastic %s\n0\n0\n", pname, mname);
611 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
612 colval(radrgb,GRN), colval(radrgb,BLU),
613 c_cmaterial->rs, c_cmaterial->rs_a);
614 if (c_cmaterial->sided)
615 putsided(mname);
616 return(mname);
617 }
618 /* else it's metal */
619 /* compute color */
620 if (c_equiv(&c_cmaterial->rd_c, &c_cmaterial->rs_c)) {
621 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs+c_cmaterial->rd);
622 } else if (c_cmaterial->rd <= .05f) {
623 pname = specolor(radrgb, &c_cmaterial->rs_c, c_cmaterial->rs);
624 cvtcolor(c2, &c_cmaterial->rd_c, c_cmaterial->rd);
625 addcolor(radrgb, c2);
626 } else {
627 pname = "void";
628 cvtcolor(radrgb, &c_cmaterial->rd_c, c_cmaterial->rd);
629 cvtcolor(c2, &c_cmaterial->rs_c, c_cmaterial->rs);
630 addcolor(radrgb, c2);
631 }
632 fprintf(matfp, "\n%s metal %s\n0\n0\n", pname, mname);
633 fprintf(matfp, "5 %f %f %f %f %f\n", colval(radrgb,RED),
634 colval(radrgb,GRN), colval(radrgb,BLU),
635 c_cmaterial->rs/(c_cmaterial->rd + c_cmaterial->rs),
636 c_cmaterial->rs_a);
637 if (c_cmaterial->sided)
638 putsided(mname);
639 return(mname);
640 }
641
642
643 void
644 cvtcolor( /* convert a CIE XYZ color to RGB */
645 COLOR radrgb,
646 C_COLOR *ciec,
647 double intensity
648 )
649 {
650 COLOR ciexyz;
651
652 c_ccvt(ciec, C_CSXY); /* get xy representation */
653 ciexyz[1] = intensity;
654 ciexyz[0] = ciec->cx/ciec->cy*ciexyz[1];
655 ciexyz[2] = ciexyz[1]*(1./ciec->cy - 1.) - ciexyz[0];
656 cie_rgb(radrgb, ciexyz);
657 }
658
659
660 static int /* new spectrum definition? */
661 newspecdef(C_COLOR *spc)
662 {
663 static LUTAB spc_tab = LU_SINIT(NULL,free);
664 LUENT *lp = lu_find(&spc_tab, (const char *)spc->client_data);
665
666 if (lp == NULL) /* should never happen */
667 return(1);
668 if (lp->data == NULL) { /* new entry */
669 lp->key = (char *)spc->client_data;
670 lp->data = (char *)malloc(sizeof(C_COLOR));
671 } else if (c_equiv(spc, (C_COLOR *)lp->data))
672 return(0); /* unchanged */
673
674 if (lp->data != NULL) /* else remember if we can */
675 *(C_COLOR *)lp->data = *spc;
676 return(1); /* good as new */
677 }
678
679
680 char *
681 specolor( /* check if color has spectra and output accordingly */
682 COLOR radrgb,
683 C_COLOR *clr,
684 double intensity
685 )
686 {
687 static char spname[128];
688 double mult;
689 int i;
690
691 if (!(clr->flags & C_CDSPEC)) { /* not defined spectrally? */
692 cvtcolor(radrgb, clr, intensity);
693 return("void");
694 }
695 setcolor(radrgb, intensity, intensity, intensity);
696 if (clr->client_data != NULL) { /* get name if available */
697 strcpy(spname, (char *)clr->client_data);
698 strcat(spname, "*"); /* make sure it's special */
699 if (!newspecdef(clr)) /* output already? */
700 return(spname);
701 } else
702 strcpy(spname, "spec*");
703 c_ccvt(clr, C_CSEFF); /* else output spectrum prim */
704 fprintf(matfp, "\nvoid spectrum %s\n0\n0\n", spname);
705 fprintf(matfp, "%d %d %d", C_CNSS+2, C_CMINWL, C_CMAXWL);
706 mult = (C_CNSS*c_dfcolor.eff)/(clr->ssum*clr->eff);
707 for (i = 0; i < C_CNSS; i++) {
708 if (!((i+1)%6)) fputc('\n', matfp);
709 fprintf(matfp, "\t%.5f", clr->ssamp[i]*mult);
710 }
711 fputc('\n', matfp);
712 return(spname);
713 }
714
715
716 char *
717 object(void) /* return current object name */
718 {
719 static char objbuf[64];
720 int i;
721 char *cp;
722 int len;
723 /* tracked by obj_handler */
724 i = obj_nnames - sizeof(objbuf)/16;
725 if (i < 0)
726 i = 0;
727 for (cp = objbuf; i < obj_nnames &&
728 cp + (len=strlen(obj_name[i])) < objbuf+sizeof(objbuf)-1;
729 i++, *cp++ = '.') {
730 strcpy(cp, obj_name[i]);
731 cp += len;
732 }
733 *cp = '\0';
734 return(objbuf);
735 }
736
737
738 char *
739 addarg( /* add argument and advance pointer */
740 char *op,
741 char *arg
742 )
743 {
744 *op = ' ';
745 while ( (*++op = *arg++) )
746 ;
747 return(op);
748 }